Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (5): 1153-1169.doi: 10.3724/SP.J.1006.2023.24169

• REVIEW •     Next Articles

Advances in germplasm innovation and genetic improvement of food legumes resistant to bruchid

YANG Xiao-Ming1(), CHENG Xu-Zhen2,*(), ZHU Zhen-Dong2, LIU Chang-Yan3, CHEN Xin4,*()   

  1. 1Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
    4Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2022-07-21 Accepted:2022-11-03 Online:2023-05-12 Published:2022-11-14
  • Contact: *E-mail: chengxuzhen@caas.cn;E-mail: cx@jaas.ac.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-08);National Natural Science Foundation of China(32260483)

Abstract:

Food legumes play a key role in maintaining soil sustainability, developing agroecosystem diversification, and improving human nutrition. However, bruchid (Coleoptera: Bruchidae) is a notorious pest that can devastate the entire seed and cause severe loss in pulses storage. To explore the potential germplasm resources and breed legume varieties resistant to bruchids, a few elite germplasms and genes resistant to bruchids were identified and finely mapped. Lots of studies have been carried out and made some progress on resistance mechanisms, genetic analysis, genetic mapping, gene cloning, and molecular markers of bruchid resistance in pulses. In this paper, studies on pulses germplasm exploring and evaluating for resistance to bruchids, resistance inheritance, discovery and mapping of resistance genes, and the breeding of resistant cultivars were reviewed. Several important directions for future research have prospected. Here, the main objective is to supply useful information for exploring potential germplasm and promoting the genetic improvement of food legumes with resistance to bruchids in China.

Key words: food legumes, germplasm exploitation, bruchid, resistance breeding, molecular markers

Fig. 1

Bruchids of stored food legumes A: bean weevil (♀); B: bean weevil (♂); C: pea weevil (♂); D: pea weevil (♀)."

Fig. 2

Infestations of bean weevil to dry seeds of food legumes at storage stage"

[43] Tang Y S, Jiang Y H, Zheng Y K. Screening of resistance to bean weevil (Callosobruchus chinensis) of faba beans and peas. Yunnan Agric Sci Techol, 2014, (5): 20-23 (in Chinese with English abstract).
[44] Jegadeesan S. Screening for resistance against bruchid (Callasobruchus maculatus) damage in blackgram. Indian J Agric Sci, 2020, 90: 1110-1114.
[45] Edwards O, Singh K B. Resistance to insect pests: what do legumes have to offer. Euphytica, 2006, 147: 273-285.
doi: 10.1007/s10681-006-3608-1
[46] Douglas A E. Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol, 2018, 69: 637-660.
doi: 10.1146/annurev-arplant-042817-040248 pmid: 29144774
[47] Hamidi R, Taupin P, Frérot B. Physiological synchrony of the broad bean weevil, Bruchus rufimanus Boh., to the host plant phenology, Vicia faba L. Front Insect Sci, 2021, 1: 707323.
doi: 10.3389/finsc.2021.707323
[48] 张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, 周俭民. 植物免疫研究与抗病虫绿色防控: 进展、机遇与挑战. 中国科学: 生命科学, 2019, 49: 1479-1507.
Zhang J, Dong S M, Wang W, Zhao J H, Chen X W, Guo H S, He G C, He Z H, Kang Z S, Li Y, Peng Y L, Wang G L, Zhou X P, Wang Y C, Zhou J M. Plant immunity and sustainable control of pests in China: advances, opportunities and challenges. Sci Sin Vitae, 2019, 49: 1479-1507. (in Chinese with English abstract)
[49] Gemechu K, Endashaw B, Emana G, Muhammad I, Tebkew D, Bayeh M. Breeding food legumes for resistance to storage insect pests: potential and limitations. Sustainability (Basel), 2011, 3: 1399-1415.
doi: 10.3390/su3091399
[50] Belete T. Defense mechanisms of plants to insect pests: from morphological to biochemical approach. Trends Technol Sci Res, 2018, 2: 555584.
[51] War A R, Murugesan S, Boddepalli V N, Srinivasan R, Nair R M. Mechanism of resistance in mungbean [Vigna radiata (L.) R. Wilczek var. radiata] to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). Front Plant Sci, 2017, 8: 1031.
doi: 10.3389/fpls.2017.01031
[52] Chakraborty S, Chaudhuri N, Senapati S K. Correlation between seed parameters and relative susceptibility of mung bean genotypes (Vigna radiata L.) to Callosobruchus chinensis L. during storage. Annls Plant Protect Sci, 2004, 12: 48-50.
[53] Lambrides C J, Imrie B C. Susceptibility of mungbean varieties to the bruchid species Callosobruchus maculatus (F.), C. phaseoli (Gyll.), C. chinensis (L.), and Acanthoscelides obtectus (Say.) (Coleoptera: Chrysomelidae). Aust J Agric Res, 2000, 51: 85-90.
doi: 10.1071/AR99051
[54] Nisar M S, Haq I U, Ramzan H, Aljedani D M, Qasim M, Islam W, Khan K A. Screening of different legumes for the developmental preference of Callosobruchus maculatus (Bruchidae: Coleoptera). Int J Trop Insect Sci, 2021, 41: 3129-3136.
doi: 10.1007/s42690-021-00507-6
[55] Mitchell C, Brennan R M, Graham J, Karley A J. Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci, 2016, 7: 1132.
doi: 10.3389/fpls.2016.01132 pmid: 27524994
[56] Sadeghi A, Van Damme E J, Peumans W J, Smagghe G. Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition. Phytochemistry, 2006, 67: 2078-2084.
pmid: 16887156
[57] Haq S K, Atif S M, Khan R H. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys, 2004, 431: 145-159.
doi: 10.1016/j.abb.2004.07.022 pmid: 15464737
[58] Maczó A, Cucu T, De Meulenaer B, Gelencsér É. Comparison of the α-amylase inhibitor-1 from common beans and transgenic pea expressing the bean α-amylase inhibitor-1 by means of LC-TOF-MS. Food Res Int, 2015, 76: 86-91.
doi: 10.1016/j.foodres.2014.12.025
[59] Sugawara F, Ishimoto M, Le-Van N, Koshino H, Uzawa J, Yoshida S, Kitamura K. Insecticidal peptide from mungbean:  a resistant factor against infestation with azuki Bean weevil. J Agric Food Chem, 1996, 44: 3360-3364.
doi: 10.1021/jf960166c
[60] Macedo M L R, Da S. Andrade L B, Moraes R A, Xavier-Filho J. Vicilin variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus). Comp Biochem Physiol, 1993, 105: 89-94.
[61] Domingues S J, Melo F R, Aguiar J M, Affonso A G, Giuli J S, Rose J L, Sales M P, Machado L F, Azevedo C R, Da Cunha P C, Uchoa A F, de Oliveira A E A, Xavier-Filho J, Fernandes K V. Resistance of Vigna unguiculata (cowpea) seeds to Callosobruchus maculatus is restricted to cotyledonary tissues. J Sci Food Agric, 2006, 86: 1977-1985.
doi: 10.1002/(ISSN)1097-0010
[62] Chen K, Lin C, Kuan C, Sung H, Chen C. A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J Agric Food Chem, 2003, 51: 530.
doi: 10.1021/jf0211635
[63] Lin C, Chen C S, Horng S B. Characterization of resistance to Callosobruchus maculatus (Coleoptera: Bruchidae) in mungbean variety VC6089A and its resistance-associated protein VrD1. J Econ Entomol, 2005, 98: 1369-1373.
doi: 10.1603/0022-0493-98.4.1369
[64] Chen J, Chen G, Hsu H, Li S, Chen C. Cloning and functional expression of a mungbean defensin VrD1 in Pichia pastoris. J Agric Food Chem, 2004, 52: 2256-2261.
doi: 10.1021/jf030662i
[65] Birch A N E, Fellows L E, Evans S V, Doherty K. Para- aminophenylalanine in vigna: possible taxonomic and ecological significance as a seed defense against bruchids. Phytochemistry, 1986, 25: 2745-2749.
doi: 10.1016/S0031-9422(00)83733-4
[66] Zhang Q, Yan Q, Yuan X, Lin Y, Chen J, Wu R, Xue C, Zhu Y, Chen X. Two polygalacturonase-inhibiting proteins (VrPGIP) of Vigna radiata confer resistance to bruchids (Callosobruchus spp.). J Plant Physiol, 2021, 258/259: 153376.
doi: 10.1016/j.jplph.2021.153376
[67] 张勤雪, 陈景斌, 袁星星, 吴然然, 闫强, 朱月林, 薛晨晨, 陈新. 绿豆抗豆象研究进展. 湖北农业科学, 2020, 59(11): 10-13.
