Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2274-2284.doi: 10.3724/SP.J.1006.2022.14138

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.)

HUI Zhi-Ming(), XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping*()   

  1. Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2021-08-05 Accepted:2021-11-29 Online:2022-09-12 Published:2021-12-16
  • Contact: JIN Li-Ping E-mail:huizhiming@aliyun.com;jinliping@caas.cn
  • Supported by:
    New Potato Varieties Breeding of Agricultural Breeding Special Project of the Ningxia Hui Autonomous Region of China(2019NYYZ01-1)

Abstract:

Potato maturity is a quantitative trait controlled by multiple genes and it is one of the major agronomic characteristics for selecting suitable varieties in different agro-ecological zones. In this study, the maturity of the segregating population derived from Zhongshu 18 (♀) × Zhongshu 5 (♂) was evaluated in 2018 and 2019. Respectively, 30 offsprings with extremely late or early maturity were selected and used to construct early and late maturing genomic pool. Three molecular markers (SCARA2-2, SCARA4-21, and SCARA5-16) linked to maturity were identified by simplified genome 2b-RAD (2b-restriction site-associated DNA) sequencing. The maturity phenotypic association rate of the three-marker-combination for the late and early maturity genotype verification reached 87.5% and 93.0%, respectively. Thus, these molecular markers are valuable for markers assisted selection in potato maturity breeding.

Key words: potato, maturity, 2b-RAD, molecular markers

Table 1

Published molecular markers of maturity traits in potato (Solanum tuberosum L.)"

分子标记
Molecular marker
染色体(连锁群)
Chromosome
(linkage group)
组合
Cross
倍性
Ploidy
群体
Population
参考文献
Reference
GP179, GP76 Chr.V (Major QTL), Chr.VI (Minor QTL) G87D2.4.1 × I88.55.6
G87D2.4.1 × I86.102.1
Diploid 109
29
Oberhagemann et al. [21]
STM1100-STM1056, STM0028-STM3009, TM1057-STM0024 Chr.V, Chr.VI, Chr.VII, Chr.VIII G87D2.4.1 × I88.55.6 Diploid 113 Collins et al. [22]
GP21 Chr.V USW5337.3 × 77.2102.37 Diploid 67 Visker et al. [8]
STM3179 Chr.V 12601ab1 × Stirling Tetraploid 227 Bradshaw et al. [23]
分子标记
Molecular marker
染色体(连锁群)
Chromosome
(linkage group)
组合
Cross
倍性
Ploidy
群体
Population
参考文献
Reference
GP21 Chr.III (Minor QTL), Chr.V (Major QTL) SH82-44-111 × CE51
DH84-19-1659 × dI88.55.6
Diploid 227
300
Visker et al. [24]
C51, C52, C53, C61, C62 Chr.V, Chr.VI S. phureja × S. tuberosum Diploid 205 Mal.osetti et al. [10]
GP186, BA47f2t7, CP113 Chr.V DG 83-1520 ×DG 84-195 Diploid 156 Sliwka et al. [25]
STM3179 Chr.V 12601ab1 × Stirling Tetraploid 227 Bradshaw et al. [11]
solcap_snp_c2_47609 Chr.V 12601ab1 × Stirling Tetraploid 190 Hackett et al. [12]
solcap_snp_c2_22986 Chr.V Jacqueline Lee × MSG227-2 Tetraploid 156 Massa et al. [13]
solcap_snp_c2_11605 Chr.V Rio Grande Russet ×
Premier Russet
Tetraploid 162 Massa et al. [14]
SSR5-85-1, SCAR5-8 Chr.V Zhongshu 19 × Zhongshu 3 Tetraploid 221 Li et al. [9]
PM_Z_05 Chr.II, IV, V, VII, XI Longshu 8 × Zaodabai Tetraploid 192 Li et al. [26]

Table 2

Classification for potato maturity"

熟性等级
Maturity class
生育期
Growth period (d)
1 ≤60
2 61-70
3 71-80
4 81-90
5 91-100
6 ≥101

Fig. 1

Identification of early-maturing marker SCAR5-8 and gene StCDF1.2 in early-maturing cultivar Zhongshu 5 and late-maturing cultivar Zhongshu 18 M1: DL2000; M2: marker III; P1: Zhongshu 5; P2: Zhongshu 18."

Fig. 2

Average results of investigation for maturity class of the population in 2018 and 2019"

Table 3

Characterization of sequencing data"

材料
Material
原始reads
Clean reads
高质量Reads
Enzyme reads
百分数
Percentage (%)
特异标签数
No. of uniq tags
测序深度
Depth
中薯18号Zhongshu 18 58,046,070 51,631,527 88.95 121,964 162.5 ×
中薯5号Zhongshu 5 58,046,070 52,205,695 89.94 122,940 162.1 ×
极端晚熟混池Extremely late pool 58,046,070 52,383,011 90.24 128,108 158.2 ×
极端早熟混池Extremely early pool 58,046,070 53,881,077 92.82 127,564 161.1 ×
平均Mean 58,046,070 52,525,328 90.49 125,144 161.0 ×

Fig. 3

Distribution of tags on chromosomes (A) and unique tags for early and late maturity DNA pools (B) 0-80 M: physical distance of chromosomes (unit: M); Chr.1-Chr.12: 12 chromosomes of potato. A: left histogram: EPool is early maturity DNA pool, LPool is late maturity DNA pool; Right histogram: different color represents different number of unique tags; the figure represents the number of unique tags. B: on every chromosome, the up histogram represents the unique tags in early maturity pool, the middle histogram represents the unique tags in late maturity pool, the down histogram represents the absolute value of unique tags between early maturity pool and late maturity pool. Right histogram: Different color represents different number of unique tags. The figure represents the number of unique tags."

Fig. 4

Identification of SCARA5-16 in extreme early (A) and late (B) maturity progenies M: DL2000; P1: Zhongshu 5; P2: Zhongshu 18. A: number 27-51 for extreme early progenies; B: number 298-172 for extreme late maturity progenies."

Table 4

Verification of markers in extreme early and late progenies"

极端基因型
Extreme genotype
样本总数(个)
Total number of samples
标记名称
Marker name
单标记表型符合率
Single coincidence rate (%)
染色体
Chr.
引物序列
Primer sequences(5°-3°)
标记鉴定
Marker
identification
标记联合使用表型符合率
Comprehensive coincidence rate (%)
极端晚熟
Extremely
late maturity
30 SCARA2-2 56.7 2 F: ACAGCTCGGCGAGAAAACAG
R: TCAAGCAATTAGGGCGGTG
阳性
Positive
90.0
SCARA4-21 60.0 4 F: TCACTTTGGCGACCACACTT
R: CAGACCCGCTTACGCTAAGAT
阳性
Positive
SCARA5-16 60.0 5 F: TTTTTGTGATCAGGGGCGG
R: TGCATTGCATCCTCCCAAC
阳性
Positive
极端早熟
Extremely early maturity
30 SCARA2-2 56.7 2 F: ACAGCTCGGCGAGAAAACAG
R:TCAAGCAATTAGGGCGGTG
阴性
Negative
96.7
SCARA4-21 60.0 4 F: TCACTTTGGCGACCACACTT
R: CAGACCCGCTTACGCTAAGAT
阴性
Negative
SCARA5-16 76.7 5 F: TTTTTGTGATCAGGGGCGG
R: TGCATTGCATCCTCCCAAC
阴性
Negative

Table 5

Associate analysis of maturity phenotyping and molecular marker test"

表型
Phenotype
样本总数(个)
Total number of
samples
标记名称
Marker name
单标记表型符合率
Single coincidence rate (%)
染色体
Chr.
引物序列
Primer sequences (5°-3°)
标记鉴定
Marker
identification
标记联合使用表型符合率Comprehensive coincidence rate (%)
晚熟
Late maturity
48 SCARA2-2 62.5 2 F: ACAGCTCGGCGAGAAAACAG
R: TCAAGCAATTAGGGCGGTG
阳性
Positive
87.5
SCARA4-21 58.3 4 F: TCACTTTGGCGACCACACTT
R: CAGACCCGCTTACGCTAAGAT
阳性
Positive
SCARA5-16 60.4 5 F: TTTTTGTGATCAGGGGCGG
R: TGCATTGCATCCTCCCAAC
阳性
Positive
早熟
Early maturity
71 SCARA2-2 54.9 2 F: ACAGCTCGGCGAGAAAACAG
R: TCAAGCAATTAGGGCGGTG
阴性
Negative
93.0
SCARA4-21 66.2 4 F: TCACTTTGGCGACCACACTT
R: CAGACCCGCTTACGCTAAGAT
阴性
Negative
SCARA5-16 76.1 5 F: TTTTTGTGATCAGGGGCGG’
R:TGCATTGCATCCTCCCAAC
阴性
Negative
[1] 徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017, 50: 990-1015.
Xu J F, Jin L P. Analysis for maturity of progenies from potato cultivar Zhongshu 3. Sci Agric Sin, 2017, 50: 990-1015. (in Chinese with English abstract)
[2] 孙慧生. 马铃薯育种学. 北京: 中国农业出版社, 2003. pp 30-59.
Sun H S. Potato Breeding. Beijing: China Agriculture Press, 2003. pp 30-59. (in Chinese)
[3] 徐建飞, 段绍光, 庞万福, 卞春松, 刘杰, 金黎平. 马铃薯品种中薯3号杂交后代熟性分析. 华北农学报, 2015, 30(增刊1): 92-96.
Xu J F, Duan S G, Pang W F, Bian C S, Liu J, Jin L P. Analysis for maturity of progenies from potato cultivar Zhongshu 3. Acta Agric Boreali-Sin, 2015, 30(S1): 92-96. (in Chinese with English abstract)
[4] Mackerron D K L, Davies H V. Markers for maturity and senescence in the potato crop. Potato Res, 1986, 29: 427-436.
doi: 10.1007/BF02357908
[5] Hvostova V V, Iacina I M. 马铃薯遗传学. 北京: 中国农业出版社, 1981. pp 280-283.
Hvostova V V, Iacina I M. Potato Genetics. Beijing: China Agriculture Press, 1981. pp 280-283. (in Chinese)
[6] Kloosterman B, Abelenda J A, Gomez M M C, Oortwijn M, De boer J M, Kowitwanich K, Horvath B M, Van Eck H J, Smaczniak C, Prat S, Visser R G F, Bachem C W B. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 2013, 495: 246-250.
doi: 10.1038/nature11912
[7] Bonierbale M W, Plaisted R L, Tanksley S D. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 1988, 120: 1095-1103.
doi: 10.1093/genetics/120.4.1095 pmid: 17246486
[8] Visker M H P W, Kerzer L C P, Van Eck H J, Jacobsen E, Colon L T, Struik P C. Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet, 2003, 106: 317-325.
pmid: 12582858
[9] Li X, Xu J, Duan S, Zhang J, Bian C, Hu J, Li G, Jin L. Mapping and QTL analysis of early-maturity traits in tetraploid potato (Solanum tuberosum L.). Int J Mol Sci, 2018, 19: 3065.
doi: 10.3390/ijms19103065
[10] Malosetti M, Visser R G F, Celis-Gamboa C, van Eeuwijk F A. QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theor Appl Genet, 2006, 113: 288-300.
pmid: 16791695
[11] Bradshaw J E, Hackett C A, Pande B, Waugh R, Bryan G J. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet, 2008, 116: 193-211.
doi: 10.1007/s00122-007-0659-1 pmid: 17938877
[12] Hackett C A, Bradshaw J E, Bryan G J. QTL mapping in autotetraploids using SNP dosage information. Theor Appl Genet, 2014, 127: 1885-1904.
doi: 10.1007/s00122-014-2347-2
[13] Massa A N, Manriquew-Carpintero N C, Coombs J J, Zarka D G, Boone A E, Wirk W W, Hackett C A, Bryan G J, Douches D S. Genetic linkage mapping of economically important traits in cultivated tetraploid potato (Solanum tuberosum L.). Genes Genom Genet, 2015, 5: 2357-2364.
[14] Massa A N, Manrique-Carpintero N C, Coombs J, Haynes K G, Bethke P C, Brandt T L, Gupta S K, Yencho G C, Novy R G, Douches D S. Linkage analysis and QTL mapping in a tetraploid russet mapping population of potato. BMC Genet, 2018, 19: 87.
doi: 10.1186/s12863-018-0672-1
[15] Jia L, Zhang B, Liu K, Zheng D, Wang X. Analysis of population genetic diversity of Cynoglossus cynoglossus based on 2b-RAD simplified genome sequencing. Fisher Res, 2017, 4: 125-133.
[16] Blanco-Bercial L, Buchlin A. New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus. Mol Ecol, 2016, 25: 1566-1580.
doi: 10.1111/mec.13581 pmid: 26857348
[17] Gao W, Qu J, Zhang J, Sonnenberg A, Chen Q, Zhang Y, Huang C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genomics, 2018, 19: 18.
doi: 10.1186/s12864-017-4421-z
[18] Seetharam A S, Stuart G W. Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments. PeerJ, 2013, 1: e226.
doi: 10.7717/peerj.226
[19] Dou J, Li X, Fu Q, Jiao W, Li Y, Li T, Wang Y, Hu X, Wang S, Bao Z. Evaluation of the 2b-RAD method for genomic selection in scallop breeding. Sci Rep, 2016, 6: 19244.
[20] 李兴翠, 李广存, 徐建飞, 段绍光, 卞春松, 庞万福, 刘杰, 金黎平. 四倍体马铃薯熟性连锁SCAR标记的开发与验证. 作物学报, 2017, 43: 821-828.
doi: 10.3724/SP.J.1006.2017.00821
Li X C, Li G C, Xu J F, Duan S G, Bian C S, Pang W F, Liu J, Jin L P. Development and verification of SCAR marker linked to maturity in tetraploid potato. Acta Agron Sin, 2017, 43: 821-828. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00821
[21] Oberhagemann P, Chatot-Balandras C, Schäfer-Pregl R, Wegener D, Palomino C, Salamini F, Bonnel E, GebhardT C. A genetic analysis of quantitative resistance to late blight in potato: towards marker-assisted selection. Mol Breed, 1999, 5: 399-415.
doi: 10.1023/A:1009623212180
[22] Collins A, Milbourne D, RamsaY L, Meyer R, Chatot-Balandras C, Oberhagemann P, De Jong W, Gebhardt C, Bonnel E, Waugh R. QTL for field resistance to late blight in potato are strongly correlated with maturity and vigour. Mol Breed, 1999, 5: 387-398.
doi: 10.1023/A:1009601427062
[23] Bradshaw J E, Pande B, Bryan G J, Hackett C A, McLean K, Stewart H E, Waugh R. Interval mapping of quantitative trait loci for resistance to late blight [Phytophthora infestans (Mont.) de Bary], height and maturity in a tetraploid population of potato (Solanum tuberosum subsp. tuberosum). Genetics, 2004, 168: 983-995.
pmid: 15514069
[24] Visker M H P W, Heilersig H J B, Kodde L P, Van de Weg W E, Voorrips R E, Struik P C, Colon L T. Genetic linkage of QTLs for late blight resistance and foliage maturity type in six related potato progenies. Euphytica, 2005, 143: 189-199.
doi: 10.1007/s10681-005-3444-8
[25] Sliwka J, Jakuczun H, Lebecka R, Marczewski W, Gebhardt C, Zimnoch-Guzowska E. Tagging QTLs for late blight resistance and plant maturity from diploid wild relatives in a cultivated potato (Solanum tuberosum L.) background. Theor Appl Genet, 2007, 115: 101-112.
pmid: 17468842
[26] Li J, Wang Y, Wen G, Li G, Li Z, Zhang R, Ma S, Zhou J, Xie C. Mapping QTL underlying tuber starch content and plant maturity in tetraploid potato. Crop J, 2019, 7: 261-272.
doi: 10.1016/j.cj.2018.12.003
[27] 罗育, 黄春喜, 吴耀生, 蔡丹昭, 郭宏伟, 朱丹. 3种DNA分子标记法联合鉴别草珊瑚及其混伪品. 中草药, 2020, 51: 733-740.
Luo Y, Huang C X, Wu Y S, Cai D Z, Guo H W, Zhu D. Molecular authentication of Sarcandra glabra and its adulterants using three DNA molecular markers. Chin Trad Herbal Drugs, 2020, 51: 733-740. (in Chinese with English abstract)
[28] 黄艺宁. RAPD、ISSR分子标记联合鉴定毛木耳菌株的研究. 河南农业科学, 2020, 49(7): 118-125.
Huang Y N. RAPD and ISSR molecular identification of Auricularia cornea Ehrenb. J Henan Agric Sci, 2020, 49(7): 118-125. (in Chinese with English abstract)
[1] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[2] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[3] JIAN Hong-Ju, ZHANG Mei-Hua, SHANG Li-Na, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Screening candidate genes involved in potato tuber development using WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1658-1668.
[4] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[5] CHEN Lu, ZHOU Shu-Qian, LI Yong-Xin, CHEN Gang, LU Guo-Quan, YANG Hu-Qing. Identification and expression analysis of uncoupling protein gene family in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(7): 1683-1696.
[6] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[9] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[10] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[11] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[12] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[13] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[14] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[15] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!