Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1170-1183.doi: 10.3724/SP.J.1006.2023.22024

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of rice blast resistance in xian and geng germplasms by genome- wide association study

ZHOU Hai-Ping1(), ZHANG Fan2, CHEN Kai3, SHEN Cong-Cong3, ZHU Shuang-Bing3, QIU Xian-Jin4,*(), XU Jian-Long2,3,5,*()   

  1. 1Wenzhou Academy of Agricultural Sciences/South-Zhejiang Crop Breeding Key Laboratory, Wenzhou 325000, Zhejiang
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
    4College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    5Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China
  • Received:2022-04-24 Accepted:2022-09-05 Online:2023-05-12 Published:2022-09-15
  • Contact: *E-mail: xujianlong@caas.cn;E-mail: xjqiu216@yangtzeu.edu.cn
  • Supported by:
    Hainan Yazhou Bay Seed Laboratory(B21HJ0216);Wenzhou Agricultural New Variety Breeding Collaborative Project(2019ZX006)

Abstract:

Rice blast is one of the major fungal diseases that threaten rice production worldwide. To improve rice blast resistance, identifying blast resistant genes and introgressing them into elite rice varieties is an effective way. In this study, a panel of 212 xian accessions and 235 geng accessions collected worldwide were evaluated for resistance against five blast isolates at seedling stage. All of them showed large variations in resistance against five isolates, and 8 xian and 12 geng accessions were detected to present resistance to all five blast isolates. Using genome-wide association strategy, a total of 43 QTLs were identified for resistance to five isolates in mix population (xian subpopulation and geng subpopulation), including 9, 4, 14, 14, and 2 QTLs for GD00-193, GD08-T19, GD17-CQ16, HB1708, and HLJ13-856, respectively. Among them, 12 resistant QTLs were detected only in xian rice sub-population, 7 only detected in geng rice sub-population, and 1 simultaneously detected in both sub-populations, indicating that blast resistance was generally better in xian than in geng rice, and there was obvious differentiation in blast resistance between xian and geng rice. A total of 11 QTLs affected resistance to two or more trains or were simultaneously identified in two or more populations, and 23 candidate genes were identified by candidate interval association analysis and haplotype analysis. Different resistance candidate genes had different frequencies in xian and geng populations. The results provide germplasm resources and favorable genes information for molecular improvement of blast resistance in rice varieties and the breeding and utilization strategies of different resistance genes.

Key words: blast resistance, germplasm, genome-wide association study, quantitative trait locus (QTLs), favorable allele

Table 1

Resistance of germplasm to five blast isolates at seedling stage in the worldwide germplasms"

稻瘟病菌株
Blast isolate
混合群体 Mix population 籼稻 Xian rice 粳稻 Geng rice P a
平均值±
标准差
Mean ± SD
变幅
Range
变异系数
CV (%)
平均值±
标准差
Mean ± SD
变幅
Range
变异系数
CV (%)
平均值±
标准差
Mean ± SD
变幅
Range
变异系数
CV (%)
GD00-193 4.13±1.98 1-8 47.96 4.61±1.97 1-8 42.75 3.69±1.98 1-8 53.64 1.51×10-6
GD08-T19 2.87±1.33 1-7 46.29 2.87±1.39 1-7 48.39 2.83±1.23 1-6 43.43 0.76
GD17-CQ16 4.58±2.02 1-8 44.18 4.72±1.98 1-8 42.07 4.35±2.05 1-8 47.10 0.058
HB1708 4.21±2.00 1-7 47.48 4.41±1.93 1-7 43.90 4.08±1.96 1-7 48.17 0.076
HLJ13-856 3.27±1.42 1-7 43.39 3.02±1.35 1-6 44.66 3.52±1.45 1-7 41.26 2.02×10-4

Table 2

Correlation coefficients of blast resistances against five isolates in mix population, xian and geng subpopulations"

GD00-193 GD08-T19 GD17-CQ16 HB1708
GD08-T19 0.09
0.08
0.11
GD17-CQ16 0.49** 0.08
0.46** 0.09
0.51** 0.15*
HB1708 0.62** 0.12* 0.46**
0.65** 0.09 0.45**
0.60** 0.11 0.49**
HLJ13-856 -0.03 0.07 0.01 0.07
-0.04 0.08 0.05 -0.06
0.16* 0.08 0.09 0.21**

Table 3

QTLs identified against GD00-193 and GD17-CQ16 in the three populations"

稻瘟病菌株
Blast isolate
QTL 混合群体/Mix population 籼稻 Xian rice 粳稻 Geng rice 前人克隆的基因
Previously cloned genes
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
GD00-193 qGD001-1 1 1,552,373 4.69E-07 4.48
qGD001-2 1 29,020,467 1.48E-08 17.94
qGD001-3 1 33,145,916 9.94E-08 11.23 Pish/ Pi37 [27,28]
qGD003 3 16,012,660 1.68E-06 2.78
qGD004 4 34,840,786 2.41E-06 1.72
qGD006 6 10,380,192 3.32E-06 13.49 Piz-t/Pi2/Pi9/Pi50/Pi-gm [23]
qGD008 8 17,498,650 2.32E-07 15.86 8 17,465,932 3.67E-06 15.90
qGD009 9 10,969,346 3.77E-07 2.89
qGD011 11 15,664,938 2.18E-06 13.78
GD17-CQ16 qGD171-1 1 1,302,057 3.67E-07 19.43
qGD171-2 1 1,568,573 8.78E-10 6.25
qGD171-3 1 28,986,912 1.35E-07 9.70 pitp(t) [26]
qGD173-1 3 14,041,426 2.36E-07 5.97
qGD173-2 3 25,260,390 6.15E-07 7.27
qGD176-1 6 11,067,689 5.83E-08 9.18
qGD176-2 6 22,491,478 1.68E-06 3.58
qGD177 7 4,852,217 1.34E-06 4.93 7 4,852,217 3.96E-06 4.23 qDI14-7 [31]
qGD178 8 20,759,700 7.36E-09 3.56 GF14c [39]
qGD179 9 10,755,714 2.91E-07 9.00
qGD1710 10 19,198,827 8.20E-08 3.03
qGD1711-1 11 7,018,865 7.34E-07 1.95 11 7,086,996 1.93E-06 10.64 Pia/RGA4/Os11gRGA4 /RGA5/Os11gRGA5 [32,33]
qGD1711-2 11 27,821,721 1.63E-08 6.76 11 27,724,695 6.15E-06 7.79 11 27,821,721 2.36E-08 3.69 Pik [34]
qGD1712 12 17,657,476 1.75E-07 7.32

Fig. S1

Manhattan plots and QQ plots of markers associated with five blast strains."

Table 4

QTLs identified against GD08-T19, HB1708, and HLJ13-856 in the three populations."

稻瘟病菌株
Blast isolate
QTL 混合群体/Mix population 籼稻/Xian 粳稻/Geng 前人克隆的基因
Previously cloned genes
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
染色体
Chr.
峰值SNP
Peak SNP
P
P-value
贡献率
R2 (%)
GD08-T19 qGD086 6 6,535,818 2.41E-06 12.44 Pi27(t) [30]
qGD0811 11 22,027,592 1.14E-06 9.24
qGD0812-1 12 10,118,034 4.36E-06 8.19
qGD0812-2 12 12,070,327 7.84E-07 5.89
HB1708 qHB171-1 1 1,523,579 1.12E-06 3.39
qHB171-2 1 2,388,489 2.94E-06 3.70 Pit [25]
qHB171-3 1 33,005,596 1.32E-10 1.08 1 33,092,697 1.52E-07 1.09 Pish/ Pi37 [27,28]
qHB173 3 10,681,409 3.64E-06 10.87
qHB174 4 17,870,237 4.80E-07 17.50
qHB175-1 5 3,738,799 2.47E-06 7.80 Pi25(t) [30]
qHB175-2 5 28,480,050 4.05E-07 4.30
qHB176-1 6 10,425,293 8.48E-08 4.22 6 10,451,191 1.60E-06 12.64 Piz-t/Pi2/Pi9/Pi50/Pi-gm [23]
qHB176-2 6 22,699,279 1.41E-07 8.36
qHB177 7 4,833,062 1.18E-08 10.94 qDI14-7 [31]
qHB178-1 8 6,463,393 2.81E-11 10.82 8 6,463,393 4.42E-11 32.11
qHB178-2 8 20,852,827 2.77E-06 1.81 GF14c [39]
qHB1710 10 5,633,234 2.00E-07 8.35
qHB1711 11 20,645,223 1.72E-07 10.16
HLJ13-856 qHL132 2 35,127,933 1.26E-07 18.93 Pib [29]
qHL1311 11 7,037,500 1.42E-06 2.02 Pia/RGA4/Os11gRGA4 /RGA5/Os11gRGA5 [32,33]

Fig. 1

Candidate interval association and haplotype analysis of seven single candidate loci Different lowercase letter represents significantly difference at P < 0.01 in haplotype analysis."

Fig. 2

Candidate interval association and haplotype analysis of four multiple candidate locus Different lowercase letter represents significantly difference at P < 0.01 in haplotype analysis."

[1] 杨义强, 朱林峰, 李晓芳, 付杰, 黄道强, 邱先进, 周少川, 王重荣. 抗稻瘟病基因Pi2的基因特异性KASP标记开发与应用. 植物遗传资源学报, 2021, 22: 1314-1321.
Yang Y Q, Zhu L F, Li X F, Fu J, Huang D Q, Qiu X J, Zhou S C, Wang C R. Development and application of KASP marker specific for rice blast resistance Pi2 gene. J Plant Genet Resour, 2021, 22: 1314-1321. (in Chinese with English abstract)
[2] 杨小林, 施仕胜, 张舒, 吕亮, 喻大召. 湖北省稻瘟病重发区病菌群体致病性分化的研究. 湖北农业科学, 2016, 55: 4169-4171.
Yang X L, Shi S S, Zhang S, Lyu L, Yu D Z. Population pathotype of Magnaporthe aryzae in rice blast epidemic areas of Hubei province. Hubei Agric Sci, 2016, 55: 4169-4171. (in Chinese with English abstract)
[3] 钟宝玉, 黄德超, 朱小源, 陈玉托, 邹寿发, 杨伟新, 赖新红. 近十年广东稻瘟病菌生理小种变化分析. 仲恺农业工程学院学报, 2018, 31: 24-29.
Zhong B Y, Huang D C, Zhu X Y, Chen Y T, Zou S F, Yang W X, Lai X H. Analysis of physiological races of Magnaporthe oryzae in Fuangdong during recent decade. J Zhongkai Univ Agric Eng, 2018, 31: 24-29. (in Chinese with English abstract)
[4] Khan M A I, Latif M A, Khalequzaman M, Tomita A, Ali M A, Fukuta Y. Genetic variation in resistance to blast (Pyricularia oryzae Cavara) in rice (Oryza sativa L.) germplasms of Bangladesh. Breed Sci, 2017, 67: 493-499.
doi: 10.1270/jsbbs.17039
[5] Ashikani S, Rafii M Y, Rahim H A, Latif M A. Genetic dissection of rice blast resistance by QTL mapping approach using an F3 population. Mol Biol Rep, 2013, 40: 2503-2515.
doi: 10.1007/s11033-012-2331-3
[6] Zenbayashi K, Ashizawa T, Tani T, Koizumi S. Mapping of the QTL (quantitative trait locus) conferring prtial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet, 2002, 104: 547-552.
pmid: 12582657
[7] 杨德卫, 王莫, 韩立波, 唐定中, 李生平. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展, 植物学报, 2019, 54: 265-276.
doi: 10.11983/CBB18194
Yang D W, Wang M, Han L B, Tang D Z, Li S P. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi. Chin Bull Bot, 2019, 54: 265-276. (in Chinese with English abstract)
[8] Mgonja E M, Blimponya E G, Kang H X, Bellizzi M, Park C H, Li Y, Mabagala R, Sneller C, Correll J, Opiyo S, Talbot N J, Mitchell T, Wang G L. Genome-wide association mapping of rice resistance genes against Magnaporthe oryzae isolates from four African countries. Phytopathology, 2016, 106: 1359-1365
doi: 10.1094/PHYTO-01-16-0028-R
[9] Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356.
doi: 10.1007/s11032-006-9066-6
[10] Huang X H, Wei Z H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, L u Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967.
doi: 10.1038/ng.695 pmid: 20972439
[11] Qiu X J, Yang J, Zhang F, Niu Y N, Zhao X Q, Shen C C, Chen K, Teng S, Xu J L. Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study. Crop J, 2021, 9: 1470-1480.
doi: 10.1016/j.cj.2020.12.010
[12] Wang C H, Yang Y L, Yuan X P, Xu Q, Feng Y, Yu H Y, Wang Y P, Wei X H. Genome-wide association study of blast resistance in indica rice. BMC Plant Biol, 2014, 14: 311.
doi: 10.1186/s12870-014-0311-6
[13] Kang H X, Wang Y, Peng S S, Zhang Y L, Xiao Y H, Wang D, Qu S H, Li Z Q, Yan S Y, Wang Z L, Liu W D, Ning Y S, Korniliev P, Leung H, Mezey J, McCouch S R, Wang G L. Dissection of genetic architecture of rice resistance to blast fungus Magnaorthe oryzae. Mol Plant Pathol, 2016, 17: 959-972.
doi: 10.1111/mpp.12340
[14] Raboin L M, Ballini E, Tharreau D, Ramanantsoanirina A, Frouin J, Courtois B, Ahmadi N. Association mapping of resistance to rice blast in upland field conditions. Rice, 2016, 9: 59.
doi: 10.1186/s12284-016-0131-4
[15] Mgonja E M, Park C H, Kang H X, Blimponya E G, Opiyo S, Bellizzi M, Mutiga S K, Ganeshan V D, Mabagala R, Sneller C, Correll J, Zhou B, Talbot N J, Mitchell T K, Wang G L. Genotyping-by-sequencing-based genetic analysis of African rice cultivars and association mapping of blast resistance genes against Magnaporthe oryzae populations in Africa. Phytopathology, 2017, 107: 1039-1046.
doi: 10.1094/PHYTO-12-16-0421-R
[16] Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal S J, Ning Y S, Wang R Y, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AirPiz-t targets the RING E3 Ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24: 4748-4762
doi: 10.1105/tpc.112.105429
[17] 李旭升, 向小娇, 申聪聪, 杨隆维, 陈凯, 王小文, 邱先进, 朱小源, 邢丹英, 徐建龙. 水稻重测序核心种质资源的稻瘟病抗性鉴定与评价. 作物学报, 2017, 43: 795-810.
Li X S, Xiang X J, Shen C C, Yang L W, Chen K, Wang X W, Qiu X J, Zhu X Y, Xing D Y, Xu J L. Identification and evaluation of blast resistance for resequenced rice core collections. Acta Agron Sin, 2017, 43: 795-810. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00795
[18] Qiu X J, Chen K, Lyu W K, Ou X X, Zhu Y J, Xing D Y, Yang L W, Fan F J, Yang J, Xu J L, Zheng T Q, Li Z K. Examining two sets of introgression line reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theor Appl Genet, 2017, 130: 951-967.
doi: 10.1007/s00122-017-2862-z
[19] Qiu X J, Pang Y L, Yuan Z Y, Xing D Y, Xu J L, Dingkuhn M, Li Z K, Ye G Y. Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm. PLoS One, 2015, 10: e0145577.
[20] McCouch S R, Wright M H, Tung C W, Maron L G, McNally K L, Fitzgerald M, Singh N, DeClerck G, Agosto-Perez F, Korniliev P, Greenberg A J, Naredo M B N, Mercado A M Q, Harrington S E, Shi Y, Branchini D A, Kuser-Falcao P R, Leung H, Ebana K, Yano M, Eizenga G, McClung A, Mezey J. Open access resources for genome-wide association mapping in rice. Nat Commun, 2016, 7: 10532.
doi: 10.1038/ncomms10532 pmid: 26842267
[21] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901
[22] 杨楠, 陈恺茜, 杨勤忠, 唐文强, 张文龙, 何平, 杨暮英, 李勇成, 韩光煜. 云南地方籼粳稻稻瘟病抗性和农艺性状差异分析及优异稻种筛选. 南方农业学报, 2021, 52: 2680-2689.
Yang N, Chen K X, Yang Q Z, Tang W Q, Zhang W L, He P, Yang M Y, Li Y C, Han G Y. Blast resistance and agronomic traits of local Indica rice and Japonica rice in Yunnan and screening of elite rice varieties. J South Agric, 2021, 52: 2680-2689. (in Chinese with English abstract)
[23] Deng Y W, Zhai K R, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J, Mao B Z, Wang E T, Xie H A, Thareau D, He Z H. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355: 962-965.
doi: 10.1126/science.aai8898 pmid: 28154240
[24] Jiang J F, Mou T M, Yu H H, Zhou F S. Molecular breeding of thermos-sensitive genic male sterile (TGMS) lines of rice for blast resistance using Pi2 gene. Rice, 2015, 8: 11.
doi: 10.1186/s12284-015-0048-3
[25] Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413-425.
doi: 10.1111/tpj.2009.57.issue-3
[26] Barman S R, Gowda M, Venu R C, Chattoo B B. Identification of a major resistance gene in the rice cultivar “Tetep”. Plant Breed, 2004, 123: 300-302.
doi: 10.1111/pbr.2004.123.issue-3
[27] Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10: 175.
doi: 10.1186/1471-2229-10-175 pmid: 20707904
[28] Lin F, Chen S, Que Z Q, Wang L, Liu X Q, Pan Q H. The blast resistance gene Pi37 encodes a nucleotide biding site-leucine-rich repeat protein and is a member of a resistance gene cluster on chromosome 1. Genetics, 2007, 177: 1871-1880.
doi: 10.1534/genetics.107.080648
[29] Wang Z X, Yano M, Yamanoouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64.
doi: 10.1046/j.1365-313x.1999.00498.x pmid: 10417726
[30] Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem J L. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor App Genet, 2003, 106: 794-803.
doi: 10.1007/s00122-002-1088-9
[31] Guo L Y, Zhao H W, Wang J G, Liu H L, Zheng H L, Sun J, Yang L M, Sha H J, Zou D T. Dissection of QTLs alleles for blast resistance based on linkage and linkage disequilibrium mapping in japonica rice seedlings. Australasian Plant Pathol, 2016, 45: 209-218.
doi: 10.1007/s13313-016-0405-8
[32] Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 2013, 25: 1463-1481.
doi: 10.1105/tpc.112.107201
[33] Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J, 2011, 66: 467-479.
doi: 10.1111/j.1365-313X.2011.04502.x
[34] Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 25: 1047-1055.
[35] Zhang D D, Liu M X, Tang M Z, Dong B, Wu D X, Zhang Z G. Repression of microRNA by silencing of OsDCL1activities the basal resistance to Magnaporthe oryzae in rice. Plant Sci, 2015, 237: 24-32.
doi: 10.1016/j.plantsci.2015.05.002
[36] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L T, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 85: 11308-11313.
[37] Lee J R, Park S C, Kim M H, Jung J H, Shin M R, Lee D H, Cheon M G, Park Y, Hahm K S, Lee S Y. Antifungal activity of rice Rex5p, a receptor for peroxisomal matrix proteins. Biochem Biophy Res Commun, 2007, 359: 941-946.
doi: 10.1016/j.bbrc.2007.05.210
[38] You X M, Zhu S S, Zhang W W, Zhang J, Wang C M, Jing R N, Chen W W, Wu H M, Cai Y, Feng Z M, Hu J L, Yan H G, Kong F, Zhang H, Zheng M, Ren Y L, Lin Q B, Cheng Z J, Zhang X, Lei C L, Jiang L, Wang H Y, Wan J M. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytol, 2019, 224: 712-724.
doi: 10.1111/nph.v224.2
[39] Lu T, Diao Z J, Yang D W, Wang X, Zheng X X, Xiang X Q, Xiao Y P, Chen Z W, Wang W, Wu Y K, Tang D Z, Li S P. The 14-3-3 protein GF41c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice. Plant Cell Environ, 2022, 45: 1065-1081.
doi: 10.1111/pce.v45.4
[40] Mei C S, Qi M, Sheng G Y, Yang Y N. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interat, 2006, 19: 1127-1137.
[41] Ke Y G, Yuan M, Liu H B, Hui S G, Qin X F, Chen J, Zhang Q L, Li X H, Xiao J H, Zhang Q F, Wang S P. The versatile functions of OsALDH2B1 provide a genic basis for growth-defense trade-offs in rice. Proc Natl Acad Sci USA, 2020, 11: 3867-3873.
[42] Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sunano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant-Microbe Interact, 2009, 22: 820-829.
doi: 10.1094/MPMI-22-7-0820
[1] ZHANG Jing, GAO Wen-Bo, YAN Lin, ZHANG Zong-Wen, ZHOU Hai-Tao, WU Bin. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1551-1561.
[2] MA Juan, ZHU Wei-Hong, LIU Jing-Bao, YU Ting, HUANG Lu, GUO Guo-Jun. Multi-locus genome-wide association study and prediction for general combining ability of maize ear length [J]. Acta Agronomica Sinica, 2023, 49(6): 1562-1572.
[3] YANG Xiao-Ming, CHENG Xu-Zhen, ZHU Zhen-Dong, LIU Chang-Yan, CHEN Xin. Advances in germplasm innovation and genetic improvement of food legumes resistant to bruchid [J]. Acta Agronomica Sinica, 2023, 49(5): 1153-1169.
[4] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[5] SUN Xian-Jun, JIANG Qi-Yan, HU Zheng, LI Hong-Bo, PANG Bin-Shuang, ZHANG Feng-Ting, ZHANG Sheng-Quan, ZHANG Hui. Identification and evaluation of wheat germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 1132-1139.
[6] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[7] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[8] DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167.
[9] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[10] XIA Xiu-Zhong, ZHANG Zong-Qiong, YANG Xing-Hai, ZHUANG Jie, ZENG Yu, DENG Guo-Fu, SONG Guo-Xian, HUANG Yu-Xiao, NONG Bao-Xuang, LI Dan-Ting. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China [J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015.
[11] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[12] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[13] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[14] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[15] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .