Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2920-2933.doi: 10.3724/SP.J.1006.2022.11109

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of soil water deficit and elevated atmospheric CO2 concentration on leaf photosynthesis of winter wheat

ZHENG Yun-Pu1(), CHANG Zhi-Jie1, HAN Yi1, LU Yun-Ze2, CHEN Wen-Na2, TIAN Yin-Shuai2, YIN Jia-Wei2, HAO Li-Hua1,3,*()   

  1. 1School of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056038, Hebei, China
    2School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
    3College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2021-12-03 Accepted:2022-03-25 Online:2022-11-12 Published:2022-04-21
  • Contact: HAO Li-Hua E-mail:zhengyunpu@hebeu.edu.cn;haolihua_000@sina.com
  • Supported by:
    The National Natural Science Foundation of China(32071608);The Natural Science Foundation of Hebei Province(C2020402026);The Natural Science Foundation of Hebei Province(E2021402031)

Abstract:

To understand the mechanisms of agricultural ecosystem structure and function in response to soil water deficit under future elevated atmospheric CO2 concentration, we examined the effects of soil water deficit and elevated CO2 concentration ([CO2]) on the stomatal traits, leaf photosynthesis, water use efficiency as well as Rubisco activity and gene expression of winter wheat with environmental growth chambers, whereby the [CO2] was controlled accurately with CO2 sensors. Our results showed that water deficit significantly decreased the plant biomass and net photosynthesis rates (Pn) of winter wheat by 33% and 29%, whereas elevated [CO2] partially mitigated the negative effects of water deficit on plant growth and physiological processes of winter wheat. Meanwhile, water deficit also reduced the stomatal width and regularity of stomatal distribution pattern on winter wheat leaves, but higher [CO2] could optimize the leaf gas exchange efficiency with more regular distribution pattern of stomata. Moreover, elevated [CO2] not only enhanced the Pn of winter wheat plants under water deficit, but also substantially reduced the transpiration rates (Tr) by 25%, and thus elevated [CO2] increased the water use efficiency by 61% when winter wheat plants subjected to water deficit. In addition, elevated [CO2] boosted the initial activity and activation state of Rubisco as well as soluble protein content by 66%, 38%, and 15%, and meanwhile significantly enhanced the gene expression levels of RbcL3 and RbcS2 by 453% and 417%, respectively. These results suggested that elevated [CO2] may optimize leaf gas exchange through modifying stomatal traits as well as the activity and gene express of Rubisco, and thus increased plant biomass, Pn, and water use efficiency to efficiently alleviate the physiological stress of water deficit on growth and development processes of winter wheat. Our findings may not only provide data for further understanding the impacts of water deficit on grain yield and water use efficiency of winter wheat under elevated [CO2], but also have important significance for adaptation management of agricultural ecosystems under global change.

Key words: water deficiency, doubling CO2 concentration, winter wheat, stomatal traits, photosynthetic performance, Rubisco gene expression

Fig. 1

Effects of water deficit and elevated [CO2] on leaf area (a) and plant biomass (b) of winter wheat Different letters indicate significant difference among treatments at P < 0.05 and the same letters indicate nonsignificant difference among treatments at P > 0.05."

Table 1

Interactive effects of water deficit and elevated [CO2] on leaf area and plant biomass of winter wheat"

处理因素 Treatment 叶面积 Leaf area 植株生物量 Plant biomass
CO2浓度 CO2 concentration ([CO2]) 0.371 0.117
水分 Watering <0.001 <0.001
[CO2]×水分 [CO2] × Watering 0.005 0.199

Table 2

Effects of water deficit and elevated [CO2] on the stomatal morphology of winter wheat"

气孔形态特征
Stomatal morphology
叶面
Leaf surface
对照
Control
水分亏缺
Water deficit
[CO2]升高
e[CO2]
水分亏缺×[CO2]升高
Water deficit × e[CO2]
P
P-value
气孔密度
Stomatal density
近轴面Adaxial 51.1±1.2 b 61.1±2.0 a 64.8±2.6 a 60.1±2.3 a <0.001
远轴面Abaxial 29.3±1.2 c 32.5±0.8 bc 40.3±2.3 a 34.7±0.8 b <0.001
气孔长度
Stomatal length (μm)
近轴面Adaxial 40.4±1.2 a 38.9±2.0 a 38.0±0.5 a 40.3±1.4 a 0.402
远轴面Abaxial 37.0±1.1 b 38.9±1.0 ab 39.4±1.6 ab 42.5±0.9 a 0.076
气孔宽度
Stomatal width (μm)
近轴面Adaxial 4.1±0.2 b 4.8±0.2 a 3.6±0.1 c 3.5±0.1 c <0.001
远轴面Abaxial 4.2±1.5 a 4.3±0.4 a 4.2±1.0 a 3.5±0.3 a 0.338
气孔周长
Stomatal perimeter (μm)
近轴面Adaxial 85.2±2.5 a 82.5±3.8 a 79.3±1.2 a 83.9±2.8 a 0.337
远轴面Abaxial 78.3±2.5 b 82.3±2.0 ab 83.4±3.6 ab 88.8±1.7 a 0.163
气孔面积
Stomatal area (μm2)
近轴面Adaxial 167.4±15.6 a 191.4±13.0 a 129.5±6.1 b 129.1±6.2 b 0.002
远轴面Abaxial 146.4±20.0 a 167.9±8.0 a 173.7±18.2 a 146.9±3.6 a 0.521
气孔形状指数
Stomatal shape index (%)
近轴面Adaxial
远轴面Abaxial
0.15±0.012 b 0.17±0.003 a 0.14±0.007 bc 0.14±0.009 c <0.001
0.15±0.006 a 0.16±0.002 a 0.15±0.003 a 0.14±0.003 b 0.011

Table 3

Interactive effects of watering and [CO2] on morphological traits of stomata on winter wheat leaves"

气孔形态特征
Stomatal morphology
气孔密度
Stomatal density
气孔长度
Stomatal length
气孔宽度
Stomatal width
气孔周长
Stomatal perimeter
气孔面积
Stomatal area
形状指数
Shape
index
CO2浓度 CO2 concentration ([CO2]) <0.001 0.198 0.001 0.377 0.028 <0.001
水分 Watering 0.547 0.118 0.715 0.164 0.662 0.866
叶面 Leaf surface <0.001 0.984 0.904 0.816 0.677 0.964
[CO2]×水分 [CO2] × Watering <0.001 0.184 0.019 0.288 0.086 <0.001
[CO2]×叶面 [CO2] × Leaf surface 0.909 0.061 0.065 0.049 0.013 0.042
水分×叶面 Watering × Leaf surface 0.107 0.255 0.178 0.354 0.489 0.054
[CO2]×水分×叶面 [CO2] × Watering × Leaf surface 0.230 0.479 0.741 0.466 0.568 0.984

Fig. 2

Effects of water deficit and elevated [CO2] on distribution pattern of stomata on the adaxial (a) and abaxial (b) surfaces of winter wheat leaves The upper 95% means the upper boundary of the 95% confidence envelope, the lower 95% means the lower boundary of the 95% confidence envelope. CK indicates Control, D indicates drought, ED indicates elevated [CO2] and drought, as well as E indicates elevated [CO2]."

Fig. 3

Effects of water deficit and elevated [CO2] on leaf gas exchange of winter wheat Different letters indicate significant difference among treatments at P < 0.05 and the same letters indicate nonsignificant difference among treatments at P > 0.05."

Table 4

Interactive effects of water deficit and elevated [CO2] on leaf gas exchange of winter wheat"

气体交换
Gas exchange
净光合速率
Pn
蒸腾速率
Tr
气孔导度
Gs
瞬时水分利用率
WUEI
暗呼吸速率
Rd
细胞间[CO2]
Ci
CO2浓度 CO2 concentration ([CO2]) 0.071 0.143 0.044 <0.001 0.211 0.278
水分 Watering 0.008 <0.001 0.002 <0.001 <0.001 <0.001
[CO2]×水分 [CO2] × Watering 0.369 0.071 0.019 0.567 0.275 0.144

Table 5

Interactive effects of water deficit and elevated [CO2] on total nonstructural carbohydrates (NSC) in winter wheat leaves"

处理因素
Treatment
果糖
Fructose
蔗糖
Sucrose
葡萄糖
Glucose
可溶性糖
Soluble sugars
淀粉
Starch
非结构性碳水化合物
Total NSC
CO2浓度 CO2 concentration ([CO2]) 0.001 <0.001 0.098 0.256 0.293 0.499
水分 Watering 0.352 0.098 0.001 0.877 0.618 0.526
[CO2]×水分 [CO2] × Watering 0.001 <0.001 0.001 <0.001 0.028 0.944

Fig. 4

Effects of water deficit and elevated [CO2] on nonstructural carbohydrates in winter wheat leaves Different letters indicate significant difference among treatments at P < 0.05 and the same letters indicate nonsignificant difference among treatments at P > 0.05."

