Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (12): 2967-2977.doi: 10.3724/SP.J.1006.2022.14210
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
LIANG Xi-Tong1,2(), GAO Xian-Yuan1, ZHOU Lin1, MU Chun1, DU Ming-Wei1, LI Fang-Jun1(
), TIAN Xiao-Li1(
), LI Zhao-Hu1
[1] | 孙巨龙, 刘帅, 胡启星, 白志刚, 崔爱花. 不同种植密度对棉花空间成铃分布的影响. 棉花科学, 2021, 43(1): 31-36. |
Sun J L, Liu S, Hu Q S, Bai Z G, Cui A H. The influence of different planting density on the spatial distribution of cotton boll. Cotton Sci, 2021, 43(1): 31-36 (in Chinese with English abstract). | |
[2] | 宋丽, 刘喜平, 仲杰, 李成奇. 棉花耐盐机理与盐害防御研究进展. 江苏农业科学, 2020, 48(16): 48-51. |
Song L, Liu X P, Zhong J, Li C Q. Research progress on salt tolerance mechanism and salt damage prevention of cotton. Jiangsu Agric Sci, 2020, 48(16): 48-51. (in Chinese) | |
[3] |
Gao X, Wheeler T, Li Z, Kenerley C M, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to verticillium wilt. Plant J, 2011, 66: 293-305.
doi: 10.1111/j.1365-313X.2011.04491.x |
[4] |
Baulcombe D. RNA silencing in plants. Nature, 2004, 431: 356-363.
doi: 10.1038/nature02874 |
[5] |
Llave C. Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends Plant Sci, 2010, 15: 701-707.
doi: 10.1016/j.tplants.2010.09.001 pmid: 20926332 |
[6] |
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320: 1185-1190.
doi: 10.1126/science.1159151 pmid: 18483398 |
[7] | 宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展. 园艺学报, 2014, 41: 1885-1894. |
Song Z, Li Z A, Zhou C Y. Research advances of virus-induced gene silencing (VIGS). Acta Hortic Sin, 2014, 41: 1885-1894. (in Chinese with English abstract) | |
[8] |
Becker A, Lange M. VIGS—genomics goes functional. Trends Plant Sci, 2010, 15: 1-4.
doi: 10.1016/j.tplants.2009.09.002 |
[9] | 吴磊, 姜朋, 张瑜, 马鸿翔, 张旭. 苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证. 江苏农业学报, 2017, 33: 248-252. |
Wu L, Jiang P, Zhang Y, Ma H X, Zhang X. Construction and validation of virus-induced gene silencing (VIGS) systemin spike of wheat variety Sumai 3. Jiangsu J Agric Sci, 2017, 33: 248-252. (in Chinese with English abstract) | |
[10] |
李聪聪, 安晓晖, 张中起, 刘康, 孙敬. 玉米TRV-VIGS的优化与顶腐病抗病基因的鉴定. 核农学报, 2019, 33: 2111-2118.
doi: 10.11869/j.issn.100-8551.2019.11.2111 |
Li C C, An X H, Zhang Z Q, Liu K, Sun J. Optimization of TRV-VIGS system and identification of top rot resistance genes in maize. Acta Agric Nucl Sin, 2019, 33: 2111-2118. (in Chinese with English abstract) | |
[11] | 李亚军, 田振东, 柳俊, 谢从华. 利用病毒诱导的基因沉默(VIGS)技术快速鉴定两个马铃薯晚疫病抗性相关Est片段El732276和El732318的功能. 农业生物技术学报, 2012, 20: 16-22. |
Li Y J, Tian Z D, Liu J, Xie C H. Function of two potato ESTs EL732276 and EL732318 related to late blight resistance using virus-induced gene silencing (VIGS). J Agric Biotechnol, 2012, 20: 16-22. (in Chinese with English abstract) | |
[12] | 刘天波, 蔡海林, 滕凯, 曾维爱, 毛辉, 魏润洁, 周志成, 周向平, 戴良英, 唐前君. 病毒诱导的基因沉默防控烟草马铃薯Y病毒病研究. 中国烟草学报, 2020, 26(5): 82-89. |
Liu T B, Cai H L, Teng K, Zeng W A, Mao H, Wei R J, Zhou X P, Dai L L, Tang Q J. Control of tobacco potato Y by virus-induced gene silencing. Acta Tab Sin, 2020, 26(5): 82-89. (in Chinese with English abstract) | |
[13] |
杨波, 刘海霞, 牛铁泉, 张鹏飞, 梁长梅, 赵旗峰, 温鹏飞. TRV介导的葡萄叶片VvANR基因瞬时表达分析. 核农学报, 2021, 35: 826-836.
doi: 10.11869/j.issn.100-8551.2021.04.0826 |
Yang B, Liu H X, Niu T Q, Zhang P F, Liang C M, Zhao Q F, Wen P F. Transient expression of VvANR gene in grape leaves mediated by TRV. Acta Agric Nucl Sin, 2021, 35: 826-836. (in Chinese with English abstract) | |
[14] | 张蕊, 李博, 李旭, 尚文静, 韩迎春, 程琨, 刘娜, 郑文明. TaSPX3基因VIGS沉默表达降低小麦对叶锈病(Puccinia recondite f. sp. tritici)的抗性. 中国农业大学学报, 2021, 26(1): 26-32. |
Zhang R, Li B, Li X, Shang W J, Han Y C, Cheng K, Liu N, Zheng W M. Silencing the expression of TaSPX3 by VIGS decreased the resistance of leaf rust. J China Agric Univ, 2021, 26(1): 26-32. (in Chinese with English abstract) | |
[15] | 左琦. 利用病毒诱导的基因沉默技术探讨番茄PG与乙烯关系. 天津大学硕士学位论文, 天津, 2010. |
Zuo Q. Relationship between PG and Ethylene of Tomato by Virus-induced Gene Silence Technology. MS Thesis of Tianjin University, Tianjin, China, 2010 (in Chinese with English abstract). | |
[16] | Yang D D, An J, Li F J, Agrinya E A, Tian X L, Li Z H. The GhREV transcription factor regulate the development of shoot apical meristem in cotton (Gossypium hirsutum). J Cotton Sci, 2020, 3: 46-53. |
[17] |
Ramegowda V, Senthil-Kumar M, Udayakumar M, Mysore K S. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biol, 2013, 13: 193.
doi: 10.1186/1471-2229-13-193 pmid: 24289810 |
[18] |
孙威, 许奕, 许桂莺, 孙佩光, 宋顺, 常胜合. 病毒诱导的基因沉默及其在植物研究中的应用. 生物技术通报, 2015, 31(10): 105-110.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.018 |
Sun W, Xu Y, Xu G Y, Sun P G, Song S, Chang S H. Virus-induced gene silencing and its application in plant research. Biotechnol Bull, 2015, 31(10): 105-110. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.018 |
|
[19] | 王秋莹, 王伟巧, 张艳, 王国宁, 吴立强, 张桂寅, 马峙英, 杨君, 王省芬. 棉花CRVW的克隆与抗黄萎病功能分析. 中国农业科学, 2019, 52: 1858-1869. |
Wang Q Y, Wang Wi Q, Zhang Y, Wang G N, Wu L Q, Zhang G Y, Ma Z Y, Yang J, Wang X F. Cloning and functional characterization of gene CRVW involved in cotton resistance to Verticillium wilt. Sci Agric Sin, 2019, 52: 1858-1869. (in Chinese with English abstract) | |
[20] | 王慧飞, 刘琳琳, 甄军波, 刘迪, 欧阳艳飞, 迟吉娜, 冯雪, 张一名, 孙艳香, 陈光. 病毒诱导的精氨琥珀酸合成酶基因沉默对棉花氮代谢的影响. 东北林业大学学报, 2020, 48(5): 72-78. |
Wang H F, Liu L L, Zhen J B, Liu D, Ou-yang Y F, Chi J N, Feng X, Zhang Y M, Sun Y X, Chen G. Effects of virus-induced gene silencing (VIGS) of argininosuccinate synthase gene on cotton nitrogen metabolism. J Northeast For Univ, 2020, 48(5): 72-78. (in Chinese with English abstract) | |
[21] |
Moreno J I, Raquel M, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J, 2005, 41: 451-463.
doi: 10.1111/j.1365-313X.2004.02311.x |
[22] |
穆春, 周琳, 李茂营, 杜明伟, 张明才, 田晓莉, 李召虎. 水培条件下病毒诱导棉花基因沉默体系的建立及优化. 作物学报, 2016, 42: 844-849.
doi: 10.3724/SP.J.1006.2016.00844 |
Mu C, Zhou L, Li M Y, Du M W, Zhang M C, Tian X L, Li Z H. Establishment and optimisation of virus-induced gene silencing in system hydroponic cotton. Acta Agron Sin, 2016, 42: 844-849. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00844 |
|
[23] |
Li M Y, Li F J, He P. Construction of a cotton VIGS library for functional genomics study. Methods Mol Biol, 2015, 1287: 267-279.
doi: 10.1007/978-1-4939-2453-0_20 pmid: 25740372 |
[24] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[25] | 刘东让, 侯喜林, 肖栋. 普通白菜1,5-二磷酸核酮糖羧化/加氧酶小亚基基因BcrbcS的克隆及表达分析. 中国蔬菜, 2019, (1): 20-25. |
Liu D R, Hou X L, Xiao D. Cloning and expression analysis of small subunit gene BcrbcS of ribulose 1,5-diphosphate carboxylation/oxygenase in Chinese cabbage. China Veget, 2019, (1): 20-25. (in Chinese) | |
[26] | Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochem Eng J, 2012, 444: 11-25. |
[27] | 胡有贞, 王雅欣. 2-氧化戊二酸依赖的双加氧酶基因F6’H1促进拟南芥叶片衰老. 植物生理学报, 2015, 51: 1873-1879. |
Hu Y Z, Wang Y X. 2-oxoglutarate dependent dioxygenase gene F6’H1 of Arabidopsis thaliana promote leaf senescence. Acta Phytophysiol Sin, 2015, 51: 1873-1879. (in Chinese with English abstract) | |
[28] | 袁进成, 刘颖慧. 植物糖转运蛋白研究进展. 中国农学通报, 2013, 29(36): 287-294. |
Yuan J C, Liu Y H. Genetics and functional properties of sugar transporters in plants. Chin Agric Sci Bull, 2013, 29(36): 287-294. (in Chinese with English abstract) | |
[29] |
Jun J H, Xiao X, Rao X, Dixon R A. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. Nat Plants, 2018, 4: 1034-1043.
doi: 10.1038/s41477-018-0292-9 pmid: 30478357 |
[30] | 张宇斌, 潘蓉蓉, 彭贵, 陈婷, 申欢, 云利锋, 孙威. 日本蛇根草无色花青素双加氧酶基因的克隆及其序列分析. 基因组学与应用生物学, 2018, 37: 2477-2482. |
Zhang Y B, Pan R R, Peng G, Chen T, Shen H, Yun L F, Sun W. Cloning and sequence analysis of LDOX gene in Ophiorrhiza japonica. Genom Appl Biol, 2018, 37: 2477-2482. (in Chinese with English abstract) | |
[31] |
Brown D E, Rashotte A M, Murphy A S, Normanly J, Tague B W, Peer W A, Taiz L, Muday G K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol, 2001, 126: 524-535.
pmid: 11402184 |
[32] |
Qian D, Xiong S, Li M, Tian L, Le Q Q. OsFes1C, a potential nucleotide exchange factor for OsBiP1, is involved in the ER and salt stress responses. Plant Physiol, 2021, 187: 396-408.
doi: 10.1093/plphys/kiab263 pmid: 34618140 |
[33] | 张景霞. 拟南芥AtFes1A与植物耐热性. 山东师范大学博士学位论文, 山东济南, 2011. |
Zhang J X. The involvement of Arabidopsis AtFest1A in Thermotolerance. PhD Dissertation of Shandong Normal University, Jinan, Shandong, China, 2011. (in Chinese with English abstract) | |
[34] | 王淑智, 李利, 张道勇, 潘响亮. NaCl与Cd对小球藻光系统II (PSII)活性的影响. 应用与环境生物学报, 2011, 17: 839-846. |
Wang S Z, Li L, Zhang D Y, Pan X L. Effects of NaCl and Cd on photosystem II (PSII) activity of Chlorella pyrenoidosa. Chin J Appl Environ Biol, 2011, 17: 839-846. (in Chinese with English abstract) | |
[35] |
Sánchez de Jiménez E, Medrano L, Martínez E B. Rubisco activase, a possible new number of the molecular chaperon family. Biochemistry, 1995, 34: 2826-2831.
pmid: 7893695 |
[36] |
Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S. Mechanisms of plant salt response: insights from proteomics. J Proteome Res, 2012, 11: 49-67.
doi: 10.1021/pr200861w pmid: 22017755 |
[37] |
Jurczyk B, Pociecha E, Grzesiak M, Kalita K, Rapacz M. Enhanced expression of rubisco activase splicing variants differ-entially affects rubisco activity during low temperature treatment in Lolium perenne. J Plant Physiol, 2016, 198: 49-55.
doi: 10.1016/j.jplph.2016.03.021 |
[38] | 陈候鸣, 陈跃, 王盾, 蒋德安. 核酮糖-1,5-二磷酸羧化酶/加氧酶活化酶在植物抗逆性中的作用. 植物生理学报, 2016, 52: 1637-1648. |
Chen H M, Chen Y, Wang D, Jiang D A. The role of ribulose-1,5-diphosphate carboxylase/oxygenase in resistance of plant to abiotic stresses. Acta Phytophysiol Sin, 2016, 52: 1637-1648. (in Chinese with English abstract) | |
[39] |
Law R D, Crafts-Brandner S J. High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys, 2001, 386: 261-267.
pmid: 11368350 |
[40] | 柯学, 李军营, 徐超华, 龚明. 不同光质对烟草叶片组织结构及Rubisco羧化酶活性和rbc、rca基因表达的影响. 植物生理学报, 2012, 48: 251-259. |
Ke X, Li J Y, Xu C H, Gong M. Effects of different light quality on anatomical structure, carboxylase activity of ribulose 1,5-biphosphate carboxylase/oxygenase and expression of rbc and rca genes in tobacco (Nicotiana tabacum L.) leaves. Acta Phytophysiol Sin, 2012, 48: 251-259. (in Chinese with English abstract) | |
[41] | 熊大斌, 曹玲珑, 李冬兵, 邓利, 尹钧, 牛洪斌. 脯氨酸对盐胁迫条件下大麦叶片Rubisco酶活性的影响. 河南农业大学学报, 2015, 49: 443-449. |
Xiong D B, Cao L L, Li D B, Deng L, Yin J, Niu H B. Effect of proline on Rubisco activity in barley leaves during salinity stress. J Henan Agric Univ, 2015, 49: 443-449. (in Chinese with English abstract) |
[1] | KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179. |
[2] | LI Ming-Jiang, LEI Jian-Feng, ZULIPIYE·Tuoheniyazi , DAI Pei-Hong, LIU Chao, LIU Xiao-Dong. Cloning and functional verification of GhIQM1 gene of cotton in response to Verticillium wilt [J]. Acta Agronomica Sinica, 2022, 48(9): 2265-2273. |
[3] | GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114. |
[4] | ZHU Ling-Xiao, SONG Shi-Jia, LI Hao-Ran, SUN Hong-Chun, ZHANG Yong-Jiang, BAI Zhi-Ying, ZHANG Ke, LI An-Chang, LIU Lian-Tao, LI Cun-Dong. Screening of low nitrogen tolerant cultivars based on low nitrogen tolerance comprehensive index at seeding stage in cotton [J]. Acta Agronomica Sinica, 2022, 48(7): 1800-1812. |
[5] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[6] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[7] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[8] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[9] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[10] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[11] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[12] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[13] | LI Han-Jia, LI Yuan, LIU Zhen-Yu, ZHANG Chen-Xia, XU Ze, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN Yuan, CHEN De-Hua. Effects of increased nitrogen fertilizer on square Bt protein expression and nitrogen metabolism in cotton [J]. Acta Agronomica Sinica, 2022, 48(10): 2567-2574. |
[14] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[15] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
|