Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1451-1462.doi: 10.3724/SP.J.1006.2022.14051

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil

WANG Wang-Nian1,4(), GE Jun-Zhu2, YANG Hai-Chang3, YIN Fa-Ting3, HUANG Tai-Li5, KUAI Jie1, WANG Jing1, WANG Bo1,*(), ZHOU Guang-Sheng1, FU Ting-Dong1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2College of Agriculture and Resource Environment, Tianjin Agricultural College, Tianjin 300384, China
    3Agricultural College of Shihezi University, Shihezi 832003, Xinjiang, China
    4Yulin Academy of Agricultural Sciences / Yulin Branch of Guangxi Academy of Agricultural Sciences, Yulin 537000, Guangxi, China
    5Daye Animal Husbandry and Veterinary Bureau, Daye 435100, Hubei, China
  • Received:2021-03-31 Accepted:2021-10-19 Online:2022-06-12 Published:2021-11-25
  • Contact: WANG Bo E-mail:1215646369@qq.com;wangbo@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Key Science and Technology Project in the Xinjiang Production and Construction Corps(2018AA005-1);Science and Technology Cooperation Project of the Xinjiang Production and Construction Corps(2020BC001);Key Research and Development Program in Ningxia Hui Autonomous Region(2018BBF02003)

Abstract:

Saline-alkali land widely distributes with large area in China. It is of great significance to select forage crops and realize planting and breeding cycle in saline-alkali land to promote the development of herbivorous animal husbandry and the improvement of saline-alkali land in China. In this study, the plots with high salinity difference were selected from the coastal saline-alkali land in Tianjin (NaCl type) and the inland saline-alkali land in northwest Xinjiang (Na2SO4-NaHCO3 type), respectively, and six field crops such as corn, sorghum, wheat, millet, soybean, and rapeseed with feed value were planted to determine the biomass, crude protein content, sodium and potassium ion content, and other indicators. The results were as follows. When the salt content was less than 1.82 g kg-1 and 2.00 g kg-1 in saline-alkali land NaCl type and Na2SO4-NaHCO3 type, respectively. The biomass and crude protein yield of the crops were close to those of conventional cultivated land, suggesting that saline-alkali land in low salt content could be used as forage production base. When the salt content reached 2.49 g kg-1 in the Na2SO4-NaHCO3 type saline-alkali soil, the biomass and crude protein yield of rapeseed were significantly higher than other crops. Thus, in the Na2SO4-NaHCO3 type saline-alkali soil with salt content lower than 2.49 g kg-1, rapeseed could be planted for fodder development and utilization. When the salt content in saline-alkali land of NaCl type and Na2SO4-NaHCO3 type reached 3.63 g kg-1 and 4.42 g kg-1, respectively. The biomass and crude protein yield of each crop was lower than 51.72% of that in conventional cultivated land, which made the utilization value of the cultivated land low. Therefore, it was recommended to use these saline-alkali land of NaCl type and Na2SO4-NaHCO3 with high content salt and alkali after improvement. In the different plots of the two experimental sites, the enrichment of Na+ in soil by rapeseed was significantly higher than the other crops at P < 0.05, and it also significantly reduced the total soil salt and Na + content. In this experiment, in plots with salinity of 1.82, 2.00, and 2.49 g kg-1, rapeseed had the most obvious Na+ enrichment effect. The enrichment of rapeseed on soil Na+ was 39.45, 102.24, and 57.19 kg hm-2 respectively, accounting for 13.02%, 15.99%, and 8.94% of the Na+ in the 0-20 cm cultivated layer soil, respectively. The improvement effect of rapeseed on saline-alkali land was significant. The above results provide a reference for the utilization of the saline-alkali land in China for the production of herbivorous feed raw materials, the promotion of the development of herbivorous animal husbandry, and the improvement of saline-alkali land.

Key words: forage crops, biomass, crude protein yield, soil salt content, Na+ content

Table 1

Ion composition of the experimental soil (g kg-1)"

地块Plot Na+ K+ Ca2+ Mg2+ $CO_{3}^{2-}$ $HCO_{3}^{-}$ Cl- $SO_{3}^{2-}$
X1 0.10 0.01 0.17 0.12 0.01 0.10 0.17 0.06
X2 0.22 0.03 0.36 0.09 0.02 0.27 0.07 0.33
X3 0.61 0.13 1.04 0.04 0.07 0.85 0.20 0.90
X4 0.11 0.02 0.24 0.13 0.01 0.17 0.20 0.11
X5 0.41 0.03 0.79 0.02 0.05 0.58 0.18 0.57
T1 0.22 0.02 0.32 0.14 0.01 0.22 0.45 0.15
T2 0.58 0.02 0.52 0.13 0.00 0.16 1.69 0.52

Table 2

Main characteristics of the experimental soil"

地块
Plot
pH 容重
Bulk density
(g cm-3)
碱解氮
Alkaline N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
含盐量
Salt content
(g kg-1)
X1 7.78±0.21 1.44±0.02 89.36±13.29 19.74±6.91 142.62±18.14 13.66±3.25 2.34±0.28 1.39±0.23
X2 8.25±0.23 1.39±0.02 45.87±5.15 9.88±2.57 186.81±39.21 7.58±1.03 1.20±0.11 2.49±0.28
X3 8.41±0.09 1.50±0.02 20.16±2.92 11.02±2.20 139.71±13.08 8.32±1.20 0.53±0.06 6.20±1.22
X4 7.87±0.13 1.40±0.02 45.77±3.89 11.16±1.26 101.98±3.27 21.59±0.50 1.26±0.03 1.82±0.14
X5 8.12±0.48 1.47±0.01 20.28±1.84 16.32±1.07 159.28±10.09 10.51±1.03 0.54±0.05 4.46±0.44
T1 7.82±0.10 1.55±0.03 30.89±2.03 13.25±0.66 60.00±3.23 10.51±0.52 0.79±0.05 2.00±0.26
T2 8.36±0.05 1.49±0.01 33.19±1.91 7.11±1.42 47.00±7.78 11.67±1.53 0.77±0.05 3.63±0.76

Fig. 1

Differences in crude protein content of crops in different salt content plots Different lowercase letters above the bars indicate significant differences among crude protein content of crops in same salt content plots at the 0.05 probability level in same test point, and ** indicate significant differences at the 0.01 probability level. The soil salt content of the X1, X2, X3, X4, and X5 plots in Xinjiang was 1.39, 2.49, 6.20, 1.82, and 4.46 g kg-1, respectively. The soil salt content of the T1 and T2 plots in Tianjin was 2.00 g kg-1 and 3.63 g kg-1, respectively."

Fig. 2

Differences in biomass and crude protein yield of crops in different salt content plots Different lowercase letters above the bars indicate significant differences among different crops yield potential in same salt content plots at the 0.05 probability level in same test point, and ** indicate significant differences at the 0.01 probability level. The soil salt content of the X1, X2, X3, X4, and X5 plots in Xinjiang was 1.39, 2.49, 6.20, 1.82, and 4.46 g kg-1, respectively. The soil salt content of the T1 and T2 plots in Tianjin was 2.00 g kg-1 and 3.63 g kg-1, respectively."

Table 3

Biological yield and crude protein yield production potential of crops"

产量
Yield
试验点
Place
土壤盐分
Soil salinity
(g kg-1)
作物产量潜力 Crop yield potential (%)
谷子
Millet
小麦
Wheat
油菜
Rapeseed
高粱
Sorghum
玉米
Maize
大豆
Soybean
生物学产量 新疆 1.39 47.36 b 32.34 c 51.46 b 73.70 b 100.00 a
Biomass yield Xinjiang 1.82 50.10 a 36.20 bc 51.99 b 86.78 a 87.93 b 45.40 a
2.49 27.50 d 43.77 a 61.89 a 41.15 c 52.53 d
4.46 20.40 e 37.04 b 21.89 d 37.45 c 24.88 e 15.89 d
6.20 7.38 f 20.58 d 12.99 e 8.11 e 8.30 f
天津 2.00 35.42 c 34.57 bc 43.24 c 68.62 b 68.65 c 36.69 b
Tianjin 3.63 8.69 f 19.23 d 20.97 d 20.00 d 11.17 f 19.80 c
粗蛋白产量 新疆 1.39 55.87 b 48.84 b 100.00 c 96.61 a 99.23 a
Protein yield Xinjiang 1.82 78.15 a 46.71 b 116.76 b 98.18 a 59.98 c 103.10 a
2.49 36.53 d 61.36 a 128.18 a 61.89 b 50.23 d
4.46 31.73 e 38.10 c 37.46 d 51.72 c 20.52 e 31.52 c
6.20 12.14 f 24.32 d 19.45 e 11.66 d 6.98 f
天津 2.00 47.62 c 56.68 a 104.08 c 94.01 a 78.49 b 68.19 b
Tianjin 3.63 8.62 g 28.56 d 22.05 e 15.19 d 10.96 f 34.26 c

Fig. 3

Na+ and K+ contents and K+/Na+ content of above-ground parts of crops in plots with different salt contents Different lowercase letters above the bar indicate significant differences among ion content of aboveground parts of crops in same salt content plots at the 0.05 probability level in same test point, and Ns indicates no significant difference, ** indicates significant differences at the 0.01 probability level. The soil salt content of the X1, X2, X3, X4, and X5 plots in Xinjiang was 1.39, 2.49, 6.20, 1.82, and 4.46 g kg-1, respectively. The soil salt content of the T1 and T2 plots in Tianjin was 2.00 g kg-1 and 3.63 g kg-1, respectively."

Table 4

Crop absorption of soil sodium ions"

2018年
作物及土壤
Crops and soil
in 2018
钠离子吸收量
Na+ absorption mass (kg hm-2)
2019年
作物及土壤
Crops and soil
in 2019
钠离子吸收量
Na+ absorption mass (kg hm-2)
X1 X2 X3 X4 X5 T1 T2
谷子Millet 3.07 d 2.67 c 1.32 d 谷子Millet 4.97 bc 2.65 b 21.94 b 3.48 d
小麦Wheat 4.04 c 5.99 b 7.86 c 小麦Wheat 3.10 c 2.50 b 14.32 c 7.54 b
油菜Rapeseed 23.34 a 57.19 a 22.01 a 油菜Rapeseed 39.45 a 22.88 a 102.24 a 19.13 a
高粱Sorghum 5.69 b 3.89 bc 1.31 d 高粱Sorghum 7.29 b 3.12 b 9.92 d 2.65 d
玉米Maize 6.21 b 3.39 bc 9.70 b 玉米Maize 8.59 b 2.88 b 8.85 d 2.79 d
大豆Soybean 1.45 c 3.40 b 8.87 d 6.13 c
耕层Tillage 305.65 639.85 1766.99 耕层Tillage 302.98 1191.17 639.36 1671.55

Table 5

Changes of soil organic matter, total salt and sodium ion content after planting crops"

指标
Indicator
2018 处理Treatment 2019 处理Treatment
X1 X2 X3 X4 X5 T1 T2
有机质 对照 CK 12.49 e 7.11 e 14.35 c 对照 CK 21.63 c 10.66 c 14.52 d 10.38 f
Organic 谷子Millet 20.87 b 8.51 d 18.23 a 谷子Millet 25.43 b 12.38 b 19.51 b 23.05 b
matter 小麦Wheat 22.08 a 7.75 e 16.32 b 小麦Wheat 27.30 a 14.80 a 23.22 a 18.58 e
(g kg-1) 油菜Rapeseed 15.95 d 13.19 a 18.10 a 油菜Rapeseed 22.47 c 14.39 a 22.63 a 22.56 bc
高粱Sorghum 19.27 c 11.37 b 16.09 b 高粱Sorghum 22.99 c 12.80 b 22.59 a 24.38 a
玉米Maize 13.49 e 9.79 c 19.15 a 玉米Maize 23.00 c 12.60 b 15.91 c 21.60 c
大豆Soybean 21.95 c 14.48 a 22.61 a 20.15 d
全盐 对照 CK 1.69 a 2.79 a 6.87 c 对照 CK 2.30 ab 4.24 b 2.41 a 3.18 a
Total salt 谷子Millet 1.36 c 2.57 b 7.24 b 谷子Millet 2.26 b 4.23 b 2.06 b 2.85 b
(g kg-1) 小麦Wheat 1.27 d 2.53 bc 6.73 c 小麦Wheat 2.43 a 4.04 b 2.10 b 2.67 bc
油菜Rapeseed 1.02 e 1.86 d 5.56 d 油菜Rapeseed 1.33 e 3.42 c 1.31 c 2.14 d
高粱Sorghum 1.46 b 2.47 bc 8.25 a 高粱Sorghum 1.99 c 5.58 a 2.06 b 2.93 ab
玉米Maize 1.33 c 2.46 c 6.95 c 玉米Maize 1.79 d 5.47 a 2.05 b 2.42 cd
大豆Soybean 1.67 d 4.21 b 1.99 b 2.63 bc
Na+ 对照 CK 137.49 a 253.51 a 684.64 c 对照 CK 286.00 a 468.50 bc 604.00 a 701.50 a
(mg kg-1) 谷子Millet 102.68 c 231.07 b 723.25 b 谷子Millet 140.25 bc 341.00 d 541.50 b 286.75 d
小麦Wheat 93.58 d 226.58 bc 669.45 c 小麦Wheat 143.50 bc 446.75 c 436.50 cd 435.17 b
油菜Rapeseed 67.25 e 155.67 d 546.38 d 油菜Rapeseed 129.00 c 251.25 e 276.25 f 235.00 e
高粱Sorghum 113.24 b 220.34 bc 829.79 a 高粱Sorghum 165.75 b 517.25 a 410.50 de 452.35 b
玉米Maize 99.27 cd 219.00 c 693.01 c 玉米Maize 155.50 bc 498.85 ab 448.50 c 375.75 c
大豆Soybean 148.50 bc 483.75 abc 390.00 e 379.50 c
[1] 赵云, 谢开云, 万江春, 张英俊. 粮草兼顾型畜牧业饲草料发展现状及展望. 草业科学, 2017, 34: 653-660.
Zhao Y, Xie K Y, Wan J C, Zhang Y J. Development and prospects of grain-forage supply in modern animal husbangry. Pratac Sci, 2017, 34: 653-660 (in Chinese with English abstract).
[2] 黄绍琳, 刘爱民, 鲁春霞, 马蓓蓓. 中国大陆畜禽产品供求及未来饲料粮需求潜力研究. 资源与生态学报, 2020, 11: 475-482.
Huang S L, Liu A M, Lu C X, Ma B B. Supply and demand levels for livestock and poultry products in the Chinese mainland and the potential demand for feed grains. J Res Ecol, 2020, 11: 475-482 (in Chinese with English abstract).
[3] Xing L, Goldsmith P. Improving Chinese soybean meal demand estimation by addressing the non-commercial. China Agric Econ Rev, 2013, 5: 543-566.
[4] Li J, Li Z. Physical limitations and challenges to grain security in China. Food Secur, 2014, 6: 159-167.
doi: 10.1007/s12571-013-0326-0
[5] 倪印锋, 王明利. 中国青贮玉米产业发展时空演变及动因. 草业科学, 2019, 36: 1915-1924.
Ni Y F, Wang M L. Spatiotemporal evolution of China’s silage corn industry and the factors driving its development. Pratac Sci, 2019, 36: 1915-1924 (in Chinese with English abstract).
[6] Cotty T L, Dorin B. A global foresight on food crop needs for livestock. Animal, 2012, 6: 1528-1536.
doi: 10.1017/S1751731112000377 pmid: 23031526
[7] Li R, Lin H. Developing the Agro-Grassland System to insure food security of China. J Agric Chem Environ, 2014, 3: 9-15.
[8] Zhang J. Salt-affected Soil Resources in China. New York: Cold Spring Harbor Laboratory Press, 2014. pp 9-13.
[9] Wang W J, He H S, Zu T G, Guan Y, Liu Z G, Zhang Z H, Xu H N, Yu X Y. Addition of HPMA affects seed germination, plant growth and properties of heavy saline-alkali soil in northeastern China: comparison with other agents and determination of the mechanism. Plant Soil, 2011, 339: 177-191.
doi: 10.1007/s11104-010-0565-1
[10] 杨劲松, 姚荣江, 王相平, 谢文萍. 河套平原盐碱地生态治理和生态产业发展模式. 生态学报, 2016, 36: 7059-7063.
Yang J S, Yao R J, Wang X P, Xie W P. Research on ecological management and ecological industry development model of saline-alkali land in the Hetao Plain, China. Acta Ecol Sin, 2016, 36: 7059-7063 (in Chinese with English abstract).
[11] 杨劲松. 中国盐渍土研究的发展历程与展望. 土壤学报, 2008, 45: 837-845.
Yang J S. Development and prospect of the research on salt-affected soils in China. Acta Pedol Sin, 2008, 45: 837-845 (in Chinese with English abstract).
[12] Van Oosten M J, Maggio A. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot, 2015, 111: 135-146.
doi: 10.1016/j.envexpbot.2014.11.010
[13] Jesus J M, Danko A S, Fiúza A, Borges M T. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res, 2015, 22: 6511-6525.
doi: 10.1007/s11356-015-4205-4
[14] Liang L C, Liu W T, Sun Y B, Huo X H, Li S, Zhou Q X. Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environ Rev, 2016, 25: 269-281.
doi: 10.1139/er-2016-0063
[15] Zhang L, Fan J J, Meng Q, Niu Y, Niu W. Caragana fabr promotes revegetation and soil rehabilitation in saline-alkali wasteland. Int J Phytorem, 2013, 15: 38-50.
doi: 10.1080/15226514.2012.670314
[16] Imadi S R, Shah S W, Kazi A G, Azooz M M. Ahmad P. Plant Metal Interaction. Amsterdam: Elsevier Press, 2016. pp 455-468.
[17] 魏晨辉, 沈光, 裴忠雪, 任蔓莉, 路嘉丽, 王琼, 王文杰. 不同植物种植对松嫩平原盐碱地土壤理化性质与细根生长的影响. 植物研究, 2015, 35: 759-764.
Wei C H, Shen G, Pei Z X, Ren M L, Lu J L, Wang Q, Wang W J. Effects of different plants cultivation on soil physical-chemical properties and fine root growth in saline-alkaline soil in Songnen Plain, Northeastern China. Bull Bot Res, 2015, 35: 759-764 (in Chinese with English abstract).
[18] Wang Y Y, Guo D F. Response of soil fungi community structure to salt vegetation succession in the Yellow River Delta. Curr Microbiol, 2016, 73: 595-601.
doi: 10.1007/s00284-016-1099-4
[19] Salwan R, Sharma A, Sharma V. Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant Soil, 2019, 442: 1-22.
doi: 10.1007/s11104-019-04202-x
[20] Fatima A M, Yousef L F. Biological response of a sandy soil treated with biochar derived from a halophyte (Salicornia bigelovii). Appl Soil Ecol, 2017, 114: 9-15.
doi: 10.1016/j.apsoil.2017.02.012
[21] Rabhi M, Hafsi C, Lakhdar A, Hajji S, Barhoumi Z, Hamrouni M H, Abdelly C, Smaoui A. Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr J Ecol, 2009, 47: 463-468.
doi: 10.1111/aje.2009.47.issue-4
[22] Jlassi A, Zorrig W, Khouni A E, Lakhdar A, Smaoui A, Abdelly C, Rabhi M. Phytodesalination of a moderately-salt-affected soil by sulla carnosa. In J Phytorem, 2013, 15: 398-404.
[23] Han L P, Liu H T, Yu S H, Wang W H, Liu J T. Potential application of oat for phytoremediation of salt ions in coastal saline-alkali soil. Ecol Eng, 2013, 61: 274-281.
doi: 10.1016/j.ecoleng.2013.09.034
[24] 秦都林, 王双磊, 刘艳慧, 聂军军, 赵娜, 毛丽丽, 宋宪亮, 孙学振. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响. 作物学报, 2017, 43: 1030-1042.
doi: 10.3724/SP.J.1006.2017.01030
Qin D L, Wang S L, Liu Y H, Nie J J, Zhao N, Mao L L, Song X L, Sun X L. Effects of cotton stalk returning on soil physical and chemical properties and cotton yield in coastal saline-alkali soil. Acta Agron Sin, 2017, 43: 1030-1042 (in Chinese with English abstract).
[25] Shamsutdinov N Z, Shamsutdinova E Z, Orlovsky N S, Shamsutdinov Z S H. Halophytes: ecological features, global resources, and outlook for multipurpose use. Her Russ Acad Sci, 2017, 87: 1-11.
doi: 10.1134/S1019331616060083
[26] Lekshmy S, Sairam R K, Kushwaha S R. Effect of long-term salinity stress on growth and nutrient uptake in contrasting wheat genotypes. Indian J Plant Physiol, 2013, 18: 344-353.
doi: 10.1007/s40502-014-0059-x
[27] Horie T, Karahara I, Katsuhara M. Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice, 2012, 5: 1-18.
doi: 10.1186/1939-8433-5-1
[28] Zhang M M, Dong B D, Qian Y Z, Yang H, Wang Y K, Liu M Y. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities. Field Crops Res, 2018, 225: 130-140.
doi: 10.1016/j.fcr.2018.06.010
[29] Xu Z, Shao T, Lyu Z, Liu A, Long X, Zhou Z, Gao X, Rengel Z. The mechanisms of improving coastal saline soils by planting rice. Sci Total Environ, 2020, 703: 135529.
doi: 10.1016/j.scitotenv.2019.135529
[30] Chen X D, Opoku-Kwanowaa Y, Li J M, Wu J G. Application of organic wastes to primary saline-alkali soil in Northeast China: effects on soil available nutrients and salt ions. Commun Soil Sci Plant Anal, 2020, 51: 1238-1252.
doi: 10.1080/00103624.2020.1763394
[31] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 30-271.
Bao S D. Analysis of Soil Agrochemical, 3rd edn. Beijing: China Agriculture Press, 2000. pp 30-271(in Chinese).
[32] 刘忠宽, 刘振宇, 李江, 谢楠, 秦文利, 冯伟, 智健飞. 中国青贮饲料产业发展现状分析. 草学, 2020, (1):70-75.
Liu Z K, Liu Z Y, Li J, Xie N, Qin W L, Feng W, Zhi J F. Analysis on the development status of Chinese silage feed industry. J Grassl For Sci, 2020, (1):70-75 (in Chinese with English abstract).
[33] Grassini P, Yang H S, Cassman K G. Limits to maize productivity in western corn-belt: a simulation analysis for fully irrigated and rainfed conditions. Agric For Meteorol, 2009, 149: 1254-1265.
doi: 10.1016/j.agrformet.2009.02.012
[34] Detmann E, Valente E E L, Batista E D, Huhtanen P. An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livest Sci, 2014, 162: 141-153.
doi: 10.1016/j.livsci.2014.01.029
[35] 张弘, 胡清社, 胡彬, 肖阳. 性别和粗蛋白质水平对黑山羊饲料利用和瘤胃发酵参数的影响. 中国饲料, 2020, (6):81-85.
Zhang H, Hu Q S, Hu B, Xiao Y. Effects of sex and crude protein level on feed utilization and rumen fermentation parameters of black goats. China Feed, 2020, (6):81-85 (in Chinese with English abstract).
[36] Da Silva L D, Pereira O G, da Silva T C, Valadares Filho S C, Ribeiro K G. Effects of silage crop and dietary crude protein levels on digestibility, ruminal fermentation, nitrogen use efficiency, and performance of finishing beef cattle. Animal Feed Sci Technol, 2016, 220: 22-23.
doi: 10.1016/j.anifeedsci.2016.07.008
[37] Bailey E A, Titgemeyer E C, Olson K C, Brake D W, Jones M L, Anderson D E. Effects of supplemental energy and protein on forage digestion and urea kinetics in growing beef cattle. J Anim Sci, 2012, 90: 3505.
doi: 10.2527/jas.2011-4459 pmid: 22851242
[38] Kazemi K, Eskandari H. Effects of salt stress on germination and early seedling growth of rice (Oryza sativa) cultivars in Iran. Afr J Biotechnol, 2011, 10: 17789-17792.
[39] 高树琴, 王竑晟, 段瑞, 景海春, 方精云. 关于加大在中低产田发展草牧业的思考. 中国科学院院刊, 2020, 35: 166-174.
Gao S Q, Wang H S, Duan R, Jing H C, Fang J Y. How to develop grass-based livestock husbandry in areas of low- and middle-yield fields. Bull Chin Acad Sci, 2020, 35: 166-174 (in Chinese with English abstract).
[40] Zhao W, Zhou Q, Tian Z Z, Cui Y T, Liang Y, Wang H Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci Total Environ, 2020, 722: 137428.
doi: 10.1016/j.scitotenv.2020.137428
[41] Qadir M, Noble A D, Schubert S, Thomas R J, Arslan A. Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Develop, 2006, 17: 661-676.
doi: 10.1002/(ISSN)1099-145X
[42] 单奇华, 张建锋, 阮伟建, 唐华军, 沈立铭, 陈光才. 滨海盐碱地土壤质量指标对生态改良的响应. 生态学报, 2011, 31: 6072-6079.
Shan Q H, Zhang J F, Ruan W J, Tang H J, Shen L M, Chen G C. Response of soil quality indicators to comprehensive amelioration measures in coastal salt-affected land. Acta Ecol Sin, 2011, 31: 6072-6079 (in Chinese with English abstract).
[43] Mohanty S K, Saiers J E, Ryan J N. Colloid mobilization in a fractured soil during dry-wet cycles: role of drying duration and flow path permeability. Environ Sci Technol, 2015, 49: 9100-9106.
doi: 10.1021/acs.est.5b00889 pmid: 26134351
[44] Manousaki E, Galanaki K, Papadimitriou L, Kalogerakis N. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) boiss: two contrasting ecotypes. Int J Phytorem, 2014, 16: 755-769.
doi: 10.1080/15226514.2013.856847
[45] Jesus J M, Calheiros C S C, Castro P M L, Bprges M T. Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems. Int J Phytorem, 2013, 16: 334-346.
doi: 10.1080/15226514.2013.773284
[46] 梅勇. 耐盐饲料芸薹修复盐碱荒地的作用与其盐胁迫下的营养生理. 中国农业科学院硕士学位论文, 北京, 2005.
Mei Y. Remediation of Saline-sodic Land with Salt Tolerant Plant (Brassica) and Nutrition Physiology of the Plant under Salt Stress. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2005 (in Chinese with English abstract).
[47] Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot, 2008, 63: 266-273.
doi: 10.1016/j.envexpbot.2007.11.008
[1] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[2] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[3] WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, MENG Tian-Yao, LU Yu, LI Xin-Yue, TAO Yuan, DING En-Hao, CHEN Ying-Long, DAI Qi-Gen. Dynamics in above-ground biomass accumulation after transplanting and its characteristic analysis in Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2021, 47(3): 546-555.
[4] YAN Qing-Qing,ZHANG Ju-Song,DAI Jian-Min,DOU Qiao-Qiao. Effects of glycinebetain on photosynthesis and biomass accumulation of island cotton seedlings under saline alkali stress [J]. Acta Agronomica Sinica, 2019, 45(7): 1128-1135.
[5] RU Xiao-Ya,LI Guang,CHEN Guo-Peng,ZHANG Tong-Shuai,YAN Li-Juan. Regulation effects of water and nitrogen on wheat yield and biomass in different precipitation years [J]. Acta Agronomica Sinica, 2019, 45(11): 1725-1734.
[6] Hai-Xia WU,Li-Li GUO,Li-Hua HAO,Hao ZHANG,Qing-Tao WANG,Dong-Juan CHENG,Zheng-Ping PENG,Fei LI,Xi-Xi ZHANG,Shu-Bin LI,Ming XU,Yun-Pu ZHENG. Effects of Water and CO2 Concentration on Stomatal Traits, Leaf Gas Exchange, and Biomass of Winter Wheat [J]. Acta Agronomica Sinica, 2018, 44(10): 1570-1576.
[7] Shen-Bin YANG, Sha-Sha XU, Xiao-Dong JIANG, Chun-Lin SHI, Ying-Ping WANG, Shuang-He SHEN. Correcting the Response of Maximum Leaf Photosynthetic Rate to Temperatures in Crop Models [J]. Acta Agronomica Sinica, 2018, 44(05): 750-761.
[8] CHEN Yu-Li,YANG Ping,ZHANG Wen-Yu,ZHANG Wei-Xin,ZHUYe-Ping,LI Shi-Juan,GONG Fa-Jiang,BI Hai-Bin,YUE Ting,CAO Hong-Xin. Biomass-Based Main Spike MorphologicalParameter Model for Winter Wheat [J]. Acta Agron Sin, 2017, 43(03): 399-406.
[9] CHEN Yu-Li,YANG Ping,ZHANG Wen-Yu,ZHANG Wei-Xin,ZHU Ye-Ping,LI Shi-Juan,GONG Fa-Jiang,BI Hai-Bin,YUE Ting,CAO Hong-Xin. Aboveground Architecture ModelBased onBiomass of Winter Wheat before Overwintering [J]. Acta Agron Sin, 2016, 42(05): 743-750.
[10] ZHANG Wen-Yu, ZHANG Wei-Xin, GE Dao-Kuo, CAO Hong-Xin, LIU Yan, XUAN Shou-Li, FU Kun-Ya, FENG Chun-Huan, CHEN Wei-Tao. Modeling of Biomass-Based Leaf Morphological Parameters on Main Stem for Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(09): 1435-1444.
[11] YE De-Lian,QI Rui-Juan,GUAN Da-Hai,LI Jian-Min,ZHANG Ming-Cai,LI Zhao-Hu. Response of Soil Microbial Characteristics and Soil Enzyme Activity to Irrigation Method in No-till Winter Wheat Field [J]. Acta Agron Sin, 2015, 41(08): 1212-1219.
[12] QI Bo,ZHANG Ning,ZHAO Tuan-Jie,XING Guang-Nan,ZHAO Jing-Ming*,GAI Jun-Yi*. Prediction of Leaf Area Index Using Hyperspectral Remote Sensing in Breeding Programs of Soybean [J]. Acta Agron Sin, 2015, 41(07): 1073-1085.
[13] ZHANG Wei-Xin,CAO Hong-Xin,ZHU Yan,LIU Yan,ZHANG Wen-Yu,CHEN Yu-Li,FU Kun-Ya. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant [J]. Acta Agron Sin, 2015, 41(02): 318-328.
[14] ZHANG Lei,Lü Jin-Yin,JIA Shao-Lei. Photosynthetic Characteristics of Spike and Distribution of 14C-Assimilates Accumulated Before Anthesis in Wheat under Water Deficit Condition [J]. Acta Agron Sin, 2013, 39(08): 1514-1519.
[15] SONG Wei-Chao,LIU Chun-Yu,XU Jiao,SUI Ning,CHEN Bing-Lin,ZHOU Zhi-Guo. Effects of Soil Alkaline Hydrolyzed Nitrogen Concentration on Biomass and Nitrogen Accumulation Eigenvalues of Cotton after Initial Flowering [J]. Acta Agron Sin, 2013, 39(07): 1257-1265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!