Table 6

Interactive effects of water deficit and elevated [CO2] on leaf C and N contents as well as C/N in winter wheat leaves"

处理因素
Treatment
C含量
Carbon content
N含量
Nitrogen content
C/N
C/N ratio
CO2浓度 CO2 concentration ([CO2]) 0.004 0.055 0.151
水分 Watering 0.308 0.841 0.904
[CO2]×水分 [CO2] × Watering 0.443 0.293 0.438

Fig. 5

Effects of water deficit and elevated [CO2] on leaf C and N contents as well as C/N ratio in winter wheat leaves Different letters indicate significant difference among treatments at P < 0.05 and the same letters indicate nonsignificant difference among treatments at P > 0.05."

Fig. 6

Effects of water deficit and elevated [CO2] on the Rubisco activity and soluble protein of winter wheat"

Fig. 7

Effects of water deficit and elevated [CO2] on the gene expression of winter wheat Different letters indicate significant difference among treatments at P < 0.05 and the same letters indicate nonsignificant difference among treatments at P > 0.05."

Fig. 8

Possible processes and mechanisms for the combined effects of water deficit and elevated [CO2] on leaf photosynthesis, transpiration, and water use in winter wheat[19]"

[1] Hessini K, Martinez J P, Gandour M, Albouchi A, Soltani A, Abdelly C. Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environ Exp Bot, 2009, 67: 312-319.
[2] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163-190.
doi: 10.1007/s11099-013-0021-6
[3] Bijanzadeh E, Emam Y. Effect on defoliation and drought stress on yield components and chlorophyll content of wheat. Pak J Biol Sci, 2010, 13: 699-705.
doi: 10.3923/pjbs.2010.699.705
[4] Bencze S, Bamberger Z, Janda T, Balla K, Varga B. Physiological response of wheat varieties to elevated atmospheric CO2 and low water supply levels. Photosynthetica, 2014, 52: 71-82.
doi: 10.1007/s11099-014-0008-y
[5] Liu B B, Li M, Li Q M, Cui Q Q, Zhang W D, Ai X Z, Bi H G. Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. Photosynthetica, 2018, 56: 942-952.
doi: 10.1007/s11099-017-0753-9
[6] Wang J, Wang E L, Yang X G, Zhang F S, Yin H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 2012, 113: 825-840.
doi: 10.1007/s10584-011-0385-1
[7] Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J F, Sanz M J, Schulze E D, Vesala T, Valentini R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437: 529-533.
doi: 10.1038/nature03972
[8] McDowell N G, Sevanto S. The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol, 2010, 186: 264-266.
doi: 10.1111/j.1469-8137.2010.03232.x pmid: 20409181
[9] Oury F X, Godin C, Mailliard A, Chassin A, Gardet O, Giraud A, Heumez E, Morlais J Y, Rolland B, Rousset M. A study of genetic progress due to selection reveals a negative effect of climate change on bread wheat yield in France. Eur J Agron, 2012, 40: 28-38.
doi: 10.1016/j.eja.2012.02.007
[10] Yang Q P, Zhang W D, Li R, Xu M, Wang S L. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees, 2016, 30: 1863-1871.
doi: 10.1007/s00468-016-1419-0
[11] Suter D, Frehner M, Fischer B U. Elevated CO2 increases carbon allocation to the roots of Lolium perenne under free-air CO2 enhancement but not in a controlled environment. New Phytol, 2002, 154: 65-75.
doi: 10.1046/j.1469-8137.2002.00368.x
[12] Xu M. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum). J Plant Physiol, 2015, 184: 89-97.
doi: 10.1016/j.jplph.2015.07.003
[13] Zheng Y P, He C L, Guo L L, Hao L H, Cheng D J, Li F, Peng Z P, Xu M. Soil water status triggers CO2 fertilization effect on the growth of winter wheat (Triticum aestivum). Agric Forest Meteorol, 2020, 291: 108097.
doi: 10.1016/j.agrformet.2020.108097
[14] Fan X D, Cao X, Zhou H, Hao L H, Dong W, He C L, Xu M, Wu H X, Wang L S, Chang Z J, Zheng Y P. Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.). Environ Exp Bot, 2020, 179: 104203.
doi: 10.1016/j.envexpbot.2020.104203
[15] Yu J J, Chen L H, Xu M, Huang B R. Effects of elevated CO2 on physiological responses of tall fescue to elevated temperature drought stress, and the combined stresses. Crop Sci, 2012, 52: 1848-1858.
doi: 10.2135/cropsci2012.01.0030
[16] Aranda X, Agustí C, Joffre R, Fleck I. Photosynthesis, growth and structural characteristics of holm oak resprouts originated from plants grown under elevated CO2. Physiol Plant, 2006, 128: 302-312.
doi: 10.1111/j.1399-3054.2006.00745.x
[17] Nebauer S G, Renau-Morata B, Guardiola J L, Rosa-Victoria M. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. Tree Physiol, 2010, 31: 169c177.
[18] Pooter H, Knopf O, Wright I J, Temme A A, Hogewoning S W, Graf A, Cernusak L A, Pons T L. A meta-analysis of responses of C3 plants to atmospheric CO2: dose-response curves for 85 traits ranging from the molecular to the whole-plant level. New Phytol, 2021, 233: 1560-1596.
doi: 10.1111/nph.17802
[19] Li F, Guo D G, Gao X D, Zhao X N. Water deficit modulates the CO2 fertilization effect on plant gas exchange and leaf-level water use efficiency: a meta-analysis. Front Plant Sci, 2021, 12: 775477.
doi: 10.3389/fpls.2021.775477
[20] 张存杰, 王胜, 宋艳玲, 蔡雯悦. 我国北方地区冬小麦干旱灾害风险评估. 干旱气象, 2014, 32: 883-893.
Zhang C J, Wang S, Song Y L, Cai W Y. Risk assessment of winter wheat drought disaster in north China. Arid Meteorol, 2014, 32: 883-893. (in Chinese with English abstract)
[21] 唐星林, 曹永慧, 顾连宏, 周本智. 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 2017, 37: 6633-6645.
Tang X L, Cao Y H, Gu L H, Zhou B Z. Progress in leaf photosynthetic physiology response to environmental factors based on FvCB model. Acta Ecol Sin, 2017, 37: 6633-6645. (in Chinese with English abstract)
[22] Wall G W, Garcia R L, Kimball B A, Hunsaker D J, Pinter Jr P J, Long S P, Osborne C P, Hendrix D L, Wechsung F, Wechsung G, Leavitt S W, LaMorte R L, Idso S B. Interactive effects of elevated carbon dioxide and drought on wheat. Agron J, 2006, 98: 354-381.
doi: 10.2134/agronj2004.0089
[23] Li F S, Kang S Z, Zhang J H. Interactive effects of elevated CO2, nitrogen and drought on leaf area, stomatal conductance, and evapotranspiration of wheat. Agric Water Manage, 2004, 67: 221-233.
doi: 10.1016/j.agwat.2004.01.005
[24] Wu D X, Wang G X, Bai Y F, Liao J X. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ, 2004, 104: 493-507.
doi: 10.1016/j.agee.2004.01.018
[25] Nicotra A B, Atkin O K, Bonser S P, Davidson A M, Finnegan E J, Mathesius U, Poot P, Purugganan M D, Richards C L, ValladaresV F, van Kleunen M. Plant pheno-typic plasticity in a changing climate. Trends Plant Sci, 2010, 15: 684-692.
doi: 10.1016/j.tplants.2010.09.008 pmid: 20970368
[26] Merewitz E B, Belanger F C, Warnke S E, Huang B R. Identification of quantitative trait loci linked to drought tolerance in a colonial × creeping bent grass hybrid population. Crop Sci, 2012, 52: 1891-1901.
doi: 10.2135/cropsci2012.01.0037
[27] 郑云普, 徐明, 王建书, 邱帅, 王贺新. 玉米叶片气孔特征及气体交换过程对气候变暖的响应. 作物学报, 2015, 41: 601-612.
doi: 10.3724/SP.J.1006.2015.00601
Zheng Y P, Xu M, Wang J S, Qiu S, Wang H X. Stomatal characteristics of maize leaves and response of gas exchange process to climate warming. Acta Agron Sin, 2015, 41: 601-612. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00601
[28] Hendrix D L. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Sci, 1993, 33: 1306-1311.
doi: 10.2135/cropsci1993.0011183X003300060037x
[29] Way D A, Sage R F. Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) B. S. P.]. Global Change Biol, 2008, 14: 624-636.
doi: 10.1111/j.1365-2486.2007.01513.x
[30] Jiang Y P, Cheng F, Zhou Y H, Xia X J, Mao W H, Shi K, Chen Z X, Yu J Q.Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. New Phytol, 2012, 194: 932-943.
[31] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Dwlta Delta C (T)) method. Methods, 2002, 25: 402-408.
doi: 10.1006/meth.2001.1262
[32] 何冰清, 芮蒙蒙, 马越, 王一州. 植物气孔计算生物学模型及其应用. 科学通报, 2021, 66: 994-1001.
He B Q, Rui M M, Ma Y, Wang Y Z. The computational biological model of plant stomata and its application. Chin Sci Bull, 2021, 66: 994-1001. (in Chinese with English abstract)
doi: 10.1360/TB-2020-0843
[33] 李菲.大气CO2浓度升高对大豆叶片结构、光合性能及水分利用效率的影响研究. 河北工程大学硕士学位论文, 河北邯郸, 2019.
Li F. Effects of Elevated Atmospheric CO2 Concentration on Leaf Structure, Photosynthetic Performance and Water Use Efficiency of Soybean. MS Thesis of Hebei University of Engineering, Handan, Hebei, China, 2019. (in Chinese with English abstract)
[34] Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901-908.
doi: 10.1038/nature01843
[35] 张放, 陈丹, 张士良, 吴荣兰. 高浓度CO2对不同水分条件下枇杷生理的影响. 园艺学报, 2003, 30: 647-652.
Zhang F, Chen D, Zhang S L, Wu R L. Effects of high concentration of CO2 on the physiology of loquat under different water conditions. Acta Hortic Sin, 2003, 30: 647-652. (in Chinese with English abstract)
[36] Rachel F, Niju I, Behaeghe T. Elevated CO2 and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Ann Bot, 1996, 78: 489-497.
doi: 10.1006/anbo.1996.0146
[37] Hugh J E. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ Exp Bot, 2002, 48: 237-246.
doi: 10.1016/S0098-8472(02)00041-2
[38] 景立权, 赵新勇, 周宁, 钱晓晴, 王云霞, 朱建国, 王余龙, 杨连新. 高CO2浓度对杂交水稻光合作用日变化的影响: FACE研究. 生态学报, 2017, 37: 2033-2044.
Jing L Q, Zhao X Y, Zhou N, Qian X Q, Wang Y X, Zhu J G, Wang Y L, Yang L X. Effect of high CO2 concentration on diurnal variation of photosynthesis in hybrid rice: FACE study. Acta Ecol Sin, 2017, 37: 2033-2044. (in Chinese with English abstract)
[39] Moore B, Palmquist D E, Seemann J R. Influence of plant growth at high CO2 concentrations on leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase and intracellular distribution of soluble carbohydrates in tobacco, snapdragon, and parsley. Plant Physiol, 1997, 115: 241-248.
pmid: 12223804
[40] Zong Y, Shangguan Z P. Increased sink capacity enhances C and N assimilation under drought and elevated CO2 conditions in maize. J Integr Agric, 2016, 15: 2775-2785.
doi: 10.1016/S2095-3119(16)61428-4
[41] Wu D X, Wang G X, Bai Y F, Liao J X. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ, 2004, 104: 493-507.
doi: 10.1016/j.agee.2004.01.018
[42] 王润佳, 高世铭, 张绪成. 高大气CO2浓度下C3植物叶片水分利用效率升高的研究进展. 干旱地区农业研究, 2010, 28(6): 190-195.
Wang R J, Gao S M, Zhang X C. Research progress on the increase of water use efficiency of C3 plant leaves under high atmospheric CO2 concentration. Agric Res Arid Areas, 2010, 28(6): 190-195. (in Chinese with English abstract)
[43] Robredo A, Pérez-López U, Hector S D M, Begoña G M, Maite L, Amaia M P, Alberto M R. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot, 2007, 59: 252-263.
doi: 10.1016/j.envexpbot.2006.01.001
[44] 刘亮, 郝立华, 李菲, 郭丽丽, 张茜茜, 何春霖, 郑云普. CO2浓度和温度对玉米光合性能及水分利用效率的影响. 农业工程学报, 2020, 36(5): 122-129.
Liu L, Hao L H, Li F, Guo L L, Zhang X X, He C L, Zheng Y P. Effects of CO2 concentration and temperature on leaf photosynthesis and water use efficiency in maize. Trans CSAE, 2020, 36(5): 122-129 (in Chinese with English abstract)
[45] Kimball B A, 朱建国, 程磊, Kobayashi K, Bindi M. 开放系统中农作物对空气CO2浓度增加的响应. 应用生态学报, 2002, 13: 1323-1338.
Kimball B A, Zhu J G, Cheng L, Kobayashi K, Bindi M. Crop response to increased air CO2 concentration in an open system. J Appl Ecol, 2002, 13: 1323-1338 (in Chinese with English abstract).
[46] Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004, 161: 1189-1202.
[47] Henderson J N, Haxr A S, Dunkle A M, Salvucci M E, Wachter R M. Biophysical characterization of higher plant Rubisco activase. Biochim Biophys Acta, 2012, 1834: 87-97.
[48] Carmo-silva A E, Salvucci M E. The activity of Rubisco’s molecular chaperone, rubisco activase, in leaf extracts. Photosyn Res, 2011, 108: 143-155
doi: 10.1007/s11120-011-9667-8
[49] Tian X, Lei Y. Nitric oxide treatment alleviates drought stress in wheat seedlings. Biol Plant, 2006, 50: 775-778.
doi: 10.1007/s10535-006-0129-7
[50] 杜兴良, 兰盼龙, 张皓帆, 赵光伟, 李华, 汪月霞, 赵会杰. 一氧化氮对高温与干旱复合胁迫下小麦叶片Rca基因表达及Rubisco活性的影响. 河南农业大学学报, 2018, 52: 868-873.
Du X L, Lan P L, Zhang H F, Zhao G W, Li H, Wang Y X, Zhao H J. Effects of nitric oxide on Rca gene expression and Rubisco activity in wheat leaves under combined stress of high temperature and drought. J Henan Agric Univ, 2018, 52: 868-873. (in Chinese with English abstract)
[51] Deridder B P, Salvucci M E. Modulation of rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanism. Plant Sci, 2007, 172: 246-254.
doi: 10.1016/j.plantsci.2006.08.014
[52] 张国, 李滨, 邹琦. 小麦Rubisco活化酶基因的克隆和表达特性. 植物学通报, 2005, 22: 313-319.
Zhang G, Li B, Zou Q. Cloning and expression characteristics of wheat rubisco activase gene. Chin Bull Bot, 2005, 22: 313-319. (in Chinese with English abstract)
[1] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[2] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[3] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[4] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[5] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[6] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency#br# [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[7] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[8] WANG Yi-Fan, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground [J]. Acta Agronomica Sinica, 2021, 47(5): 929-941.
[9] ZHANG Yu-Xun, QI Tuo-Ye, SUN Yuan, QU Xiang-Ning, CAO Yuan, WU Meng-Yao, LIU Chun-Hong, WANG Lei. Vegetation characteristics of GF-6 remote sensing image and application on LAI retrieval of winter wheat at seedling stage [J]. Acta Agronomica Sinica, 2021, 47(12): 2532-2540.
[10] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[11] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[12] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[13] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[14] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[15] ZHANG Li,CHEN Fu,LEI Yong-Deng. Spatial and temporal patterns of drought risk for winter wheat grown in Hebei province in past 60 years [J]. Acta Agronomica Sinica, 2019, 45(9): 1407-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .