Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (1): 193-202.doi: 10.3724/SP.J.1006.2022.02092


Effects of free air temperature increase on nitrogen utilization of rice in northeastern China

RUAN Jun-Mei1(), ZHANG Jun1, LIU You-Hong2, DONG Wen-Jun2, MENG Ying2, DENG Ai-Xing1, YANG Wan-Shen1, SONG Zhen-Wei1,*(), ZHANG Wei-Jian1   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
  • Received:2020-12-26 Accepted:2021-04-26 Online:2022-01-12 Published:2021-06-04
  • Contact: SONG Zhen-Wei E-mail:ruanjmei2016@163.com;songzhenwei@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2017YFD0300104);National Key Research and Development Program of China(2016YFD0300501)


Northeastern China is one of the regions where are experiencing the most significant global warming trend. Revealing the effects of anticipated warming on nitrogen absorption and utilization of rice in northeastern China can provide reference for regional sustainable production of rice and optimal management of nitrogen fertilizer. In this study, the field and pot experiments were setup based on free air temperature increase (FATI) system in Harbin, Heilongjiang province during 2019 to 2020, combined with 15N isotope tracer technique, to investigate the effects of anticipated warming (+1.5℃) on rice yield, nitrogen utilization, and the fate of fertilizer nitrogen. The results showed that warming treatment (W) promoted rice above-ground dry-matter accumulation. The mean grain yields in field and pot experiments during 2019 and 2020 under warming treatment were higher by 10.4% and 10.8% than those under control (CK), respectively. Compared with CK, the mean total nitrogen uptake of two years under W treatment significantly increased by 21.3%, however, the nitrogen utilization efficiency of rice grains showed a decreased trend. Under W treatment, the nitrogen absorbed from fertilizer decreased significantly, while the nitrogen absorbed by rice from soil increased by 31.1%, resulting in the reduction of 12.5% in fertilizer nitrogen recovery rate and the increase of 14.2% in fertilizer nitrogen loss rate. Overall, warming tended to increase rice grain yield, but decreased the proportion of fertilizer nitrogen uptake by plant, which leading to the decrease in nitrogen use efficiency and the significant increase in nitrogen loss rate. Under the background of climate warming, it was suggested to reasonably increase the transplanting density of rice to make full use of the positive effect of global warming on rice yield, as well as appropriately reduce the amount of nitrogen fertilizer application and optimize the management of nitrogen fertilizer operation to improve the nitrogen use efficiency of rice.

Key words: rice, climate warming, FATI, isotope tracer technique, nitrogen absorption and utilization, fate of fertilizer nitrogen

Fig. 1

Monthly mean temperature (A) and precipitation (B) during rice growth season in 2019 and 2020"

Fig. 2

Free air temperature increase (A) system and warmed field area (B) 1: plots by 15N labeling; 2: infrared heater; 3: digital temperature monitors; 4: wire; 5: light stand."

Fig. 3

Effects of warming on mean daily rice canopy (A, B) and soil temperature (C, D) in 2019 and 2020 CK: control; W: warming."

Table 1

Effects of warming on mean daily rice canopy and soil temperature during rice growing period (℃)"

冠层温度Canopy temperature 土壤温度Soil temperature
2019 对照CK 23.81±0.05 b 17.69±0.05 b 20.89±0.05 b 21.14±0.15 b 18.28±0.04 b 20.23±0.06 b
增温W 25.31±0.19 a 19.96±0.10 a 22.75±0.15 a 22.26±0.05 a 20.44±0.12 a 21.63±0.07 a
Δ 1.50±0.24 2.27±0.15 1.86±0.20 1.12±0.19 1.16±1.11 1.14±0.10
2020 对照CK 24.79±0.03 b 18.92±0.07 b 21.94±0.05 b 22.27±0.01 a 20.68±0.07 b 21.50±0.04 b
增温W 25.41±0.07 a 20.19±0.02 a 22.87±0.03 a 22.83±0.22 a 21.40±0.09 a 22.13±0.16 a
Δ 0.61±0.07 1.26±0.07 0.93±0.06 0.56±0.23 0.72±0.14 0.64±0.19

Table 2

Effects of warming on rice yield and yield components"

Effect panicles
(×104 hm-2)
Grains per panicle
1000-grain weight
(t hm-2)
2019 对照CK 506.67±21.77 a 73.49±2.49 a 19.56±0.51 a 8.30±0.08 b
增温W 520.00±18.86 a 74.29±1.54 a 21.10±0.24 a 9.00±0.10 a
2020 对照CK 458.67±12.12 a 106.92±3.11 a 23.39±0.16 a 10.00±0.32 a
增温W 464.00±26.40 a 113.99±2.48 a 22.46±0.38 a 11.24±0.44 a

Table 3

Effects of warming on the biomass and grain yield in pot rice (g m-2)"

Root biomass
Straw biomass
Grain yield
2019 对照CK 161.87±15.01 a 529.71±9.83 b 670.13±8.94 b
增温W 155.82±5.80 a 689.11±28.99 a 761.73±9.00 a
2020 对照CK 208.89±3.55 a 750.84±8.94 b 1074.89±23.06 a
增温W 242.09±17.21 a 814.58±2.47 a 1158.62±8.77 a

Table 4

Effects of warming on the nitrogen uptake and its allocation in rice"

Total N uptake
(g m-2)
N uptake by different parts of the plant
(g m-2)
Ratio of N uptake by different parts of the plant (%)
2019 对照CK 12.33±0.18 b 0.98±0.08 a 4.02±0.18 b 7.32±0.07 b 7.99±0.77 a 32.60±1.05 a 59.42±0.52 a
增温W 15.11±0.22 a 0.92±0.03 a 5.54±0.21 a 8.65±0.03 a 6.09±0.14 a 36.62±0.88 a 57.29±1.02 a
2020 对照CK 17.12±0.43 b 0.99±0.02 a 4.64±0.18 b 11.49±0.25 b 5.77±0.09 a 27.08±0.53 a 67.16±0.45 a
增温W 20.55±0.18 a 1.19±0.09 a 5.71±0.04 a 13.65±0.11 a 5.80±0.38 a 27.78±0.20 a 66.42±0.42 a

Fig. 4

Effects of warming on N harvest index (A), N dry matter production efficiency (B), and N grain production efficiency (C) in rice CK: control; W: warming. Different lowercase letters denote significant difference at P < 0.05 between the treatments."

Table 5

Effects of warming on nitrogen uptake from different resources in rice"

氮素来源Source of the N uptake (g m-2) 占比Ratio of the source of N uptake (%)
肥料Fertilizer 土壤Soil 肥料Fertilizer 土壤Soil
2019 对照CK 3.14±0.03 a 9.18±0.19 b 25.52±0.54 a 74.48±0.54 b
增温W 2.69±0.04 b 12.42±0.24 a 17.80±0.44 b 82.20±0.44 a
2020 对照CK 3.10±0.07 a 14.01±0.48 b 18.19±0.81 a 81.81±0.81 b
增温W 2.78±0.06 b 17.77±0.13 a 13.51±0.21 b 86.49±0.21 a

Table 6

Effects of warming on fertilizer nitrogen allocation in rice plant"

N uptake in different parts of the plant (g m-2)
Ratio of N uptake in different parts of the plant (%)
根系Root 秸秆Straw 籽粒Grain 根系Root 秸秆Straw 籽粒Grain
2019 对照CK 0.24±0.03 a 1.01±0.02 a 1.89±0.03 a 7.69±0.76 a 32.31±1.04 b 60.00±0.32 a
增温W 0.20±0.01 a 1.05±0.06 a 1.44±0.01 b 7.50±0.49 a 38.85±1.54 a 53.66±1.06 b
2020 对照CK 0.17±0.01 a 0.86±0.01 a 2.07±0.06 a 5.45±0.12 a 27.76±0.26 a 66.79±0.46 a
增温W 0.16±0.02 a 0.76±0.03 a 1.85±0.02 b 5.79±0.46 a 27.50±0.50 a 66.71±0.95 a

Table 7

Effects of warming on soil nitrogen allocation in rice plant"

N uptake by different parts of the plant (g m-2)
Ratio of N uptake by different parts of the plant (%)
根系Root 秸秆Straw 籽粒Grain 根系Root 秸秆Straw 籽粒Grain
2019 对照CK 0.74±0.06 a 3.01±0.16 b 5.44±0.09 b 8.09±0.78 a 32.70±1.09 a 59.22±0.71 a
增温W 0.72±0.03 a 4.49±0.23 a 7.21±0.02 a 5.79±0.17 a 36.10±1.02 a 58.10±1.32 a
2020 对照CK 0.82±0.02 a 3.78±0.19 b 9.42±0.29 b 5.84±0.13 a 26.92±0.61 a 67.24±0.48 a
增温W 1.03±0.07 a 4.94±0.02 a 11.80±0.11 a 5.80±0.37 a 27.82±0.26 a 66.38±0.37 a

Fig. 5

Effects of warming on fertilizer nitrogen recovery rate (A), soil retention rate (B), and loss rate (C) in rice CK: control; W: warming. Different lowercase letters denote significant difference at P < 0.05 between the treatments."

[1] Hasselmann K, Barker T. The stern review and the IPCC fourth assessment report: implications for interaction between policymakers and climate experts. An editorial essay.Climatic Change, 2008. 89:219-229.
[2] IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press, 2014. pp 3-29.
[3] IPCC. Special report on global warming of 1.5℃. UK: Cambridge University Press, 2018. pp 175-313.
[4] 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43:329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Sci Agric Sin, 2010, 43:329-336 (in Chinese with English abstract).
[5] Schlenker W, Roberts M J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci USA, 2009, 106:15594-15598.
[6] Lobell D B, Burke M B, Tebaldi C, Mastrandrea M D, Falcon W P, Naylor R L. Prioritizing climate change adaptation needs for food security in 2030. Science, 2008, 319:607-610.
[7] Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science, 2011, 333:616-620.
[8] Hou R X, Xu X L, Ouyang Z. Effect of experimental warming on nitrogen uptake by winter wheat under conventional tillage versus no-till systems. Soil Tillage Res, 2018, 180:116-125.
[9] Greaver T L, Clark C M, Compton J E, Vallano D, Talhelm A F, Weaver C P, Band L E, Baron J S, Davidson E A, Tague C L, Felker-Quinn E, Lynch J A, Herrick J D, Liu L, Goodale C L, Novak K J, Haeuber R A. Key ecological responses to nitrogen are altered by climate change. Nat Clim Change, 2016, 6:836-843.
[10] Bai E, Li S L, Xu W H, Li W, Dai W W, Jiang P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol, 2013, 199:431-440.
[11] Wang X X, Dong S K, Gao Q Z, Zhou H K, Liu S L, Su X K, Li Y Y. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biol Biochem, 2014, 76:140-142.
[12] Dijkstra F A, Blumenthal D, Morgan J A, Pendall E, Carrillo Y, Follett R F. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol, 2010, 187:426-437.
[13] Wang B, Li R, Wan Y F, Li Y, Cai W W, Guo C, Qin X B, Song C Y, Wilkes A. Air warming and CO2 enrichment cause more ammonia volatilization from rice paddies: an OTC field study. Sci Total Environ, 2020, 752:142071.
[14] 赵秀兰. 近50年中国东北地区气候变化对农业的影响. 东北农业大学学报, 2010, 41(9):144-149.
Zhao X L. Influence of climate change on agriculture in Northeast China in recent 50 years. J Northeast Agric Univ, 2010, 41(9):144-149 (in Chinese with English abstract).
[15] 张卫建, 陈金, 徐志宇, 陈长青, 邓艾兴, 钱春荣, 董文军. 东北稻作系统对气候变暖的实际响应与适应. 中国农业科学, 2012, 45:1265-1273.
Zhang W J, Chen J, Xu Z Y, Chen C Q, Deng A X, Qian C R, Dong W J. Actual responses and adaptations of rice cropping system to global warming in Northeast China. Sci Agric Sin, 2012, 45:1265-1273 (in Chinese with English abstract).
[16] 陈金, 田云录, 董文军, 侯立刚, 马巍, 徐志宇, 张卫建. 东北水稻生长发育和产量对夜间升温的响应. 中国水稻科学, 2013, 27:84-90.
Chen J, Tian Y L, Dong W J, Hou L G, Ma W, Xu Z Y, Zhang W J. Responses of rice growth and grain yield to nighttime warming in Northeast China. Chin J Rice Sci, 2013, 27:84-90 (in Chinese with English abstract).
[17] 董文军, 邓艾兴, 张彬, 田云录, 陈金, 杨飞, 张卫建. 开放式昼夜不同增温对单季稻影响的试验研究. 生态学报, 2011, 31:2169-2177.
Dong W J, Deng A X, Zhang B, Tian Y L, Chen J, Yang F, Zhang W J. An experimental study on the effects of different diurnal warming regimes on single cropping rice with free air temperature Increased (FATI) facility. Acta Ecol Sin, 2011, 31:2169-2177 (in Chinese with English abstract).
[18] Junk G, Svec H J. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim Cosmochim Acta, 1957, 14:234-243.
[19] Guo R Y, Miao W, Fan C Y, Li X G, Shi X Y, Li F M, Qin W. Exploring optimal nitrogen management for high yielding maize in arid areas via15N-labeled technique. Geoderma, 2020, 382:114711.
[20] 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004, 37:490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J J, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004, 37:490-496 (in Chinese with English abstract).
[21] Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101:9971-9975.
[22] Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu D, Liu Z, Zhu Y, Zhu Z, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114:9326-9331.
[23] Cai C, Yin X, He S, Jiang W, Si C, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, Pan G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biol, 2016, 22:856-874.
[24] Chen C Q, Qian C R, Deng A X, Zhang W J. Progressive and active adaptations of cropping system to climate change in Northeast China. Eur J Agron, 2012, 38:94-103.
[25] Chen J, Chen C G, Tian Y L, Zhang X, Dong W J, Zhang B, Zhang J, Zheng C Y, Deng A X, Song Z W, Peng C R, Zhang W J. Differences in the impacts of nighttime warming on crop growth of rice-based cropping systems under field conditions. Eur J Agron, 2017, 82:80-92.
[26] Kim H Y, Ko J, Kang S, Tenhunen J. Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biol, 2013, 19:548-562.
[27] Kropff M J, Cassman K G, Van Laar H H, Peng S. Nitrogen and yield potential of irrigated rice. Plant Soil, 1993, 155:391-394.
[28] Wang F, Peng S B. Yield potential and nitrogen use efficiency of China's super rice. J Integr Agric, 2017, 16:1000-1008.
[29] Dusenge M E, Duarte A G, Way D A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol, 2019, 221:32-49.
[30] Wang B, Guo C, Wan Y F, Li J L, Ju X T, Cai W W, You S C, Qin X B, Wilkes A, Li Y. Air warming and CO2 enrichment increase N use efficiency and decrease N surplus in a Chinese double rice cropping system. Sci Total Environ, 2020, 706:136063.
[31] 叶全宝, 张洪程, 魏海燕, 张瑛, 汪本福, 夏科, 霍中洋, 戴其根, 许轲. 不同土壤及氮肥条件下水稻氮利用效率和增产效应研究. 作物学报, 2005, 31:1422-1428.
Ye Q B, Zhang H C, Wei H Y, Zhang Y, Wang B F, Xia K, Huo Z Y, Dai Q G, Xu K. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Acta Agron Sin, 2005, 31:1422-1428 (in Chinese with English abstract).
[32] Frey S D, Lee J, Melillo J M, Six J. The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Change, 2013, 3:395-398.
[33] Dai Z M, Yu M J, Chen H H, Zhao H C, Huang Y L, Su W Q, Xia F, Chang S X, Brookes P C, Dahlgren R A, Xu J M. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biol, 2020, 26:5267-5276.
[34] Gardner J B, Drinkwater L E. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments. Ecol Appl, 2009, 19:2167-2184.
[35] Deng M F, Liu L L, Jiang L, Liu W X, Wang X, Li S P, Yang S, Wang B. Ecosystem scale trade-off in nitrogen acquisition pathways. Nat Ecol Evol, 2018, 2:1724-1734.
[36] Liu S W, Zheng Y J, Ma R Y, Yu K, Han Z Q, Xiao S Q, Li Z F, Wu S, Li S Q, Wang J Y, Luo Y Q, Zou J W. Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming. Global Change Biol, 2020, 26:4601-4613.
[37] 刘巽浩, 陈阜. 对氮肥利用效率若干传统观念的质疑. 农业现代化研究, 1990, 11(4):28-34.
Liu X H, Chen F. Questioning some traditional concepts of nitrogen fertilizer use efficiency. Res Agric Modern, 1990, 11(4):28-34 (in Chinese).
[38] Yan M, Pan G, Lavallee J M, Conant R T. Rethinking sources of nitrogen to cereal crops. Global Change Biol, 2020, 26:191-199.
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Full text



No Suggested Reading articles found!