Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1829-1842.doi: 10.3724/SP.J.1006.2023.24188

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification and functional analysis of SGR gene family in Brassica napus L.

TANG Yu-Feng(), YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen*()   

  1. College of Agronomy, Hunan Agricultural University / Collaborative Innovation Center of Grain and Oil Crops in South China, Changsha 410128, Hunan, China
  • Received:2022-08-11 Accepted:2022-11-25 Online:2023-07-12 Published:2022-12-06
  • Contact: *E-mail: qianlunwen@163.com E-mail:tyf331213@163.com;qianlunwen@163.com
  • Supported by:
    The National Natural Science Foundation of China(31801399);The Research Foundation of Education Bureau of Hunan Province(21A0135)

Abstract:

Chlorophyll is a kind of green pigment for plant photosynthesis, which has a direct effect on plant growth. In this study, bioinformatics methods were used to identify the members of SGR gene family in Brassica napus, Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Most of the 28 SGR genes contained four exons, encoding basic proteins. Chromosome mapping and syntenic analysis showed that there was no tandem duplication in the SGR gene family members of Brassica napus. SGR gene family members had a linear relationship, highly homologous in evolution, and very conserved in the evolutionary process. Moreover, a genome-wide association study (GWAS) of chlorophyll content was performed using a Brassica 60K Illumina Infinium SNP array in 203 Brassica napus accessions. Two haplotype regions (Chr.A01: 6,193,165-6,317,757 bp and Chr.C01: 9,059,861-9,906,618 bp) carrying two SGR genes (BnaSGR1a-A01 and BnaSGR1-C01) were detected, which were significantly associated with chlorophyll content. Meanwhile, the regional association analysis of 50 resequenced rapeseed inbred lines revealed that a SNP located in exon 2 of BnaSGR1a-A01 significantly associated with chlorophyll content. Co-expression network analysis revealed that BnaSGR1a-A01 were directly linked with BnaSGR2-A03, and indirectly linked with BnaSGR1-C01, BnaSGR1-A08, BnaSGR2-C03, BnaSGR1-C07, BnaSGRL-C06, and BnaSGRL-A10, thus forming a molecular network involved in the potential regulation of chlorophyll content. Chlorophyll a, chlorophyll b, and the total chlorophyll content of T2 Arabidopsis transgenic plants overexpressing BnasSGR1a-A01 were significantly lower than wild type, indicating that BnaSGR1a-A01 regulated chlorophyll degradation. This study laid a foundation for the functional research and utilization of SGR gene in Brassica napus L.

Key words: Brassica napus, STAY-GREEN gene, GWAS, chlorophyll content

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Sequence (5°-3°)
BnaNYE1a-qRT F: TCTTCACATATTTACAGTAGAGGCC
R: GTTAGACATTTTCCCTCGGCC
AtACT2 F: CGCTCTTTCTTTCCAAGCTC
R: AACAGCCCTGGGAGCATC
19OV141T1 F: CTCTCTCGAGCTTTCGCGAGCTCTATTTTTGTTGATTATGCTTTTCAT
R: TAATGGAGTGAGAAATAGCTAAAGT
19OV141T2 F: CAGTGACATTACTGCTAAATTAACT
R: CCTGCAGGTCGACTCTAGAGGATCCTCAATAGAGTTTCTCTGGACTAGGA
HPT II F: ACACTACATGGCGTGATTTCAT
R: TCCACTATCGGCGAGTACTTCT

Table 2

SGR gene information"

拟南芥
Arabidopsis thaliana
基因编号
Gene ID
基因名称
Gene name
核苷酸长度
Gene length
氨基酸长度
Length of amino acids
等电点
pI
分子量
Molecular weight (kD)
内含子数目
No. of introns
外显子数目
No. of exons
亚细胞定位
Predicted subcellular localization
AT4G22920/SGR1
甘蓝型油菜 Brassica napus BnaA01g12570D BnaSGR1a-A01 1874 332 9.35 37.82 5 6 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaA01g22870D BnaSGR1b-A01 1063 114 9.86 13.18 2 3 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaA03g45630D BnaSGR1-A03 1484 266 8.67 29.83 3 4 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaA08g10510D BnaSGR1-A08 1341 273 8.32 30.67 3 4 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaCnng29210D BnaSGR1-Cnn 1378 264 8.85 29.57 3 4 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaC01g14360D BnaSGR1-C01 5975 999 8.65 112.40 11 12 质膜Plasma membrane
甘蓝型油菜 Brassica napus BnaC07g37710D BnaSGR1-C07 1616 266 8.60 29.92 3 4 叶绿体Chloroplast
白菜 Brassica rapa Bra013656 BraSGR1a-A01 5705 950 8.48 106.87 10 11 质膜Plasma membrane
白菜 Brassica rapa Bra028385 BraSGR1b-A01 804 113 10.02 13.00 1 2 叶绿体Chloroplast
白菜 Brassica rapa Bra019346 BraSGR1-A03 1125 264 8.60 29.73 3 4 叶绿体Chloroplast
白菜 Brassica rapa Bra020829 BraSGR1-A08 982 254 8.57 28.55 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol014983 BoSGR1-C01 1252 269 9.01 30.49 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol010654 BoSGR1-C03 1018 264 8.85 29.57 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol042063 BoSGR1-C07 1106 266 8.41 29.78 3 4 叶绿体Chloroplast
AT4G11910/SGR2
甘蓝型油菜 Brassica napus BnaA03g24900D BnaSGR2-A03 1776 262 9.28 29.96 4 5 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaC03g72930D BnaSGR2-C03 1654 274 9.00 31.14 3 4 叶绿体Chloroplast
白菜 Brassica rapa Bra000755 BraSGR2-A03 1335 274 9.22 31.08 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol030516 BoSGR2-C03 1194 263 8.94 30.15 3 4 叶绿体Chloroplast
AT1G44000/SGRL
甘蓝型油菜 Brassica napus BnaA10g08850D BnaSGRL-A10 1387 257 9.15 29.28 3 4 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaC06g00560D BnaSGRL-C06 1455 257 9.15 29.17 3 4 叶绿体Chloroplast
白菜 Brassica rapa Bra036938 BraSGRL-Scaffold000123 1067 257 9.24 29.34 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol006958 BoSGRL-Scaffold000269 1096 259 8.40 29.29 3 4 叶绿体Chloroplast
AT4G11911/SGLP
甘蓝型油菜 Brassica napus BnaCnng70460D BnaSGLP-Cnn 983 246 7.99 28.05 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol044955 BoSGLP-C02 982 267 8.44 28.13 3 4 叶绿体Chloroplast

Fig. 1

Phylogenetic tree of SGR gene family in Brassica napus, Brassica rapa, Brassica oleracea, and Arabidopsis thaliana"

Fig. 2

Systematic comparative analysis of SGR genes of Arabidopsis thaliana, Brassica rapa, Brassica oleracea, and Brassica napus chromosomes"

Fig. 3

Distribution of SGR genes in Brassica rapa, Brassica oleracea, and Brassica napus chromosomes The numbers of chromosomes are labeled on the left side of each chromosome. A and C are the chromosomes from Brassica rapa and Brassica oleracea; chrA and chrC are the chromosomes of the A-subgenomes and C-subgenomes from Brassica napus, respectively. Random means genes are distributed randomly to the specific chromosome, and chrCnn is unanchored scaffold that cannot be mapped to a specific chromosome from the C-subgenomes."

Fig. 4

Syntenic analysis of SGR genes in Brassica napus, Brassica oleracea, Brassica rapa, and Arabidopsis thaliana Syntenic analysis between Brassica napus showed by pink lines. Syntenic analysis between Brassica napus, Brassica rapa, and Brassica oleracea are indicated by green lines. Syntenic analysis among Arabidopsis thaliana, Brassica napus, Brassica rapa, and Brassica oleracea are indicated by brown lines."

Fig. 5

Genome-wide association study of chlorophyll content at seedling and bolting stages in 203 rapeseed accessions Haplotype region (6,193,165-6,317,757 bp) and haplotype region (9,059,861-9,906,618 bp) were significant association with chlorophyll content. In these haplotype regions carrying two orthologues of Arabidopsis gene BnaSGR1a-A01 (BnaA01g12570D) and BnaSGR1-C01 (BnaC01g14360D) are involved in chlorophyll biosynthesis process. The heat map spans the SNP markers in LD with the most strongly associated SNPs. The horizontal red dotted line represents the significant threshold (-log10(P)=4). ss_GH: chlorophyll content index in seedling stage (glasshouse experiments, 2012), bs_GH: chlorophyll content index in bolting stage (glasshouse experiments, 2012)."

Fig. 6

Association analysis of candidate genes for chlorophyll content within whole-genome resequencing of 50 accessions A: the regional association analysis of chlorophyll content in haplotype region (6,193,165-6,312,172 bp; r2=0.55). The blue dotted line indicates a threshold P-value of 1.0×10-3 for genome-wide significance. B: SNP chrA01:6306874 locates in exon two region of BnaSGR1a-A01 gene showed associated with chlorophyll content. C and D: the comparative analysis of allele G and T related to gene expression and chlorophyll content. Allele frequency greater than 0.05 in the population will be used for this analysis. The box plot showed that the allele G corresponding to inbred lines had higher chlorophyll content and gene expression level."

Fig. 7

Overexpression of BnaSGR1a-A01 in Arabidopsis A: the schematic diagram of the overexpresed vector backbone; B: the comparison of one-month seedling age true leaves (No. 4-6) of Col-0 and OE lines, bar:5 mm; C: the qRT-PCR detection of Col-0 and OE lines; D-F: the determination of chlorophyll a, chlorophyll b and total chlorophyll in Col-0 and OE lines; Col-0: non-transgenic plant; OE-BnaSGR1-13,OE-BnaSGR1-14: transgenic plant. *: P < 0.05; **: P < 0.01. Error bars indicate the standard derivations."

Fig. 8

Co-expression network analysis of BnaSGR1a-A01 genes A: the co-expression network of BnaSGR1a-A01 in the silique of Brassica napus. Red nodes represent BnaSGR genes, turquoise triangle node represent these genes directly correlation with BnaSGR genes. B: the partly co-expression network of BnaSGR1a-A01 in the silique of Brassica napus. Based on the functional annotation, the genes in the BnaSGR1a-A01 co-expression network are classified into the following three groups: chlorophyll (light blue nodes), photosystem (turquoise nodes), and transcription factors (darkolivegreen nodes). C: GO pathway of BnaSGR1a-A01 co-expression networks. Deep yellow represents that BnaSGR1a-A01 is significant correlation with these metabolism process."

[1] 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜供需现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7.
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. China Oils Fats, 2022, 47(2): 1-7. (in Chinese with English abstract)
[2] Czyczyło-Mysza I, Tyrka M, Marcińska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie S A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed, 2013, 32: 189-210.
doi: 10.1007/s11032-013-9862-8
[3] Wu X L, Liu Z H, Hu Z H, Huang R Z. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol, 2014, 56: 582-593.
doi: 10.1111/jipb.12158
[4] 梁颖, 李加纳, 唐章林, 谌利, 张学昆. 油菜光合生理指标与产量的关联分析. 西南农业大学学报, 1999, (3): 38-41.
Liang Y, Li J N, Tang Z L, Chen L, Zhang X K. Correlative analysis of photosynthesis physiological targets and yield of rape. J Southwest Univ, 1999, (3): 38-41 (in Chinese with English abstract).
[5] Thomas H, Ougham H. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017
[6] Ren G D, An K, Liao Y, Zhou X, Cao Y J, Zhao H F, Ge X C, Kuai B K.Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol, 2007, 144: 1429-1441.
doi: 10.1104/pp.107.100172
[7] 康文霞, 董军刚, 梁晓芳, 许婷, 杨其东, 董振生. 甘蓝型油菜含油量与角果叶绿素质量分数的相关性. 西北农业学报, 2015, 24(11): 57-63.
Kang W X, Dong J G, Liang X F, Xu T, Yang Q D, Dong Z S. Correlation study between oil content and chlorophyll in pod during pod formation in Brassica napus. Acta Agric Boreali-Occident Sin, 2015, 24(11): 57-63. (in Chinese with English abstract)
[8] Hua S J, Chen Z H, Zhang Y F, Yu H S, Lin B G, Zhang D Q. Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L. Bot Stud, 2014, 55: 34.
doi: 10.1186/1999-3110-55-34
[9] Hua W, Li R J, Zhan G M, Liu J, Li J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 2012, 69: 432-444.
doi: 10.1111/tpj.2012.69.issue-3
[10] 李凤阳, 何激光, 官春云. 油菜叶片和角果光合作用研究进展. 作物研究, 2011, 25: 405-409.
Li F Y, He J G, Guan C Y. Advances in photosynthesis of leaves and scones in rape. Crop Res, 2011, 25: 405-409. (in Chinese with English abstract)
[11] 孙佩光, 吴琼, 徐碧, 常胜合, 苗红霞, 金志强. 植物滞绿基因STAY-GREEN的研究进展. 植物生理学报, 2015, 51: 1017-1023.
Sun P G, Wu Q, Xu B, Chang S H, Miao H X, Jin Z Q. Progress in research on STAY-GREEN genes in plants. Plant Physiol J, 2015, 51: 1017-1023. (in Chinese with English abstract)
[12] Thomas H, Howarth C J. Five ways to stay green. J Exp Bot, 2000, 51: 329-337.
doi: 10.1093/jexbot/51.suppl_1.329
[13] 任钧, 王晓磊, 高炯, 周强, 徐永平, 蒯本科. 国内大豆品种资源中滞绿(stay-green)性状的初步研究. 植物生理学报, 2014, 50: 1336-1346.
Ren J, Wang X L, Gao J, Zhou Q, Xu Y P, Kuai B K. A preliminary study on the stay-green traits of soybean varieties. Plant Physiol J, 2014, 50: 1336-1346. (in Chinese with English abstract)
[14] Wang N, Kong X M, Luo M L, Sun Y Y, Liu Z Y, Feng H, Ji S J. SGR mutation in pak choi prolongs its shelf life by retarding chlorophyll degradation and maintaining membrane function. Posth Biol Technol, 2022, 191: 111986.
doi: 10.1016/j.postharvbio.2022.111986
[15] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[16] Qian L W, Qian W, Snowdon R J. Haplotype hitchhiking promotes trait co-selection in Brassica napus. Plant Biotechnol J, 2016, 14: 1578-1588.
[17] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[18] Turner S D. qqman: an R package for visualizing GWAS results using QQ and Manhattan plots. J Open Source Softw, 2018, 3: 731.
doi: 10.21105/joss
[19] 刘蔚, 姚敏, 康郁, 王美, 解盼, 何昕, 刘忠松, 官春云, 钱伟, 华玮, 钱论文. GWAS结合共表达网络分析挖掘影响油菜种子硫苷积累的作用位点. 农业生物技术学报, 2019, 27: 1729-1741.
Liu W, Yao M, Kang Y, Wang M, Xie P, He X, Liu Z S, Guan C Y, Qian W, Hua W, Qian L W. GWAS and coexpression network combination uncovers effect loci in the accumulation of glucosinolates content in Brassica napus. J Agric Biotechnol, 2019, 27: 1729-1741. (in Chinese with English abstract)
[20] Dong H L, Tan C D, Li Y Z, He Y, Wei S, Cui Y X, Chen Y G, Wei D Y, Fu Y, He Y J, Wan H F, Liu Z, Xiong Q, Lu K, Li J N, Qian W. Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci, 2018, 9: 921.
[21] Aulchenko Y S, Ripke S, Isaacs A, Van Duijn C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007, 23: 1294-1296.
doi: 10.1093/bioinformatics/btm108 pmid: 17384015
[22] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559 pmid: 19114008
[23] Smoot M E, Ono K, Ruscheinski J, Wang P L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011, 27: 431-432.
doi: 10.1093/bioinformatics/btq675 pmid: 21149340
[24] 郝华玲. PIF4在6-BA诱导的拟南芥幼苗花青素及叶绿素含量变化中的重要作用. 兰州大学硕士学位论文, 甘肃兰州, 2013.
Hao H L. The Key Role of PIF4 in 6-BA Induced Changes in Anthocyanin and Chlorophyll Content in Arabidopsis Seedlings. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2013. (in Chinese with English abstract)
[25] 任国栋.拟南芥叶绿素降解相关基因NYE1NYE2CRN1的鉴定及其功能研究. 复旦大学博士学位论文, 上海, 2009.
Ren G D.Identification of NYE1, NYE2, CRN1 and Their Roles in Chlorophyll Degradation in Arabidopsis. PhD Dissertation of Fudan University, Shanghai, China, 2009. (in Chinese with English abstract)
[26] Bade R G, Bao M L, Jin W Y, Ma Y, Niu Y D, Hasi A. Genome-wide identification and analysis of the SGR gene family in Cucumis melo L. Genet Mol Res, 2016, 15: gmr15048485.
[27] Barry C S, McQuinn R P, Chung M Y, Besuden A, Giovannoni J J. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol, 2008, 147: 179-187.
doi: 10.1104/pp.108.118430 pmid: 18359841
[28] Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664.
doi: 10.1105/tpc.106.044891
[29] Aubry S, Mani J, Hörtensteiner S. Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol, 2008, 67: 243-256.
doi: 10.1007/s11103-008-9314-8
[30] Yang X T, Zhang Z Q, Joyce D, Huang X M, Xu L Y, Pang X Q. Characterization of chlorophyll degradation in banana and plantain during ripening at high temperature. Food Chem, 2009, 114: 383-390.
doi: 10.1016/j.foodchem.2008.06.006
[31] Wu S X, Li Z P, Yang L F, Xie Z K, Chen J Y, Zhang W, Liu T Q, Gao S, Gao J, Zhu Y H, Xin J W, Ren G D, Kuai B K. NON-YELLOWING 2 (NYE2), a close paralog of NYE1, plays a positive role in chlorophyll degradation in Arabidopsis. Mol Plant, 2016, 9: 624-627.
[32] Sakuraba Y, Kim D, Kim Y S, Hörtensteiner S, Paek N C. Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett, 2014, 588: 3830-3837.
doi: 10.1016/j.febslet.2014.09.018
[33] Brychkova G, Xia Z L, Yang G H, Yesbergenova Z, Zhang Z L, Davydov O, Fluhr R, Sagi M. Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J, 2007, 50: 696-709.
doi: 10.1111/j.1365-313X.2007.03080.x pmid: 17425719
[1] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[2] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[3] YANG Yi-Dan, HE Du, LIU Jing, ZHANG Yan, CHEN Fei-Zhi, WU Yan-Fei, DU Xue-Zhu. Application of host-induced gene silencing interfering with Sclerotinia sclerotiorum pathogenic gene OAH in Brassica napus resistance to Sclerotinia sclerotiorum [J]. Acta Agronomica Sinica, 2023, 49(6): 1542-1550.
[4] LIU Jia, GONG Fang-Yi, LIU Ya-Xi, YAN Ze-Hong, ZHONG Xiao-Ying, CHEN Hou-Lin, HUANG Lin, and WU Bi-Hua. Genome-wide association study for agronomic traits in common wheat lines derived from wild emmer wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1184-1196.
[5] YANG Tai-Hua, YANG Fu-Quan, GAO Geng-Dong, YIN Shuai, JIN Qing-Dong, XU Lin-Shan, KUAI Jie, WANG Bo, XU Zheng-Hua, GE Xian-Hong, WANG Jing, ZHOU Guang-Sheng. Preliminary exploration of the role of LncRNA in the ecotype differentiation of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(5): 1197-1210.
[6] ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221.
[7] CHEN Hui, XIAO Qin, WANG Hua-Dong, WEN Jing, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, YI Bin. Identification of SUMO protein family members and functional study of Bna.SUMO1.C08 gene in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 917-925.
[8] CHEN Xiao-Han, WANG Li-Qin, WANG Hua-Dong, XIAO Qing, TAO Bao-Long, ZHAO Lun, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. BnABCI8 affects chloroplast development of Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 893-905.
[9] BAI Cheng-Cheng, YAO Xiao-Yao, WANG Yu-Lu, WANG Sai-Yu, LI Jin-Ying, JIANG You-Wei, JIN Shu-Rong, CHEN Chun-Jie, LIU Yu, WEI Xing-Yue, XU Xin-Fu, LI Jia-Na, NI Yu. Cloning of genes involved in cuticular very-long-chain alkane synthesis and its interaction with BnCER1-2 in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(4): 1016-1027.
[10] YANG Bin, QIAO Ling, ZHAO Jia-Jia, WU Bang-Bang, WEN Hong-Wei, ZHANG Shu-Wei, ZHENG Xing-Wei, ZHENG Jun. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 744-754.
[11] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
[12] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[13] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[14] WANG Xue, WANG Wen-Hui, LI Dong, YAO Xia, ZHU Yan, CAO Wei-Xing, CHENG Tao. Difference between bidirectional reflectance factor and directional-hemispherical reflectance factor spectra and its effect on the estimation of leaf chlorophyll content in wheat [J]. Acta Agronomica Sinica, 2023, 49(2): 485-496.
[15] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .