Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1437-1450.doi: 10.3724/SP.J.1006.2022.13022

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River

WANG Dan1,2(), ZHOU Bao-Yuan1, MA Wei1, GE Jun-Zhu3, DING Zai-Song1, LI Cong-Feng1, ZHAO Ming1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Production, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Institute of Maize Science, Tongliao Academy of Agricultural Sciences, Tongliao 028042, Inner Mongolia, China
    3College of Agronomy &Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
  • Received:2021-03-15 Accepted:2021-10-19 Online:2022-06-12 Published:2021-11-20
  • Contact: ZHAO Ming E-mail:wangdansyau@126.com;zhaoming@caas.cn
  • Supported by:
    China Agriculture Research System(CARS-02-12);National Key Research and Development Program of China(2016YFD0300207)

Abstract:

Clarifying the characteristics of annual yield, distribution, and utilization of climatic resources, and establishing rational quantitative indexes of annual climatic resource distribution are helpful to provide theoretical basis for establishing the double maize cropping system. In this study, to analyze the annual grain yield, biomass, and distribution and utilization efficiency of climate resource of double maize cropping system with different variety collocation, the experiment was conducted from 2015 to 2017 at Wuxue, Hubei province. The distribution and utilization of climatic resource of different variety collocation was different. The accumulative temperature and radiation distribution rate of HM in the first season and annual were significantly higher than the other variety collocation, but on the contrary in the second season. The accumulative temperature and radiation distribution rate for the first season of HM was 49% and 52%, respectively. The accumulative temperature and radiation distribution rate for the second season of HM was 46% and 44%. The accumulative ratio of temperature and radiation between two seasons of HM was 1.1 and 1.2. The precipitation distribution rate of two seasons and annual among the four variety collocations were no significantly different. The difference of the accumulative temperature and radiation among different variety collocations resulted in the changes of grain yield and biomass. Because of a high matching degree between the distribution of climatic resource and the growth demand of maize in HM. The annual grain yield and total biomass of HM were significantly higher than those of the MM, MH, and LH, with an average increase of 8.4%-24.5% and 9.7%-29.6%, respectively. The annual accumulative temperature and radiation, radiation use efficiency of grain, and total biomass of HM were significantly higher than those of the MM, MH, and LH, with an average increase of 2.9%-14.3% in the annual accumulative temperature production efficiency, 5.5%-18.4% in the annual radiation production efficiency, 0.05%-0.16% and 0.16%-0.39% increase in the radiation use efficiency of grain and total biomass, respectively. Considering both yield and resource use efficiency, HM can be used as the best variety collocation for high yield and high efficiency of double maize system in the middle reaches of Yangtze River. Furthermore, this is helpful to extend double maize cropping system, optimize the layout of planting patterns, provide theoretical basis and important support the sustainable development of agricultural production.

Key words: double maize cropping system, variety collocation, resource distribution, yield, resource use efficiency

Fig. 1

Daily mean temperature, precipitation, and radiation during maize growing seasons from 2015 to 2017"

Fig. 2

Sketch of maize sowing with ditch-degeneration"

Table 1

Varieties and dates of sowing and maturity for maize in double maize cropping system"

搭配模式
Combination
品种及有效积温
Variety and GDD
播期
Sowing date (month/day)
成熟期
Maturity date
(month/day)
第一季
First season
第二季
Second season
第一季
First season
第二季
Second season
第一季
First season
第二季
Second season
低+高LH 兴垦6 Xingken 6 1299℃ 浚单22 Xundan 22 1479℃ 3/8 7/7 7/7 11/3
德美亚2号Demeiya 2 1282℃ 郑单958 Zhengdan 958 1479℃
中+中MM 郑单958 Zhengdan 958 1434℃ 吉祥1 Jixiang 1 1441℃ 3/8 7/16 7/16 11/4
吉单27 Jidan 27 1365℃ 联创3 Lianchuang 3 1437℃
中+高MH 郑单958 Zhengdan 958 1434℃ 浚单22 Xundan 22 1479℃ 3/8 7/16 7/16 11/9
吉单27 Jidan 27 1365℃ 郑单958 Zhengdan 958 1479℃
高+中HM 荃玉9号Quanyu 9 1515℃ 吉祥1 Jixiang 1 1441℃ 3/8 7/23 7/23 11/1
仲玉3号Zhongyu 3 1520℃ 联创3 Lianchuang 3 1437℃

Fig. 3

Grain yield of suitable combinations in double maize cropping system from 2015 to 2017 LH: the low GDD variety-high GDD variety; MM: the medium GDD variety-medium GDD variety; MH: the medium GDD variety-high GDD variety; HM: the high GDD variety-medium GDD variety. The lowercase letters showed the compassion for the first and the second season significant at the 0.05 probability level, the capital letters showed the compassion for the sum of the first and the second season significant at the 0.05 probability level."

Fig. 4

Dry matter of suitable combinations in double maize cropping system from 2015 to 2017 LH: the low GDD variety-high GDD variety; MM: the medium GDD variety-medium GDD variety; MH: the medium GDD variety-high GDD variety; HM: the high GDD variety-medium GDD variety. The lowercase letters showed the compassion for the first and the second season significant at the 0.05 probability level, the capital letters showed the compassion for the sum of the first and the second season significant at the 0.05 probability level."

Table 2

Distribution of accumulated temperature in different collocation modes from 2015 to 2017"

年份
Year
组合
Combination
第一季First season 第二季Second season 周年Annual
积温量
AT (℃)
分配率
TDR (%)
积温量
AT (℃)
分配率
TDR (%)
积温量
AT (℃)
两季比
TR
2015 LH 2358 43 2626 47 4984 0.9
MM 2536 46 2604 47 5140 1.0
MH 2536 46 2690 49 5227 0.9
HM 2676 48 2635 48 5311 1.0
2016 LH 2329 42 2652 47 4981 0.9
MM 2575 46 2631 47 5206 1.0
MH 2575 46 2666 48 5242 1.0
HM 2770 49 2533 45 5302 1.1
2017 LH 2301 41 3005 54 5306 0.8
MM 2575 46 2644 48 5219 1.0
MH 2575 46 2702 49 5277 1.0
HM 2815 51 2545 46 5360 1.1
平均值
Mean
LH 2329 c 42 c 2761 a 50 a 5090 c 0.8 c
MM 2562 b 46 b 2626 bc 47 bc 5189 b 1.0 b
MH 2562 b 46 b 2686 b 48 b 5248 b 1.0 b
HM 2753 a 49 a 2571 c 46 c 5324 a 1.1 a

Table 3

Distribution of solar radiation in different collocation modes from 2015 to 2017"

年份
Year
组合
Combination
第一季First season 第二季Second season 周年Annual
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
两季比
RR
2015 LH 1438 43 1652 49 3090 0.9
MM 1529 46 1624 48 3153 0.9
MH 1529 46 1645 49 3174 0.9
HM 1597 48 1613 48 3211 1.0
2016 LH 1488 43 1709 50 3198 0.9
MM 1649 48 1622 47 3271 1.0
MH 1649 48 1630 47 3279 1.0
HM 1779 52 1537 45 3316 1.2
2017 LH 1650 46 1709 48 3359 1.0
MM 1795 50 1549 43 3344 1.2
MH 1795 50 1598 45 3394 1.1
HM 1998 56 1451 41 3449 1.4
平均值
Mean
LH 1525 c 44 c 1690 a 49 a 3215 b 0.9 c
MM 1658 b 48 b 1598 b 48 b 3256 b 1.0 b
MH 1658 b 48 b 1625 b 46 b 3282 ab 1.0 b
HM 1792 a 52 a 1534 c 44 c 3325 a 1.2 a

Table 4

Distribution of precipitation in different collocation modes for 2015 to 2017"

年份
Year
组合
Combination
第一季First season 第二季Second season 周年Annual
降雨量
Pr (mm)
分配率
PDR (%)
降雨量
Pr (mm)
分配率
PDR (%)
降雨量
Pr (mm)
两季比
PR
2015 LH 455 62 166 22 621 2.7
MM 460 62 182 25 642 2.5
MH 460 62 234 32 695 2.0
HM 472 64 233 32 705 2.0
2016 LH 1061 63 414 25 1475 2.6
MM 1170 70 389 23 1560 3.0
MH 1170 70 404 24 1574 2.9
HM 1206 72 401 24 1607 3.0
2017 LH 687 63 446 41 1133 1.5
MM 763 70 281 26 1044 2.7
MH 763 70 281 26 1044 2.7
HM 763 70 281 26 1044 2.7
平均值
Mean
LH 734 a 63 b 342 a 30 a 1076 a 2.3 b
MM 798 a 68 a 284 a 25 b 1082 a 2.8 a
MH 798 a 68 a 306 a 27 ab 1104 a 2.5 ab
HM 814 a 69 a 305 a 27 ab 1119 a 2.6 a

Fig. 5

Relationship between maize grain yield and climatic factors in the two seasons from 2015 to 2017 A, B, C: relationship between maize grain yield and climatic factors in the first season; D, E, F: relationship between maize grain yield and climatic factors in the second season; L: the low GDD variety; M: the medium GDD variety; H: the high GDD variety. *: P = 0.05; **: P = 0.01."

Table 5

Production efficiency of accumulated temperature, radiation, and precipitation in different combinations of double maize cropping system from 2015 to 2017"

年份
Year
组合
Combination
温度生产效率
Production efficiency of AT
(kg hm-2 °C-1)
光能生产效率
Production efficiency of Ra
(g MJ-1)
降水生产效率
Production efficiency of Pr
(kg hm-2 mm-1)
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
2015 LH 3.56 4.55 4.08 0.58 0.72 0.66 18.4 71.9 32.7
MM 3.86 4.55 4.21 0.64 0.73 0.69 21.3 65.2 33.7
MH 3.86 4.44 4.16 0.64 0.73 0.68 21.3 51.1 31.3
HM 3.97 4.50 4.23 0.66 0.73 0.70 22.5 50.8 31.9
2016 LH 2.16 2.83 2.52 0.34 0.44 0.39 4.7 18.1 8.5
MM 2.14 3.46 2.80 0.33 0.56 0.45 4.7 23.4 9.4
MH 2.14 3.32 2.74 0.33 0.54 0.44 4.7 21.9 9.1
HM 2.23 3.47 2.83 0.36 0.64 0.49 5.3 24.5 10.1
2017 LH 2.98 2.40 2.65 0.42 0.42 0.42 10.0 16.2 12.4
MM 2.97 3.55 3.26 0.43 0.61 0.51 10.0 33.4 16.3
MH 2.97 3.31 3.14 0.43 0.56 0.49 10.0 31.8 15.9
HM 3.09 3.95 3.50 0.44 0.69 0.54 11.4 35.7 18.0
平均值
Mean
LH 2.90 c 3.26 c 3.08 c 0.44 b 0.53 c 0.49 c 11.1 a 35.4 a 17.9 a
MM 2.99 b 3.85 b 3.42 b 0.47 a 0.63 b 0.55 b 12.0 a 40.7 a 19.8 a
MH 2.99 b 3.69 b 3.35 b 0.47 a 0.61 b 0.54 b 12.0 a 34.9 a 18.8 a
HM 3.10 a 3.97 a 3.52 a 0.49 a 0.69 a 0.58 a 13.1 a 37.0 a 20.0 a

Table 6

Comparison of light energy use efficient in different combinations from 2015 to 2017 (%)"

年份
Year
组合
Combination
籽粒光能利用效率
Radiation use efficiency of grain
总生物量光能利用效率
Radiation use of efficiency of total biomass
第一季
First
season
第二季
Second
season
周年
Annual
第一季
First
season
第二季
Second
season
周年
Annual
2015 LH 1.05 1.31 1.19 1.82 2.06 1.95
MM 1.16 1.32 1.24 2.09 2.09 2.09
MH 1.16 1.31 1.24 2.09 2.07 2.08
HM 1.20 1.33 1.26 2.18 2.22 2.20
2016 LH 0.61 0.79 0.71 1.39 1.39 1.39
MM 0.60 1.01 0.81 1.76 1.58 1.67
MH 0.60 0.98 0.79 1.76 1.57 1.66
HM 0.66 1.15 0.89 1.83 1.82 1.83
2017 LH 0.75 0.76 0.76 1.44 1.53 1.49
MM 0.77 1.10 0.92 1.73 1.91 1.82
MH 0.77 1.01 0.88 1.73 1.82 1.77
HM 0.79 1.25 0.98 1.76 2.25 1.97
平均值
Mean
LH 0.80 a 0.95 c 0.88 c 1.55 c 1.66 c 1.61 c
MM 0.84 a 1.14 b 0.99 b 1.86 b 1.86 b 1.86 b
MH 0.84 a 1.10 b 0.97 b 1.86 b 1.82 b 1.84 b
HM 0.88 a 1.24 a 1.04 a 1.92 a 2.10 a 2.00 a
[1] Tao F, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agric For Meteorol, 2006, 138:82-92.
[2] Zhang T, Huang Y, Yang X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Global Change Biol, 2013, 19:56-570.
[3] Wang X H, Ciais P, Li L, Ruget F, Vuichard N, Viovy N, Zhou F, Chang J F, Wu X C, Zhao H F, Piao S L. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991-2012. Agric For Meteorol, 2017, 233:1-11.
[4] Zhang T, Huang Y, Yang X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Global Change Biol, 2013, 19:563-570.
[5] Shi P H, Zhu Y, Tang L, Chen J L, Sun T, Cao W X, Tian Y C. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ Exp Bot, 2016, 132:28-41.
[6] Kendy E, Zhang Y Q, Liu C M, Wang J X, Steenhuis T. Groundwater recharge from irrigated cropland in the North China Plain: case study of Luancheng county, Hebei province, 1949-2000. Hydrol Proc, 2004, 18:2289-2302.
[7] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019, 45:589-600.
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agron Sin, 2019, 45:589-600 (in Chinese with English abstract).
[8] 李立娟, 王美云, 赵明. 品种对双季玉米早春季和晚夏季的适应性研究. 作物学报, 2011, 37:1660-1665.
Li L J, Wang M Y, Zhao M. Adaptability of varieties to double-cropping in early spring and late summer. Acta Agron Sin, 2011, 37:1660-1665 (in Chinese with English abstract).
[9] 李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明. 黄淮海双季玉米产量性能与资源效率的研究. 作物学报, 2011, 37:1229-1234.
Li L J, Wang M Y, Xue Q L, Cui Y H, Hou H P, Ge J Z, Zhao M. Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai Rivers valleys region. Acta Agron Sin, 2011, 37:1229-1234 (in Chinese with English abstract).
[10] 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43:329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Sci Agric Sin. 2010, 43:329-336 (in Chinese with English abstract).
[11] 袁建华, 颜伟, 陈艳萍, 张跃中. 南方丘陵生态区玉米生产现状及发展对策. 玉米科学, 2003, (增刊2):29-31.
Yuan J H, Yan W, Chen Y P, Zhang Y Z. Current situation and development countermeasures of maize production in south hilly ecological region. J Maize Sci, 2003, (S2):29-31 (in Chinese with English abstract).
[12] 葛均筑. 气象资源特性对玉米产量形成的影响及长江中游玉米高产关键技术研究. 华中农业大学博士学位论文, 湖北武汉, 2015.
Ge J Z. Studies of Resources Character Effected on Maize Yield Formation and High Yield Cultivation Technique in the Middle Reaches of Yangtze River. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[13] 雷恩. 高产栽培条件下春玉米-晚稻种植模式产量及经济效益研究. 湖南农业大学硕士学位论文, 湖南长沙, 2009.
Lei E. Studies on the Yield and Economic Benefits of Cropping System of Spring Maize-late Rice under High Yielding Cultivation Conditions. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2009 (in Chinese with English abstract).
[14] 李淑娅. 长江中游不同玉稻种植模式产量形成及资源利用效率比较研究. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Li S Y. Comparative Studies on Yield Formation and Resource Use Efficiency of Different Maize and Rice Cropping Systems in Middle Reaches of Yangtze River. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[15] 陈立军. 南方稻田双季玉米栽培模式研究. 湖南农业大学硕士学位论文, 湖南长沙, 2010.
Chen L J. Study on Cultivation Models for Double-season Maize in Paddy Field in Southern China. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[16] 吴丹. 双季玉米在河北平原适应性的系统研究. 河北农业大学硕士学位论文, 河北保定, 2014.
Wu D. A Systematic Study on Adaptability of Maize-maize Double Cropping in the Hebei Plain. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2014 (in Chinese with English abstract).
[17] 冯明, 刘可群, 毛飞. 湖北省气候变化与主要农业气象灾害的响应. 中国农业科学, 2007, 40:1646-1653.
Feng M, Liu K Q, Mao F. Climate change and main response to agrometeorological disasters in Hubei province. Sci Agric Sin, 2007, 40:1646-1653 (in Chinese with English abstract).
[18] 张建平, 赵艳霞, 王春乙, 何勇. 气候变化对我国南方双季稻发育和产量的影响. 气候变化研究进展, 2005, 1(4):151-156.
Zhang J P, Zhao Y X, Wang C Y, He Y. Effects of climate change on development and yield of double cropping rice in southern China. Clim Change Res, 2005, 1(4):151-156 (in Chinese with English abstract).
[19] 胡忠孝. 中国水稻生产形势分析. 杂交水稻, 2009, 24(6):1-7.
Hu Z X. Analysis on the situation of rice production in China. Hybrid Rice, 2009, 24(6):1-7 (in Chinese with English abstract).
[20] 朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010, 43:474-479.
Zhu D F, Cheng S H, Zhang Y P, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world. Sci Agric Sin, 2010, 43:474-479 (in Chinese with English abstract).
[21] 任天志. 从粮饲需求结构演变看我国种植制度发展方向. 沈阳农业大学学报, 1998, 29(1):12-15.
Ren T Z. Development of cropping system in the view of demand of grain and forage in China. J Shenyang Agric Univ, 1998, 29(1):12-15 (in Chinese with English abstract).
[22] 王美云, 任天志, 赵明, 李少昆, 王晓波, 李立娟, 陈长利. 双季青贮玉米模式物质生产及资源利用效率研究. 作物学报, 2007, 33:1316-1323.
Wang M Y, Ren T Z, Zhao M, Li S K, Wang X B, Li L J, Chen C L. Matter production and resources use efficiency of double cropping silage maize system. Acta Agron Sin, 2007, 33:1316-1323 (in Chinese with English abstract).
[23] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M. Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013, 144:192-199.
[24] Ding L, Wang K J, Jiang G M, Liu M Z, Niu S L, Gao L M. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res, 2005, 93:108-115.
[25] Hou P, Gao Q, Xie R Z, Li S K, Meng Q F, Kirkby E A, Römheld V, Müller T, Zhang F S, Cui Z L, Chen X P. Grain yields in relation to N requirement: optimizing nitrogen management for spring maize grown in China. Field Crops Res, 2012, 129:1-6.
[26] 周宝元. 黄淮海两熟制资源季节间优化配置及季节内高效利用技术体系研究. 中国农业大学博士学位论文, 北京, 2015.
Zhou B Y. Study on the Distribution and Highly Efficient Utilization of Resources for Double Cropping System in the Huang-Huai-Hai Plain, PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[27] Warrington I J, Kanemasu E T. Corn growth response to temperature and photoperiod: I. Seedling emergence, tassel initiation, and anthesis. Agron J, 1983, 75:749-754.
[28] Tollenaar M. Duration of the grain-filling period in maize is not affected by photoperiod and incident PPFD during the vegetative phase. Field Crops Res, 1999, 62:15-21.
[29] Chen C, Lei C, Deng A, Qian C, Hoogmoed W, Zhang W. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965-2008. Agric Forest Meteorol, 2011, 151:1580-1588.
[30] Liu L, Wang E, Zhu Y, Tang L, Cao W. Effects of warming and autonomous breeding on the phenological development and grain yield of double-rice systems in China. Agric Ecosyst Environ, 2013, 165:28-38.
[31] Allison J C S, Daynard T B. Effect of change in time of flowering, induced by altering photoperiod or temperature, on attributes related to yield in maize. Crop Sci, 1979, 19:1-4.
[32] Dong J, Liu J, Tao F, Xu X, Wang J. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Clim Res, 2009, 40:37-48.
[33] Liu Y E, Hou P, Xie R Z, Li S K, Zhang H B, Ming B, Ma D L, Liang S M. Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sci, 2013, 53:1693-1703.
[34] Adams R M. Global climate change and agriculture: an economic perspective. Am J Agric Econ, 1989, 71:1272-1279.
[35] Almaraz J J, Mabood F, Zhou X, Gregorich E G, Smith D L. Climate change, weather variability and corn yield at a higher latitude locale: Southwestern Quebec. Clim Change, 2008, 88:187-197.
[36] Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M. Maize grain yield and dry matter production responses to variations in weather conditions. Agron J, 2016, 108:196-204.
[37] He L, Asseng S, Zhao G, Wu D R, Yang X Y, Zhuang W, Jin N, Yu Q. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteorol, 2015, 200:135-143.
[38] Martínez R D, Cirilo A G, Cerrudo A A, Andrade F, Izquierdo N G. Discriminating post-silking environmental effects on starch composition in maize kernels. J Cereal Sci, 2019, 87:150-156.
[39] Ray D K, Gerber J S, MacDonald G K, West P C. Climate variation explains a third of global cropyield variability. Nat Commun, 2015, 6:5989.
[40] Wang D, Li G R, Zhou B Y, Zhan M, Cao C G, Meng Q F, Xia F, Ma W, Zhao M. Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain. J Integr Agric, 2020, 19:2997-3012.
[41] Ge J Z, Xu Y, Zhong X Y, Li S Y, Tian S Y, Yuan G Y, Cao C G, Zhan M, Zhao M. Climatic conditions varied by planting date affects maize yield in Central China. Agron J, 2016, 108:966-977.
[42] 李淑娅, 田少阳, 袁国印, 葛均筑, 徐莹, 王梦影, 曹凑贵, 翟中兵, 凌霄霞, 展茗, 赵明. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究. 作物学报, 2015, 41:1537-1547.
Li S Y, Tian S Y, Yuan G Y, Ge J Z, Xu Y, Wang M Y, Cao C G, Zhai Z B, Ling X X, Zhan M, Zhao M. Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in middle reaches of Yangtze River. Acta Agron Sin, 2015, 41:1537-1547 (in Chinese with English abstract).
[43] 邓妍, 王创云, 赵丽, 张丽光, 郭虹霞, 牛学谦, 王陆军. 行距配置对玉米茎秆抗倒伏特性及光合性能的影响. 中国农学通报, 2017, 33(21):15-20.
Deng Y, Wang C Y, Zhao L, Zhang L G, Guo H X, Niu X Q, Wang L J. Row spacing allocation: effect on stem loding resistance and photosynthetic properties of maize. Chin Agric Sci Bull, 2017, 33(21):15-20 (in Chinese with English abstract).
[44] 刘铁东, 宋凤斌. 灌浆期玉米冠层微环境对宽窄行种植模式的反应. 干旱地区农业研究, 2012, 30(3):37-40.
Liu T D, Song F B. Response of maize canopies micro- environment to wide and narrow planting pattern during grain filling period. Agric Res Arid Areas, 2012, 30(3):37-40 (in Chinese with English abstract).
[45] 梁熠, 齐华, 王敬亚, 白向历, 王晓波, 刘明, 孟显华, 许晶. 宽窄行栽培对玉米生长发育及产量的影响. 玉米科学, 2009, 17(4):97-100.
Liang Y, Qi H, Wang J Y, Bai X L, Wang X B, Liu M, Meng X H, Xu J. Effects of growth and yield of maize under wide and narrow row cultivation. J Maize Sci, 2009, 17(4):97-100 (in Chinese with English abstract).
[1] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[2] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[6] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[7] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[8] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[9] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[10] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[11] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[12] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[13] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[14] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[15] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!