Zhang Q X, Chen J B, Yuan X X, Wu R R, Yan Q, Zhu Y L, Xue C C, Chen X. Research progress of bean weevil resistance in mungbean. Hubei Agric Sci, 2020, 59(11): 10-13. (in Chinese with English abstract)
[68] Osborn T C, Alexander D C, Samuel S M S, Cardona C, Bliss F A. Insecticidal activity and lectin homology of arcelin seed protein. Science, 1988, 240: 207-210.
pmid: 17800917
[69] Osborn T C, Burow M, Bliss F A. Purification and characterization of arcelin seed protein from common bean. Plant Physiol, 1988, 86: 399-405.
doi: 10.1104/pp.86.2.399 pmid: 16665920
[1] 程须珍. 中国现代农业产业可持续发展战略研究(食用豆分册). 北京: 中国农业出版社, 2020. pp 24-27.
Cheng X Z. Food Legumes:National Sustainable Development Strategy on Chinese Modern Agricultural Industry. Beijing: China Agriculture Press, 2020. pp 24-27. (in Chinese)
[2] Meena R S, Lal R. Legumes and sustainable use of soils. In: Meena R S, Das A, Yadav G S, Lal R, eds. Legumes for Soil Health and Sustainable Management. Singapore: Springer Singapore, 2018. pp 1-31.
[3] Food and Agriculture Organization of the United Nations FAO. Definition and classification of commodities, pulses and derived products. http://www.fao.org/waicent/faoinfo/economic/faodef/fdef04e.htm#4.01, Retrieved 1 May 2022.
[4] FAOSTAT. Value of Agricultural Production, Food and Agricultural Organization Statistical Database. Available online: https://www.fao.org/faostat/en/#data/QV, accessed: 1 May. 2022. .
[5] Credland P F. Biotype variation and host change in bruchids:causes and effects in the evolution of bruchid pests. In: Fujii K O I, Gatehouse A, Johnson C D, Mitchel R, Yoshida T, eds. Bruchids and Legumes: Economics, Ecology and Coevolution. Proceedings of the Second International Symposium on Bruchids and Legumes (ISBL-2). (ISBLISBL-2). Okayama, 1990. pp 271-287.
[6] Aidbhavi R, Mohan K, Kodandaram M. Diversity, abundance and infestation of bruchids on stored pulses in Karnataka. Mysore J Agric Sci, 2022, 56: 297-307.
[7] 段灿星, 朱振东, 孙素丽, 王晓鸣. 中国食用豆抗性育种研究进展. 中国农业科学, 2013, 46: 4633-4645.
doi: 10.3864/j.issn.0578-1752.2013.22.001
Duan C X, Zhu Z D, Sun S L, Wang X M. Advances in study on food legumes resistance breeding in China. Sci Agric Sin, 2013, 46: 4633-4645. (in Chinese with English abstract)
[8] Jagdish J, Bhandi S, Deshmukh S, Pallipparambil G, Mishra S, Arora N. Identification, evaluation and utilization of resistance to insect pests in grain legumes: advancement and restrictions. In: Saxena K B, Saxena R K, Varshney R K, eds. Genetic Enhancement in Major Food Legumes. Patancheru, Telangana, India: Springer International Publishing, 2021. pp 197-230.
[70] Fabre C, Causse H, Mourey L, Koninkx J, Rivière M, Hendriks H, Puzo G, Samama J P, Rougé P. Characterization and sugar- binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochem J, 1998, 329: 551-560.
doi: 10.1042/bj3290551
[71] 曾任森, 苏贻娟, 叶茂, 谢丽君, 陈敏, 宋圆圆. 植物的诱导抗性及生化机理. 华南农业大学学报, 2008, 29(2): 1-6.
Zeng R S, Su Y J, Ye M, Xie L J, Chen M, Song Y Y. Plant induced defense and biochemical mechanisms. J South China Agric Univ, 2008, 29(2): 1-6. (in Chinese with English abstract)
[72] Poelman E H. From induced resistance to defence in plant-insect interactions. Entomol Exp Appl, 2015, 157: 11-17.
doi: 10.1111/eea.2015.157.issue-1
[73] Mauch-Mani B, Baccelli I, Luna Diez E, Flors V. Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol, 2017, 68: 485-512.
doi: 10.1146/annurev-arplant-042916-041132 pmid: 28226238
[74] Doss R P, Proebsting W M, Potter S W, Clement S L. Response of Np mutant of pea (Pisum sativum L.) to pea weevil (Bruchus pisorum L.) oviposition and extracts. J Chem Ecol, 1995, 21: 97-106.
doi: 10.1007/BF02033665 pmid: 24233570
[75] Doss R P, Oliver J E, Proebsting W M, Potter S W, Kuy S, Clement S L, Williamson R T, Carney J R, DeVilbiss E D. Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proc Natl Acad Sci USA, 2000, 97: 6218-6223.
pmid: 10811915
[76] Aznar-Fernández T, Rubiales D. Flower and pod source influence on pea weevil (Bruchus pisorum) oviposition capacity and preference. Front Plant Sci, 2019, 10: 491.
doi: 10.3389/fpls.2019.00491 pmid: 31068956
[77] Underwood N, Morris W, Gross K, Lockwood I J. Induced resistance to Mexican bean beetles in soybean: variation among genotypes and lack of correlation with constitutive resistance. Oecologia, 2000, 122: 83-89.
doi: 10.1007/PL00008839 pmid: 28307960
[78] 王昶, 贺春贵, 张丽娟, 杨晓明. 豌豆抗豌豆象育种及其综合防治研究进展. 草业学报, 2017, 26(7): 213-224.
[9] Mishra S K, Macedo M L R, Panda S K, Panigrahi J. Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties. Ann Appl Biol, 2018, 172: 4-19.
doi: 10.1111/aab.2018.172.issue-1
[10] 田静, 程须珍, 范保杰, 王丽侠, 刘建军, 刘长友, 王素华, 曹志敏, 陈红霖, 王彦, 王珅. 我国绿豆品种现状及发展趋势. 作物杂志, 2021, (6): 15-21.
Tian J, Cheng X Z, Fan B J, Wang L X, Liu J J, Liu C Y, Wang S H, Cao Z M, Chen H L, Wang Y, Wang K. Present situation and prospect of mung bean variety improvement in China. Crops, 2021, (6): 15-21. (in Chinese with English abstract)
[11] Kingsolver J, Barriga-Tuñón J, Romero-Napoles J, Thomas M. Bruchidae of Chile (Insecta: Coleoptera). Insect Mund 2017, 542: 1-106.
[12] Southgate B J. Biology of the bruchidae. Annu Rev Entomol, 1979, 24: 449-473.
doi: 10.1146/ento.1979.24.issue-1
[13] Kaplin V G. Distribution and biology of invasive species of pea weevil (Bruchus pisorum). Russ J Biol Invas, 2020, 11: 21-30.
[14] 陈新, 魏春艳, 任炳忠, 丁旭. 豆象属昆虫检疫重要性概述. 植物检疫, 2013, 27(1): 63-67.
Chen X, Wei C Y, Ren B Z, Ding X. Review of phytosanitary significance of Bruchus spp. Plant Quarant, 2013, 27(1): 63-67. (in Chinese with English abstract)
[15] Larson A O, Brindley T A, Hinman F G. Biology of the pea weevil in the Pacific Northwest with suggestions for its control on seed peas. Tech Bull, no. 599, U S Dept Agric, 1938, pp 1-48
[16] Reddy G V P, Sharma A, Gadi R L. Biology, ecology, and management of the pea weevil (Coleoptera: Chrysomelidae). Ann Entomol Soc Am, 2018, 111: 161-171.
doi: 10.1093/aesa/sax078
[78] Wang C, He C G, Zhang L J, Yang X M. Advances in breeding of pea (Pisum sativum) with resistance to pea weevil (Bruchus pisorum) and its integrated management. Acta Pratac Sin, 2017, 26(7): 213-224. (in Chinese with English abstract)
[79] Doria R C, Raros R S. Varietal resistance of mungo to the bean weevil, Callosobruchus chinensis (Linn.) and some characteristics of field infestation. Philipp Entomol, 1973, 2: 399-408.
[80] Fujii K, Miyazaki S. Infestation resistance of wild legumes (Vigna sublobata) to azuki bean weevil, Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) and its relationship with cytogenetic classification. Appl Entomol Zool, 1987, 2: 229-230.
[81] Fujii K, Ishimoto M, Kitamura K. Patterns of resistance to bean weevils (Bruchidae) in Vigna radiata-mungo-sublobata complex inform the breeding of new resistant varieties. Appl Entomol Zool, 1989, 24: 126.
doi: 10.1303/aez.24.126
[82] Lambrides C J, Godwin I D. Mungbean, pulses, sugar and tuber crops. In: Kole C, ed. Genome Mapping and Molecular Breeding in Plants Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. pp 69-90.
[83] Talekar N S, Lin C P. Characterization of Callosobruchus chinensis (Coleoptera: Bruchidae) resistance in mungbean. J Econ Entomol, 1992, 85: 1150-1153.
doi: 10.1093/jee/85.4.1150
[84] Somta P, Somta C, Tomooka N, Ooi P A C, Vaughan D A, Srinives P. Characterization of new sources of mungbean (Vigna radiata (L.) Wilczek) resistance to bruchids, Callosobruchus spp. (Coleoptera: Bruchidae). J Stored Prod Res, 2008, 44: 316-321.
doi: 10.1016/j.jspr.2008.04.002
[85] 刘旭明, 金达生, 程须珍, 武晓菲, 王素华. 绿豆种质资源抗豆象鉴定研究初报. 作物品种资源, 1998, (2): 37-39.
Liu X M, Jin D S, Cheng X Z, Wu X F, Wang S H. Preliminary study on resistance identification of mung bean germplasm. Crop Variety Resour, 1998, (2): 37-39 (in Chinese with English abstract).
[86] 陈红霖, 胡亮亮, 杨勇, 郝曦煜, 李姝彤, 王素华, 王丽侠, 程须珍. 481份国内外绿豆种质农艺性状及豆象抗性鉴定评价及遗传多样性分析. 植物遗传资源学报, 2020, 21: 549-559.
[17] Maharjan R, Yi H, Kim H, Yoon Y, Jang Y, Bae S. Mung bean (Vigna radiata) cultivars mediated oviposition preference and development of Callosobruchus chinensis (Coleoptera: Chrysomelidae: Bruchinae). Appl Entomol Zool, 2017, 53: 55-56.
doi: 10.1007/s13355-017-0524-x
[18] Smith A M. Pea weevil (Bruchus pisorum L.) and crop loss-implications for management. In: Fujii K, Gatehouse A M R, Johnson C D, Mitchel R, Yoshida T, eds. Bruchids and Legumes: Economics, Ecology and Convolution, Dordrecht: Springer Netherlands, 1990. pp 105-114.
[19] Mbata G N, Thomas A, Fadamiro H F. Parasitism by Pteromalus cerealellae (Hymenoptera: Pteromalidae) on the cowpea weevil, Callosbruchus maculatus (Coleoptera: Bruchidae): host density, temperature effects, and host finding ability. Biol Control, 2005, 33: 286-292.
doi: 10.1016/j.biocontrol.2005.03.005
[20] Boeke S J, Baumgart I R, van Loon J J A, van Huis A, Dicke M, Kossou D K. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. . J Stored Prod Res, 2004, 40: 423-438.
[21] Wermelinger T T, Ribeiro E D S, Gravina G D A, Fernandes K V S, Xavier-Filho J, Venancio T M, Rezende G L, Oliveira A E A. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). J Insect Physiol, 2014, 60: 50-57.
doi: 10.1016/j.jinsphys.2013.10.004
[22] 刘振兴, 周桂梅, 陈健. 几种药剂对绿豆象的田间防效. 植物保护, 2015, 41(3): 215-219.
Liu Z X, Zhou G M, Chen J. Control efficacy of several insecticides on Callosobruchus chinensis L. in the fields. Plant Prot, 2015, 41(3): 215-219. (in Chinese with English abstract)
[23] Teshome A, Bryngelsson T, Mendesil E, Marttila S, Geleta M. Enhancing neoplasm expression in field pea (Pisum sativum) via intercropping and its significance to pea weevil (Bruchus pisorum) management. Front Plant Sci, 2016, 7: 654.
doi: 10.3389/fpls.2016.00654 pmid: 27242855
[24] Schmale I, Wäckers F L, Cardona C, Dorn S. Control potential of three Hymenopteran parasitoid species against the bean weevil in stored beans: the effect of adult parasitoid nutrition on longevity and progeny production. Biol Control, 2001, 21: 134-139.
doi: 10.1006/bcon.2000.0911
[25] Titouhi F, Amri M, Messaoud C, Haouel S, Youssfi S, Cherif A, Jemâa J M B. Protective effects of three Artemisia essential oils against Callosobruchus maculatus and Bruchus rufimanus (Coleoptera: Chrysomelidae) and the extended side-effects on their natural enemies. J Stored Prod Res, 2017, 72: 11-20.
doi: 10.1016/j.jspr.2017.02.007
[26] Hajjar M J, Ajlan A M, Al-Ahmad M H. New approach of Beauveria bassiana to control the red palm weevil (Coleoptera: Curculionidae) by trapping technique. J Econ Entomol, 2015, 108: 425-432.
doi: 10.1093/jee/tou055 pmid: 26470153
[27] Gbaye O A, Millard J C, Holloway G J. Legume type and temperature effects on the toxicity of insecticide to the genus Callosobruchus (Coleoptera: Bruchidae). J Stored Prod Res, 2011, 47: 8-12.
doi: 10.1016/j.jspr.2010.08.001
[28] 张民照, 金文林, 王进忠, 孙淑玲, 覃晓春, 张志勇. 微波处理对绿豆象的杀虫效果及对红小豆发芽率的影响. 昆虫学报, 2007, 50: 967-974.
Zhang M Z, Jin W L, Wang J Z, Sun S L, Qin X C, Zhang Z Y. Insecticidal efficacy of microwave treatment against Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) and its effects on the germination rate of adzuki beans. Acta Entomol Sin, 2007, 50: 967-974. (in Chinese with English abstract)
[29] 杨长举, 蒋学杰. 用塑料袋密藏蚕豆防治蚕豆象. 昆虫学报, 1987, 30: 346-348.
Yang Z J, Jiang X J. Store broad beans in plastic bags to prevent bean weevil. Acta Entomol Sin, 1987, 30: 346-348. (in Chinese with English abstract)
[30] 鲁玉杰, 孙磊, 王争艳. 植物精油对绿豆象成虫熏蒸效果及种群抑制作用的研究. 河南工业大学学报(自然科学版), 2016, 37(3): 76-81.
Lu Y J, Sun L, Wang Z Y. Effect of essential oil on inhibition population and fumigant toxicity of pulse beetle Calposobruchus chinensis Linnaeus (Coleoptera: Bruchidae). J Henan Univ Technol (Nat Sci Edn), 2016, 37(3): 76-81. (in Chinese with English abstract)
[31] Yadav D, Bhattacharyya R, Banerjee D. Acute aluminum phosphide poisoning: the menace of phosphine exposure. Clin Chim Acta, 2021, 520: 34-42.
doi: 10.1016/j.cca.2021.05.026 pmid: 34077754
[32] Voice D G, MacLellan R, Russell A, Goulden D, Lawrie I, Baker G, David A J T, Kean J M. The eradication of pea weevil Bruchus pisorum (L.) (Coleoptera: Chrysomelidae) from New Zealand. CABI Agric Biosci, 2022, 3: 31.
doi: 10.1186/s43170-022-00093-8
[86] Chen H L, Hu L L, Yang Y, Hao X Y, Li S T, Wang S H, Wang L X, Cheng X Z. Evaluation and genetic diversity analysis of agronomic traits and bruchid resistance using 481 worldwide mungbean germplasms. J Plant Genet Resour, 2020, 21: 549-559. (in Chinese with English abstract)
[87] 樊艳平, 成小芳, 王宏民, 张耀文, 张仙红. 四个抗豆象绿豆品种的胰蛋白酶抑制剂稳定性. 作物学报, 2018, 44: 867-875.
doi: 10.3724/SP.J.1006.2018.00867
Fan Y P, Cheng X F, Wang H M, Zhang Y W, Zhang X H. Stability of trypsin inhibitor in four bruchid-resistant mung bean varieties. Acta Agron Sin, 2018, 44: 867-875. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00867
[88] Tomooka N, Kashiwaba K, Vaughan D A, Ishimoto M, Egawa Y. The effectiveness of evaluating wild species: searching for sources of resistance to bruchid beetles in the genus Vigna subgenus Ceratotropis. Euphytica, 2000, 115: 27-41.
doi: 10.1023/A:1003906715119
[89] Dongre T K, Pawar S E, Thakare R G, Harwalkar M R. Identification of resistant sources to cowpea weevil (Callosobruchus maculatus (F.)) in Vigna sp. and inheritance of their resistance in black gram (Vigna mungo var. mungo). J Stored Prod Res, 1996, 32: 201-204.
[90] Kashiwaba K, Tomooka N, Kaga A, Han O, Vaughan D A. Characterization of resistance to three bruchid species (Callosobruchus spp., Coleoptera, Bruchidae) in cultivated rice bean (Vigna umbellata). J Econ Entomol, 2003, 96: 207-213.
doi: 10.1093/jee/96.1.207 pmid: 12650364
[91] Seram D, Senthil N, Pandiyan M, Kennedy J S. Resistance determination of a South Indian bruchid strain against rice bean landraces of Manipur (India). J Stored Prod Res, 2016, 69: 199-206.
doi: 10.1016/j.jspr.2016.08.008
[92] Singh B B, Singh S R, Adjadi O. Bruchid resistance in Cowpea. Crop Sci, 1985, 25: 736-739.
doi: 10.2135/cropsci1985.0011183X002500050004x
[93] Cruz L P, Santos L A, Gravina G A, Carvalho A O, Fernandes K V S, Freire Filho F R, Gomes V M, Oliveira A E A. Evaluation of resistance in different cowpea cultivars to Callosobruchus maculatus infestation. J Pest Sci, 2016, 89: 117-128.
doi: 10.1007/s10340-015-0657-z
[33] Aznar-Fernández T, Carrillo-Perdomo E, Flores F, Rubiales D. Identification and multi-environment validation of resistance to pea weevil (Bruchus pisorum) in Pisum germplasm. J Pest Sci, 2018, 91: 505-514.
doi: 10.1007/s10340-017-0925-1
[34] 程须珍, 王素华, 吴绍宇, 周吉红. 绿豆抗豆象育种后代F2群体遗传变异分析. 植物遗传资源学报, 2004, 5: 364-368.
Cheng X Z, Wang S H, Wu S Y, Zhou J H. Genetic analysis on mungbean breeding F2 population for resistance to bruchid. J Plant Genet Resour, 2004, 5: 364-368. (in Chinese with English abstract)
[35] Somta P, Kaga A, Tomooka N, Kashiwaba K, Isemura T, Chaitieng B Ô S P. Development of an interspecific Vigna linkage map between Vigna umbellata (Thunb.) Ohwi & Ohashi and V. nakashimae (Ohwi) Ohwi & Ohashi and its use in analysis of bruchid resistance and comparative genomics. Plant Breed, 2006, 125: 77-84.
doi: 10.1111/pbr.2006.125.issue-1
[36] Gari A T. Pea Weevil (Bruchus pisorum L.) Resistance and Genetic Diversity in Field Pea (Pisum sativum L.). PhD Dissertation of Swedish University of Agricultural Sciences, Alnarp, Sweden, 2015.
[37] 张红岩, 杨涛, 关建平, 杨生华, 方俐, 杜萌莹, 宗绪晓. 蚕豆抗绿豆象种质资源的鉴定. 作物杂志, 2016, (4): 86-92.
Zhang H Y, Yang T, Guan J P, Yang S H, Fang L, Du M Y, Zong X X. Investigation on faba bean germplasm resistance to Callosobruchus chinensis L. Crops, 2016, (4): 86-92. (in Chinese with English abstract)
[38] 仲伟文, 杨涛, 段灿星, 姜俊烨, 王芳, 杨晓明, 宗绪晓. 豌豆种质资源抗绿豆象鉴定. 作物杂志, 2014, (5): 43-47.
Zhong W W, Yang T, Duan C X, Jiang J Y, Wang F, Yang X M, Zong X X. Investigation on pea germplasm resistance to mungbean bruchid (Callosobruchus chinensis L.). Crops, 2014, (5): 43-47. (in Chinese with English abstract)
[39] Clement S L, Hardie D C, Elberson L R. Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Sci, 2002, 42: 2167.
doi: 10.2135/cropsci2002.2167
[40] Simmonds M S J, Blaney W M, Birch A N E. Legume seeds: the defenses of wild and cultivated species of Phaseolus against attack by bruchid beetles. Ann Bot (London), 1989, 63: 177-184.
doi: 10.1093/oxfordjournals.aob.a087721
[41] Samyuktha S M, Malarvizhi D, Mariyammal I, Karthikeyan A, Seram D, Dhasarathan M, Hepziba S J, Sheela V, Hemavathy A T, Kavithamani D, Kavitha S, Senthil N. The hunt for mungbean (Vigna radiata (L.) Wilczek) genotypes and breeding lines resistance to south Indian bruchid strain. Agriculture, 2022, 12: 1050.
doi: 10.3390/agriculture12071050
[42] Mariyammal I, Seram D, Samyuktha S, Adhimoolam K, Dhasarathan M, Jayakodi M, Kennedy J, Malarvizhi D, Yang T, Pandiyan M, Natesan S. QTL mapping in Vigna radiata × Vigna umbellata population uncovers major genomic regions associated with bruchid resistance. Mol Breed, 2019, 39: 110.
doi: 10.1007/s11032-019-1006-3
[43] 唐永生, 蒋彦华, 郑云昆. 蚕豆、豌豆抗绿豆象表现型品种资源筛选研究. 云南农业科技, 2014, (5): 20-23.
[94] Tripathi K, Prasad T V, Bhardwaj R, Jha S K, Semwal D P, Gore P G, Sharma P K, Bhalla S. Evaluation of diverse germplasm of cowpea [Vigna unguiculata (L.) Walp.] against bruchid [Callosobruchus maculatus (Fab.)] and correlation with physical and biochemical parameters of seed. Plant Genet Resour: Charact Utiliz, 2020, 18: 120-129.
doi: 10.1017/S1479262120000180
[95] Hardie D C, Baker G J, Marshall D R. Field screening of Pisum accessions to evaluate their susceptibility to the pea weevil (Coleoptera: Bruchidae). Euphytica, 1995, 84: 155-161.
doi: 10.1007/BF01677954
[96] 仲伟文, 杨晓明. 豌豆象发生、危害、防治对策及豌豆抗豌豆象的遗传机理综述. 作物杂志, 2014, (2): 21-25.
Zhong W W, Yang X M. Current progress on research of pea weevil. Crops, 2014, (2): 21-25 (in Chinese with English abstract).
[97] Tahhan O, Van Emden H F. Resistance of faba bean, Vicia faba, to Bruchus dentipes Baudi (Coleoptera: Bruchidae). Bull Entomol Res, 1989, 79: 211-218.
doi: 10.1017/S0007485300018198
[98] Carrillo-Perdomo E, Raffiot B, Ollivier D, Deulvot C, Magnin- Robert J, Tayeh N, Marget P. Identification of novel sources of resistance to seed weevils (Bruchus spp.) in a faba bean germplasm collection. Front Plant Sci, 2019, 9: 1914.
doi: 10.3389/fpls.2018.01914
[99] Duan C, Zhu Z, Ren G, Wang X, Li D. Resistance of faba bean and pea germplasm to Callosobruchus chinensis (Coleoptera: Bruchidae) and its relationship with quality components. J Econ Entomol, 2014, 107: 1992-1999.
doi: 10.1603/EC14113
[100] 杨新, 杨峰, 吕梅媛, 于海天, 胡朝芹, 王玉宝, 郑爱清, 代正明, 唐永生, 代快, 王丽萍, 何玉华. 不同地理来源蚕豆种质的绿豆象抗性特征分析. 四川农业大学学报, 2022, 40: 512-518.
Yang X, Yang F, Lyu M Y, Yu H T, Hu C Q, Wang Y B, Zheng A Q, Dai Z M, Tang Y S, Dai K, Wang L P, He Y H. Analysis of faba bean germplasms from different geographical regions resistance characteristics to Callosobruc chinensis L. J Sichuan Agric Univ, 2022, 40: 512-518. (in Chinese with English abstract)
[101] Shaheen F, Khaliq A, Muhammad A. Resistance of chickpea (Cicer arietinum L.) cultivars against pulse beetle. Pak J Bot, 2006, 38: 1237-1244.
[102] Swamy S G, Raja D S, Wesley B J. Susceptibility of stored chickpeas to bruchid infestation as influenced by physico- chemical traits of the grains. J Stored Prod Res, 2020, 87: 101583.
doi: 10.1016/j.jspr.2020.101583
[103] Acosta-Gallegos J A, Quintero C, Vargas J, Toro O C, Tohme J, Cardona C A C. A new variant of arcelin in wild common bean, Phaseolus vulgaris L., from southern Mexico. Genet Resour Crop Evol, 2004, 45: 235-242.
doi: 10.1023/A:1008636132108
[104] Cardona C A C, Kornegay J L, Posso C E, Morales F J, Ramírez H. Comparative value of four arcelin variants in the development of dry bean lines resistant to the Mexican bean weevil. Entomol Exp Appl, 1990, 56: 197-206.
doi: 10.1111/eea.1990.56.issue-2
[105] Zaugg I, Magni C, Panzeri D, Daminati M G, Bollini R, Benrey B, Bacher S, Sparvoli F. QUES, a new Phaseolus vulgaris genotype resistant to common bean weevils, contains the Arcelin-8 allele coding for new lectin-related variants. Theor Appl Genet, 2013, 126: 647-661.
doi: 10.1007/s00122-012-2008-2
[106] Kang J K, Pittendrigh B R, Onstad D W. Insect resistance management for stored product pests: a case study of cowpea weevil (Coleoptera: Bruchidae). J Econ Entomol, 2013, 106: 2473-2490.
pmid: 24498750
[107] Kitamura K, Ishimoto M, Sawa M. Inheritance of resistance to infestation with azuki bean weevil in Vigna sublobata and successful incorporation to V. radiata. Jpn J Breed, 1988, 38: 459-464.
[108] 程须珍, 杨又迪. RAPD分析在绿豆亲缘关系研究中的应用. 遗传, 1998, 20: 29-31.
Cheng X Z, Yang Y D. Study of mungbean genetic relationship using RAPD markers. Hereditas (Beijing), 1998, 20: 29-31. (in Chinese with English abstract)
[109] Lambrides C J, Lawn R J, Godwin I D, Manners J, Imrie B C. Two genetic linkage maps of mungbean using RFLP and RAPD markers. Crop Past Sci, 2000, 51: 415-425.
[110] Young N D, Kumar L, Menancio-Hautea D, Danesh D, Talekar N S, Shanmugasundarum S, Kim D H. RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet, 1992, 84: 839-844.
doi: 10.1007/BF00227394 pmid: 24201484
[111] Kaga A, Ishimoto M. Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol Gene Genet, 1998, 258: 378-384.
[112] Somta P, Ammaranan C, Ooi P A C, Srinives P. Inheritance of seed resistance to bruchids in cultivated mungbean (Vigna radiata L. Wilczek). Euphytica, 2007, 155: 47-55.
doi: 10.1007/s10681-006-9299-9
[113] Wang L, Wu C, Zhong M, Zhao D, Mei L, Chen H, Wang S, Liu C, Cheng X. Construction of an integrated map and location of a bruchid resistance gene in mung bean. Crop J, 2016, 4: 360-366.
doi: 10.1016/j.cj.2016.06.010
[114] 吴传书, 王丽侠, 王素华, 陈红霖, 吴健新, 程须珍, 杨晓明. 绿豆高密度分子遗传图谱的构建. 中国农业科学, 2014, 47: 2088-2098.
doi: 10.3864/j.issn.0578-1752.2014.11.003
Wu C S, Wang L X, Wang S H, Chen H L, Wu J X, Cheng X Z, Yang X M. Construction of a genetic linkage map in mungbean. Sci Agric Sin, 2014, 47: 2088-2098 (in Chinese with English abstract).
[115] Schafleitner R, Huang S, Chu S, Yen J, Lin C, Yan M, Krishnan B, Liu M, Lo H, Chen C, Chen L O, Wu D, Bui T T, Ramasamy S, Tung C, Nair R. Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Callosobruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biol, 2016, 16: 159.
doi: 10.1186/s12870-016-0847-8 pmid: 27422285
[116] 刘长友, 苏秋竹, 范保杰, 曹志敏, 张志肖, 武晶, 程须珍, 田静. 栽培绿豆V1128抗豆象基因定位. 作物学报, 2018, 44: 1875-1881.
doi: 10.3724/SP.J.1006.2018.01875
Liu C Y, Su Q Z, Fan B J, Cao Z M, Zhang Z X, Wu J, Cheng X Z, Tian J. Genetic mapping of bruchid resistance gene in mungbean V1128. Acta Agron Sin, 2018, 44: 1875-1881. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01875
[117] Chotechung S, Somta P, Chen J, Yimram T, Chen X, Srinives P. A gene encoding a polygalacturonase-inhibiting protein (PGIP) is a candidate gene for bruchid (Coleoptera: Bruchidae) resistance in mungbean (Vigna radiata). Theor Appl Genet, 2016, 129: 1673-1683.
doi: 10.1007/s00122-016-2731-1 pmid: 27220975
[118] Kaewwongwal A, Chen J, Somta P, Kongjaimun A, Yimram T, Chen X, Srinives P. Novel alleles of two tightly linked genes encoding polygalacturonase-inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid (Callosobruchus spp.) resistance to mungbean (Vigna radiata) accession V2709 Front Plant Sci, 2017, 8: 1692.
doi: 10.3389/fpls.2017.01692 pmid: 29033965
[119] Rathnayaka Gamage S I, Kaewwongwal A, Laosatit K, Yimram T, Lin Y, Chen X, Nakazono M, Somta P. Tandemly duplicated genes encoding polygalacturonase inhibitors are associated with bruchid (Callosobruchus chinensis) resistance in moth bean (Vigna aconitifolia). Plant Sci, 2022, 323: 111402.
doi: 10.1016/j.plantsci.2022.111402
[120] Lin W, Ko C, Liu M, Kuo C, Wu D, Chen C, Schafleitner R, Chen L O, Lo H. Transcriptomic and proteomic research to explore bruchid-resistant genes in mungbean isogenic lines. J Agric Food Chem, 2016, 64: 6648-6658.
doi: 10.1021/acs.jafc.6b03015
[121] Liu M S, Kuo T C, Ko C Y, Wu D C, Li K Y, Lin W J, Lin C P, Wang Y W, Schafleitner R, Lo H F, Chen C Y, Chen L F. Genomic and transcriptomic comparison of nucleotide variations for insights into bruchid resistance of mungbean (Vigna radiata [L.] R. Wilczek). BMC Plant Biol, 2016, 16: 46.
doi: 10.1186/s12870-016-0736-1
[122] Gupta D S, Pandey I D, Others. Bioassay for bruchid resistance in cowpea. J Food Legumes, 2009, 22: 43-45.
[123] Redden R J, Dobie P, Gatehouse A. The inheritance of seed resistance to Callosobruchus maculatus F. in cowpea (Vigna unguiculata L. Walp.): I. Analyses of parental, F1, F2, F3 and backcross seed generations. Aust J Agric Res, 1983, 34: 681.
doi: 10.1071/AR9830681
[124] Thandar K, Laosatit K, Yimram T, Somta P. Genetic analysis of seed resistance to Callosobruchus chinensis and Callosobruchus maculatus in cowpea. J Stored Prod Res, 2021, 92: 101783.
doi: 10.1016/j.jspr.2021.101783
[125] Venkataramana P B, Gowda R, Somta P, Ramesh S, Mohan Rao A, Bhanuprakash K, Srinives P, Gireesh C, Pramila C K. Mapping QTL for bruchid resistance in rice bean (Vigna umbellata). Euphytica, 2016, 207: 135-147.
doi: 10.1007/s10681-015-1551-8
[126] Seram D, Natesan S, Muthaiyan P, Kennedy J S. Bruchid resistance study through bulked segregant analysis: used as a preliminary step for next-generation sequencing. Trends Sci, 2022, 19: 3975.
doi: 10.48048/tis.2022.3975
[127] Belay M, Mehari H, Msiska U, Bruno A, Malinga G, Ongom P, Edema R, Gibson P, Rubaihayo P, Kyamanywa S. Identification of candidate genes associated with resistance to bruchid (Callosobruchus maculatus) in cowpea. Plant Breed, 2019, 138: 605-613.
doi: 10.1111/pbr.v138.5
[128] 王彦, 范保杰, 曹志敏, 张志肖, 苏秋竹, 王珅, 王学清, 彭秀国, 梅丽, 武玉华, 刘少兴, 田胜民, 徐俊杰, 蒋春志, 王伟娟, 刘长友, 田静. 基于新遗传连锁图谱的豇豆抗豆象QTL定位. 中国农业科学, 2021, 54: 4740-4749.
doi: 10.3864/j.issn.0578-1752.2021.22.003
Wang Y, Fan B J, Cao Z M, Zhang Z X, Su Q Z, Wang S, Wang X Q, Peng X G, Mei L, Wu Y H, Liu S X, Tian S M, Xu J J, Jiang C Z, Wang W J, Liu C Y, Tian J. Quantitative trait Locus mapping of bruchids resistance based on a novel genetic linkage map in cowpea (Vigna unguiculata). Sci Agric Sin, 2021, 54: 4740-4749. (in Chinese with English abstract)
[129] Joshi J, Pandurangan S, Diapari M, Marsolais F. Comparison of gene families:seed storage and other seed proteins. In: PérezDe La Vega M, SantallaM, MarsolaisF,eds. The Common Bean Genome. Cham: Springer International Publishing, 2017. pp 201-217.
[130] Duarte M A G, Cabral G B, Ibrahim A B, Aragão F J L. An overview of the APA locus and arcelin proteins and their biotechnological potential in the control of bruchids. Agric Gene, 2018, 8: 57-62.
[131] Blair M W, Muñoz C, Buendía H F, Flower J, Bueno J M, Cardona C. Genetic mapping of microsatellite markers around the arcelin bruchid resistance locus in common bean. Theor Appl Genet, 2010, 121: 393-402.
doi: 10.1007/s00122-010-1318-5 pmid: 20358173
[132] Kamfwa K, Beaver J, Cichy K, Kelly J. QTL Mapping of resistance to bean weevil in common bean. Crop Sci, 2018, 58: 2370-2378.
doi: 10.2135/cropsci2018.02.0106
[133] Li X, Tang Y, Wang L, Chang Y, Wu J, Wang S. QTL mapping and identification of genes associated with the resistance to Acanthoscelides obtectus in cultivated common bean using a high-density genetic linkage map. BMC Plant Biol, 2022, 22: 260.
doi: 10.1186/s12870-022-03635-4
[134] Somta P, Jomsangawong A, Yundaeng C, Yuan X, Chen J, Tomooka N, Chen X. Genetic dissection of azuki bean weevil (Callosobruchus chinensis L.) resistance in moth bean (Vigna aconitifolia [Jaqc.] Maréchal). Genes (Basel), 2018, 9: 555.
doi: 10.3390/genes9110555
[135] Byrne O M, Hardie D C, Khan T N, Speijers J, Yan G. Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Aust J Agric Res, 2008, 59: 854-862.
doi: 10.1071/AR07353
[136] Aryamanesh N, Zeng Y, Byrne O, Hardie D C, Al-Subhi A M, Khan T, Siddique K H M, Yan G. Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theor Appl Genet, 2014, 127: 489-497.
doi: 10.1007/s00122-013-2234-2
[137] 刘长友, 范保杰, 曹志敏, 苏秋竹, 王彦, 张志肖, 程须珍, 田静. 豇豆属食用豆类间的远缘杂交. 中国农业科学, 2015, 48: 426-435.
doi: 10.3864/j.issn.0578-1752.2015.03.03
Liu C Y, Fan B J, Cao Z M, Su Q Z, Wang Y, Zhang Z X, Cheng X Z, Tian J. Interspecific hybridization among Vigna species. Sci Agric Sin, 2015, 48: 426-435. (in Chinese with English abstract)
[138] 戴希刚, 郭瑞, 潘磊, 曾长立, 陈禅友. 豇豆与饭豆种间杂种的获得及其鉴定. 安徽农业大学学报, 2017, 44: 519-524.
Dai X G, Guo R, Pan L, Zeng C L, Chen C Y. Acquisition and identification of interspecific hybrids between cowpea and rice bean. J Anhui Agric Univ, 2017, 44: 519-524. (in Chinese with English abstract)
[139] Clement S, McPhee K, Elberson L, Evans M. Pea weevil, Bruchus pisorum L. (Coleóptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breed, 2009, 128: 478-485.
doi: 10.1111/pbr.2009.128.issue-5
[140] Aryamanesh N, Byrne O, Hardie D C, Khan T, Siddique K H M, Yan G. Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Past Sci, 2012, 63: 612.
doi: 10.1071/CP12225
[141] Choudhury A, Rajam M V. Genetic transformation of legumes: an update. Plant Cell Rep, 2021, 40: 1813-1830.
doi: 10.1007/s00299-021-02749-7 pmid: 34230986
[142] Khazaei H, O’Sullivan D M, Stoddard F L, Adhikari K N, Paull J G, Schulman A H, Andersen S U, Vandenberg A. Recent advances in faba bean genetic and genomic tools for crop improvement. Legum Sci, 2021, 3: 1-13.
[143] Sharma S, Gambhir G, Srivastava D K. In vitro differentiation and plant regeneration from root and other explants of juvenile origin in pea (Pisum sativum L.). Legume Res, 2017, 40: 1020-1027.
[144] Ludv I, Kov A M, Griga M. Pea transformation: history, current status and challenges. Czech J Genet Plant, 2022, 58: 127-161.
doi: 10.17221/24/2022-CJGPB
[145] Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins T J, Castillejo M, Singh K, Rispail N. Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci, 2015, 34: 195-236.
doi: 10.1080/07352689.2014.898445
[146] Sonia, Saini R, Singh R P, Jaiwal P K. Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep, 2007, 26: 187-198.
pmid: 16983450
[147] Solleti S K, Bakshi S, Purkayastha J, Panda S K, Sahoo L. Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep, 2008, 27: 1841.
doi: 10.1007/s00299-008-0606-x pmid: 18784925
[148] Ishimoto M, Sato T, Chrispeels M J, Kitamura K. Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor of common bean. Entomol Exp Appl, 1996, 79: 309-315.
doi: 10.1111/eea.1996.79.issue-3
[149] Sarmah B K, Moore A, Tate W, Molvig L, Morton R L, Rees D P, Chiaiese P, Chrispeels M J, Tabe L M, Higgins T J V. Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor. Mol Breed, 2004, 14: 73-82.
doi: 10.1023/B:MOLB.0000037996.01494.12
[150] Schroeder H E, Gollasch S, Moore A, Tabe L M, Craig S, Hardie D C, Chrispeels M J, Spencer D, Higgins T J. Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol, 1995, 107: 1233-1239.
pmid: 12228429
[151] Sousa-Majer M, Hardie D, Turner N, Higgins T J. Bean α-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol, 2007, 100: 1416-1422.
pmid: 17849896
[152] Shade R E, Schroeder H E, Pueyo J J, Tabe L M, Murdock L L, Higgins T J V, Chrispeels M J. Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Nat Biotechnol, 1994, 12: 793-796.
doi: 10.1038/nbt0894-793
[153] Prescott V E, Campbell P M, Moore A, Mattes J, Rothenberg M E, Foster P S, Higgins T J V, Hogan S P. Transgenic expression of bean α-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem, 2005, 53: 9023-9030.
doi: 10.1021/jf050594v
[154] Lee R Y, Reiner D, Dekan G, Moore A E, Higgins T J, Epstein M M. Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice. PLoS One, 2013, 8: e52972.
[155] Negawo A T, Aftabi M, Jacobsen H, Altosaar I, Hassan F. Insect resistant transgenic pea expressing cry1Ac gene product from Bacillus thuringiensis. Biol Control, 2013, 67: 293-300.
doi: 10.1016/j.biocontrol.2013.09.016
[156] Mishra S, Macedo L, Panda S, Panigrahi J. Bruchid pest management in pulses: past practices, present status and use of modern breeding tools for development of resistant varieties: Bruchid pest management in pulses. Ann Appl Biol, 2017, 172: 4-19.
doi: 10.1111/aab.2018.172.issue-1
[157] Sarkar S, Ghosh S, Chatterjee M, Das Kalita D P, Lahari T, Maji A, Mondal N, Pradhan K, Bhattacharyya S. Molecular markers linked with bruchid resistance in Vigna radiata var. Sublobata and their validation. J Plant Biochem Biotechnol, 2011, 20: 155-160.
doi: 10.1007/s13562-011-0039-4
[158] Majhi P K, Bhoi T K, Mogali S C, Shiv A, Sahoo K C, Saini V. Advances in molecular breeding for bruchid (Callosobruchus spp.) resistance in mungbean [Vigna radiata (L.) Wilczek]: a review. Legume Res, 2022, 45: 933-941.
[159] Wu R, Zhang Q, Lin Y, Chen J, Somta P, Yan Q, Xue C, Liu J, Chen X, Yuan X. Marker-assisted backcross breeding for improving bruchid (Callosobruchus spp.) resistance in mung bean (Vigna radiata L.). Agronomy (Basel), 2022, 12: 1271.
doi: 10.3390/agronomy12061271
[160] Cisse N, Ndiaye M, Thiaw S, Hall A E. Registration of ‘Mouride’ cowpea. Crop Sci, 1995, 35: 1215-1216.
[161] Lee Y H, Moon J K, Park K Y, Ku J H, Yun H T, Chung W K, Kim S D, Kim H S, Kim D H, Chung M N. A new mungbean cultivar with bruchid resistance, ‘Jangannogdu’. Korean J Breed, 2000, 32: 296-297.
[162] 程须珍, 王述民. 中国食用豆类品种志. 北京: 中国农业科学技术出版社, 2009. pp 23-25.
Cheng X Z, Wang S M. Food Legumes Variety in China. Beijing: China Agricultural Science and Technology Press, 2009. pp 23-25. (in Chinese)
[163] 朱慧珺, 赵雪英, 阎虎斌, 高伟, 张耀文. 抗豆象绿豆新品种晋绿豆7号的选育. 山西农业科学, 2012, 40: 606-607.
Zhu H J, Zhao X Y, Yan H B, Gao W, Zhang Y W. Breeding of bruchid resistant mung bean variety Jinlyudou 7. J Shanxi Agric Sci, 2012, 40: 606-607. (in Chinese with English abstract)
[164] 权彪. 抗豆象绿豆种质晋中10号的选育与栽培技术. 山西农业科学, 2020, 48: 12-14.
Quan B. Breeding and cultivation techniques of Jinzhong 10 of mung bean germplasm resources resistant to bruchid weevil. J Shanxi Agric Sci, 2020, 48: 12-14 (in Chinese with English abstract).
[165] 陈华涛, 袁星星, 张红梅, 刘晓庆, 崔晓艳, 陈新, 顾和平. 抗豆象绿豆新品种苏绿5号选育及配套栽培技术. 作物研究, 2015, 29: 428-430.
Chen H T, Yuan X X, Zhang H M, Liu X Q, Cui X Y, Chen X, Gu H P. Breeding and cultivation techniques of the new mungbean variety Sulv No. 5 with bruchid resistance. Crop Res, 2015, 29: 428-430. (in Chinese with English abstract)
[166] 陈华涛, 张红梅, 刘晓庆, 袁星星, 崔晓艳, 陈新. 绿豆新品种苏绿6号选育及配套栽培技术. 作物研究, 2015, 29: 653-654.
Chen H T, Zhang H M, Liu X Q, Yuan X X, Cui X Y, Chen X. Breeding of a new mung bean variety Sulu 6 and cultivation techniques. Crop Res, 2015, 29: 653-654. (in Chinese with English abstract)
[167] 范保杰, 刘长友, 曹志敏, 张志肖, 苏秋竹, 王彦, 田静. 抗豆象绿豆新品种冀绿15号的选育. 中国种业, 2018, (9): 76-78.
Fan B J, Liu Z Y, Cao Z M, Zhang Z X, Su Q Z, Wang Y, Tian J. Breeding of a high resistance mung bean variety Jilu 17. China Seed Ind, 2018, (9): 76-78. (in Chinese with English abstract)
[168] Ng N Q. Conserving tropical leguminous food crops. In: Normah M N, Chin H F, Reed B M, eds. Conservation of Tropical Plant Species. New York: Springer New York, 2012. pp 213-247.
[169] 郑卓杰. 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 25-27.
Zheng Z J. Catalogues of Chinese Food Legumes Germplasm and Resources. Beijing: China Agricultural Science and Technology Press, 1997. pp 25-27. (in Chinese)
[170] Wang F, Li M, Zheng H, Dong T, Zhang X. A phylogeographical analysis of the beetle pest species Callosobruchus chinensis (Linnaeus, 1758) in China. Insects, 2022, 13: 145.
doi: 10.3390/insects13020145
[171] 邓一文, 刘裕强, 王静, 陈学伟, 何祖华. 农作物抗病虫研究的战略思考. 中国科学: 生命科学, 2021, 51: 1435-1446.
Deng Y W, Liu Y Q, Wang J, Chen X W, He Z H. Strategic thinking and research on crop disease and pest resistance in China. Sci Sin Vitae, 2021, 51: 1435-1446. (in Chinese with English abstract)
doi: 10.1360/SSV-2021-0199
[172] Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J, Moon J, Lee Y, Park B, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun, 2014, 5: 5443.
doi: 10.1038/ncomms6443
[173] Kang Y J, Satyawan D, Shim S, Lee T, Lee J, Hwang W J, Kim S K, Lestari P, Laosatit K, Kim K H, Ha T J, Chitikineni A, Kim M Y, Ko J, Gwag J, Moon J, Lee Y, Park B, Varshney R K, Lee S. Draft genome sequence of adzuki bean. Vigna angularis. Sci Rep, 2015, 5: 8069.
[174] Yang K, Tian Z, Chen C, Luo L, Zhao B, Wang Z, Yu L, Li Y, Sun Y, Li W, Chen Y, Li Y, Zhang Y, Ai D, Zhao J, Shang C, Ma Y, Wu B, Wang M, Gao L, Sun D, Zhang P, Guo F, Wang W, Li Y, Wang J, Varshney R K, Wang J, Ling H Q, Wan P. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc Natl Acad Sci USA, 2015, 112: 13213-13218.
doi: 10.1073/pnas.1420949112 pmid: 26460024
[175] Schmutz J, McClean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres- Torres M, Geffroy V, Moghaddam S M, Gao D, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, Goodstein D M, Gonzales M, Hellsten U, Hyten D L, Jia G, Kelly J D, Kudrna D, Lee R, Richard M M S, Miklas P N, Osorno J M, Rodrigues J, Thareau V, Urrea C A, Wang M, Yu Y, Zhang M, Wing R A, Cregan P B, Rokhsar D S, Jackson S A. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet, 2014, 46: 707-713.
doi: 10.1038/ng.3008 pmid: 24908249
[176] Varshney R K, Thudi M, Roorkiwal M, He W, Upadhyaya H D, Yang W, Bajaj P, Cubry P, Rathore A, Jian J, Doddamani D, Khan A W, Garg V, Chitikineni A, Xu D, Gaur P M, Singh N P, Chaturvedi S K, Nadigatla G V P R, Krishnamurthy L, Dixit G P, Fikre A, Kimurto P K, Sreeman S M, Bharadwaj C, Tripathi S, Wang J, Lee S, Edwards D, Polavarapu K K B, Penmetsa R V, Crossa J, Nguyen H T, Siddique K H M, Colmer T D, Sutton T, von Wettberg E, Vigouroux Y, Xu X, Liu X. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet, 2019, 51: 857-864.
doi: 10.1038/s41588-019-0401-3 pmid: 31036963
[177] Lonardi S, Muñoz-Amatriaín M, Liang Q, Shu S, Wanamaker S I, Lo S, Tanskanen J, Schulman A H, Zhu T, Luo M, Alhakami H, Ounit R, Hasan A M, Verdier J, Roberts P A, Santos J R P, Ndeve A, Doležel J, Vrána J, Hokin S A, Farmer A D, Cannon S B, Close T J. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J, 2019, 98: 767-782.
doi: 10.1111/tpj.2019.98.issue-5
[178] Kreplak J, Madoui M, Cápal P, Novák P, Labadie K, Aubert G, Bayer P E, Gali K K, Syme R A, Main D, Klein A, Bérard A, Vrbová I, Fournier C, D Agata L, Belser C, Berrabah W, Toegelová H, Milec Z, Vrána J, Lee H, Kougbeadjo A, Térézol M, Huneau C, Turo C J, Mohellibi N, Neumann P, Falque M, Gallardo K, McGee R, Tar An B, Bendahmane A, Aury J, Batley J, Le Paslier M, Ellis N, Warkentin T D, Coyne C J, Salse J, Edwards D, Lichtenzveig J, Macas J, Doležel J, Wincker P, Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat Genet, 2019, 51: 1411-1422.
doi: 10.1038/s41588-019-0480-1 pmid: 31477930
[179] Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S, Zhang J, Tang Y, Chen M, Zhu J, Lei L, Geng Q, Liu C, Wu L, Li X, Wang X, Wang Q, Wang Z, Xing S, Zhang H, Blair M W, Wang S. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet, 2020, 52: 118-125.
doi: 10.1038/s41588-019-0546-0 pmid: 31873299
[180] Liu C, Wang Y, Peng J, Fan B, Xu D, Wu J, Cao Z, Gao Y, Wang X, Li S, Su Q, Zhang Z, Wang S, Wu X, Shang Q, Shi H, Shen Y, Wang B, Tian J. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mungbean and its improvement. Plant Commun, 2022, 3: 100352.
doi: 10.1016/j.xplc.2022.100352
[181] 薛勇彪, 种康, 韩斌, 桂建芳, 王台, 傅向东, 何祖华, 储成才, 田志喜, 程祝宽, 林少扬. 开启中国设计育种新篇章: “分子模块设计育种创新体系”战略性先导科技专项进展. 中国科学院院刊, 2015, 30: 393-402.
Xue Y B, Zhong K, Han B, Gui J F, Wang T, Fu X D, He Z H, Chu C C, Tian Z X, Cheng Z K, Lin S Y. New chapter of designer breeding in China: update on strategic program of molecular module-based designer breeding systems. Bull Chin Acad Sci, 2015, 30: 393-402. (in Chinese with English abstract)
[182] Li G, Liu R, Xu R, Varshney R K, Ding H, Li M, Yan X, Huang S, Li J, Wang D, Ji Y, Wang C, He J, Luo Y, Gao S, Wei P, Zong X, Yang T. Development of an Agrobacterium-mediated CRISPR/ Cas9 system in pea (Pisum sativum L.). Crop J, 2022, 41: 137-145.
[183] Jiang G. Molecular marker-assisted breeding:a plant breeder's review. In: Al-Khayri J M, Jain S M, Johnson D V, eds. Advances in Plant Breeding Strategies:Breeding, Cham: Springer International Publishing, 2015. pp 431-472.
[184] 景海春, 田志喜, 种康, 李家洋. 分子设计育种的科技问题及其展望概论. 中国科学: 生命科学, 2021, 51: 1356-1365.
Jing H C, Tian Z X, Chong K, Li J Y. Progress and perspective of molecular design breeding. Sci Sin Vitae, 2021, 51: 1356-1365. (in Chinese with English abstract)
doi: 10.1360/SSV-2021-0214
[1] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[2] HUI Zhi-Ming, XU Jian-Fei, JIAN Yin-Qiao, BIAN Chun-Song, DUAN Shao-Guang, HU Jun, LI Guang-Cun, JIN Li-Ping. 2b-RAD based maturity associated molecular marker identification in tetraploid potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2274-2284.
[3] LIN Huan-Tai, ZHANG Tian-Jie, SHI Meng-Ting, GUO Yan-Fang, GAO San-Ji, WANG Jin-Da. Genome-wide analysis of terpene synthase (TPS) gene family and its expression under biological stress in Saccharum spontaneum [J]. Acta Agronomica Sinica, 2022, 48(12): 3029-3044.
[4] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[5] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[6] Jun-Hua YE,Qi-Tai YANG,Zhang-Xiong LIU,Yong GUO,Ying-Hui LI,Rong-Xia GUAN,Li-Juan QIU. Genotyping of SCN, SMV Resistance, Salinity Tolerance and Screening of Pyramiding Favorable Alleles in Introduced Soybean Accessions [J]. Acta Agronomica Sinica, 2018, 44(9): 1263-1273.
[7] Yan-Ping FAN,Xiao-Fang CHENG,Hong-Min WANG,Yao-Wen ZHANG,Xian-Hong ZHANG. Stability of Trypsin Inhibitor in Foun Bruchid-Resistant Mung Bean Varieties [J]. Acta Agronomica Sinica, 2018, 44(6): 867-875.
[8] Chang-You LIU,Qiu-Zhu SU,Bao-Jie FAN,Zhi-Min CAO,Zhi-Xiao ZHANG,Jing WU,Xu-Zhen CHENG,Jing TIAN. Genetic Mapping of Bruchid Resistance Gene in Mungbean V1128 [J]. Acta Agronomica Sinica, 2018, 44(12): 1875-1881.
[9] FAN Yan-Ping,ZHANG Yao-Wen,ZHAO Xue-Ying,ZHANG Xian-Hong. Activity and Physico Chemical Properties of Trypsin Inhibitor in Bruchid-Resistant Mung Bean [J]. Acta Agron Sin, 2017, 43(11): 1696-1704.
[10] LIU Chang,LI Shi-Jin,WANG Ke,YE Xing-Guo,LIN Zhi-Shan*. Developing of Specific Transcription Sequences P21461 and P33259 on D. villosum 6VS and Their Application of Molecular Markers in Identifying Wheat-D. villosum Breeding Materials with Powdery Mildew Resistance [J]. Acta Agron Sin, 2017, 43(07): 983-992.
[11] FU Bi-Sheng,LIU Ying,ZHANG Qiao-Feng,WU Xiao-You,GAO Hai-Dong,CAI Shi-Bin,DAI Ting-Bo,WU Ji-Zhong. Development of Markers Closely Linked with Wheat Powdery Mildew Resistance Gene Pm48 [J]. Acta Agron Sin, 2017, 43(02): 307-312.
[12] JIANG Peng,ZHANG Ping-Ping,ZHANG Xu,CHEN Xiao-Lin,MA Hong-Xiang*. Association Analysis for MixographProperties in Ningmai 9 and Its Derivatives [J]. Acta Agron Sin, 2016, 42(08): 1168-1175.
[13] KONG Xin-Xin,ZHANG Yan,ZHAO De-Hui,XIA Xian-Chun,WANG Chun-Ping,HE Zhong-Hu. Noodle Quality Evaluation of New Wheat Cultivars from Northern China Winter Wheat Regions [J]. Acta Agron Sin, 2016, 42(08): 1143-1159.
[14] JIANG Peng,ZHANG Ping-Ping,ZHANG Xu,CHEN Xiao-Ling,YAO Jin-Bao,MA Hong-Xiang. Genetic Diversity and Association Analysis of Protein Content in Weak Gluten Wheat Ningmai 9 and Its Derived Lines [J]. Acta Agron Sin, 2015, 41(12): 1828-1835.
[15] CAO Ting-Jie,CHEN Yong-Xing,LI Dan,ZHANG Yan,WANG Xi-Cheng,ZHAO Hong,LIU Zhi-Yong. Identification and Molecular Detection of Powdery Mildew Resistance of New Bred Wheat Varieties (Lines) in Henan Province, China [J]. Acta Agron Sin, 2015, 41(08): 1172-1182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .