Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1954-1967.doi: 10.3724/SP.J.1006.2023.24185

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationship of “LabelmeP1.0”-derived vascular parameters with agronomic traits in sorghum

LU Meng-Qi1(), XIE Ruo-Han1(), LI Xiang2, YANG Ming-Chong1, HE Zi-Wei1, GAO Jie3, ZHAO Xiao-Yan3, SHEN Xiang-Ling4, CHEN Yan2, WANG Ji-Bin1,5, HU Li-Hua1, DUAN Ming-Zheng1,*(), WANG Ling-Qiang1,*()   

  1. 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources / Guangxi Key Laboratory of Sugarcane Biology / College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    2School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi, China
    3Guizhou Drought Grain Sorghum Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
    4Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), China Three Gorges University, Yichang 443002, Hubei, China
    5Moutai Institute, Renhuai 564507, Guizhou, China
  • Received:2022-08-09 Accepted:2022-11-25 Online:2023-07-12 Published:2022-12-07
  • Contact: *E-mail: duanmingzheng@gxu.edu.cn; E-mail: lqwang@gxu.edu.cn E-mail:2117301031@st.gxu.edu.cn;ruohanxie@163.com;duanmingzheng@gxu.edu.cn;lqwang@gxu.edu.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    The Guizhou Science and Technology Support Project(黔科合支撑[2020]1Y053号)

Abstract:

Stem vascular bundle plays an important role in the mechanical supporting and material transportation of crops. To extract the vascular bundle parameters from the crop stem slices, we developed a high-throughput method “LabelmeP1.0”, which combined the image-annotation function of commercial software “Labelme” with the Python programming language. A total of 26 parameters including both the primary and secondary parameters related to stem regions and vascular bundles was generated in 92 sorghum germplasm resources. 15 parameters related to the number, size, location, proportion, and the density of vascular bundle were summarized as the core indexes by correlation analysis and principal component analysis. In addition, the number and the density of vascular parameters were positively related to agronomic traits including panicle weight, grain weight, and number of primary rachis branch. The germplasm resources could be divided into three categories, namely, class I with lower plant height, thicker stem, thinner rind, fewer seeds, and more vascular bundles, in contrast class II with higher plant height, thinner stems, fewer seeds and vascular bundles and, class III with lower plant height, thicker stem, more seeds and vascular bundles. This study provides the methodology and new ideas for the study of the stem anatomical parameters in crops.

Key words: sorghum, vascular bundles, anatomical structure, image processing

Table 1

Germplasm resources of this study"

序号
No.
品种名称
Variety name
来源
Source
序号
No.
品种名称
Variety name
来源
Source
1 川糯粱1号 Chuannuoliang 1 中国四川Sichuan, China 47 RH7.1 中国贵州Guizhou, China
2 川糯粱2号 Chuannuoliang 2 中国四川Sichuan, China 48 V-9 中国贵州Guizhou, China
3 国窖1号 Guojiao 1 中国四川Sichuan, China 49 Q1 中国贵州Guizhou, China
4 红糯15 Hongnuo 15 中国四川Sichuan, China 50 Q14-3 中国贵州Guizhou, China
5 红缨子1号 Hongyingzi 1 中国四川Sichuan, China 51 Q15 中国贵州Guizhou, China
6 机糯粱2号 Jinuoliang 2 中国四川Sichuan, China 52 Q24 中国贵州Guizhou, China
7 金糯粱1号 Jinnuoliang 1 中国四川Sichuan, China 53 Q27 中国贵州Guizhou, China
8 金糯粱2号 Jinnuoliang 2 中国四川Sichuan, China 54 Q4-1 中国贵州Guizhou, China
9 金糯粱5号 Jinnuoliang 5 中国四川Sichuan, China 55 兴湘粱Xingxiangliang 中国湖南 Hunan, China
10 金糯粱6号 Jinnuoliang 6 中国四川Sichuan, China 56 K1781 中国吉林 Jilin, China
11 金糯粱9号 Jinnuoliang 9 中国四川Sichuan, China 57 糯3 Nuo 3 中国吉林 Jilin, China
12 晋杂34 Jinza 34 中国四川Sichuan, China 58 湘糯R Xiangnuo R 中国吉林 Jilin, China
13 辽甜1号 Liaotian 1 中国四川Sichuan, China 59 1269R 中国辽宁Liaoning, China
14 青壳洋1号 Qingkeyang 1 中国四川Sichuan, China 60 1791# 中国辽宁Liaoning, China
15 香谕糯3号 Xiangyunuo 3 中国四川Sichuan, China 61 85061R 中国辽宁Liaoning, China
16 宜糯红5号 Yinuohong 5 中国四川Sichuan, China 62 85063R 中国辽宁Liaoning, China
17 3410 中国四川Sichuan, China 63 LR622 中国辽宁Liaoning, China
18 10098 中国四川Sichuan, China 64 LR625 中国辽宁Liaoning, China
19 10121 中国四川Sichuan, China 65 剑LR Jian LR 中国辽宁Liaoning, China
20 19号 19 中国四川Sichuan, China 66 郑♂ 1 Zheng♂ 1 中国北方 North China
21 吨粮王 Dunliangwang 中国贵州Guizhou, China 67 Early sumac Sorgo 美国 America
22 红壳糯(矮)
Hongkenuo (dwarf)
中国贵州Guizhou, China 68 HAGEENDYRA 美国 America
23 红缨子2号 Hongyingzi 2 中国贵州Guizhou, China 69 Hegari #750 美国 America
24 茅粱糯2号 Maoliangnuo 2 中国贵州Guizhou, China 70 IS-0114 美国 America
25 黔高7号 Qiangao 7 中国贵州Guizhou, China 71 IS-0170 美国 America
26 黔高8号 Qiangao 8 中国贵州Guizhou, China 72 IS-0223 美国 America
27 青壳洋2号 Qingkeyang 2 中国贵州Guizhou, China 73 IS-0508 美国 America
28 青选2号 Qingxuan 2 中国贵州Guizhou, China 74 IS-0829 美国 America
29 齐杂4号 Qiza 4 中国贵州Guizhou, China 75 IS-0835 美国 America
30 青1 Qing 1 中国贵州Guizhou, China 76 IS-0874 美国 America
31 青2 Qing 2 中国贵州Guizhou, China 77 IS-1159C 美国 America
32 青35 Qing 35 中国贵州Guizhou, China 78 IS-1166C 美国 America
33 8009 中国贵州Guizhou, China 79 IS-1291 美国 America
34 8039 中国贵州Guizhou, China 80 IS-1461 美国 America
35 125# 中国贵州Guizhou China 81 IS-2217 美国 America
36 260# 中国贵州Guizhou, China 82 IS-6439C 美国 America
37 2V-29 中国贵州Guizhou, China 83 IS-8337 美国 America
38 43# 中国贵州Guizhou, China 84 ICSB 51-1 印度 India
39 44# 中国贵州Guizhou, China 85 ICSB 51-2 印度 India
40 92-2V-50 中国贵州Guizhou, China 86 ICSB 55 印度 India
41 G2 中国贵州Guizhou, China 87 ICSB 56 印度 India
42 G216 中国贵州Guizhou, China 88 ICSH 11 印度 India
43 G752 中国贵州Guizhou, China 89 ICSH 12 印度 India
44 G8 中国贵州Guizhou, China 90 ICSH 15 印度 India
45 RH17.1 中国贵州Guizhou, China 91 ICSR 160 印度 India
46 RH28.2 中国贵州Guizhou, China 92 ICSV 1 印度 India

Table 2

Stem vascular bundle parameters generated by “LabelmeP1.0”"

序号
No.
性状和参数
Trait and parameter
说明
Description
一级参数Primary parameters
1 大维管束数目
Number of large vascular bundles (NLVB)
labelme 导出的 json 文件中标为大维管束的轮廓总数
Number of contours labeled as large vascular bundles in json file
2 小维管束数目
Number of small vascular bundles (NSVB)
labelme 导出的 json 文件中标为小维管束的轮廓总数
Number of contours labeled as small vascular bundles in json file
3 总维管束数目
Total number of vascular bundles (TNVB)
大、小维管束数目之和
The number of LVB plus the number of SVB
4 大(小)维管束面积和
Total area of vascular bundles (TALVB or TASVB) *
对多边形轮廓, 用cv2.contourArea()格林公式计算面积, 圆形轮廓以圆面积公式πr²计算面积, 最后加总
Total area of vascular bundles was the sum of the area of individual vascular bundle. Area of each LVB (polygon contour) was calculated by Cv2.ContourArea() Green’s formula, whereas the area of each SVB (circular contour) was calculated by the formula πr²
5 大(小)维管束平均面积
Area of vascular bundles (ALVB or ASVB)
大(小)维管束面积和除以大(小)维管束数目
Total area of LVB (or SVB) divided by the number of LVB (or SVB), respectively
6 大(小)维管束中心
Vascular bundles point (LVBP or SVBP) *
对多边形轮廓, 用cv2.minEnclosingCircle() 确定轮廓最小包围圆, 以该圆圆心为轮廓中心。圆形轮廓以圆心为轮廓中心
The central point of a circle determined by cv2.minEnclosingCircle() (LVB as the polygon contour) and the central point of a circle (SVB as circular contour)
7 大(小)维管束离心距
Vascular bundle distance (LVBD or SVBD)
逐一计算大(小)维管束中心与茎中心的距离, 将所有距离加总后除以大(小)维管束数目
The mean values of the distance of the central point of LVB (or SVB) from the stem center point
8 茎直径Stem diameter (SD) cv2.minEnclosingCircle()确定茎轮廓的最小包围圆, 以该圆直径为茎直径
The diameter of a circle determined by cv2.minEnclosingCircle() (stem slice as the polygon contour)
9 茎中心Stem center point (SCP) * cv2.minEnclosingCircle()确定茎轮廓的最小包围圆, 以该圆圆心为茎中心
The central point of a circle determined by cv2.minEnclosingCircle() (stem slice as the polygon contour)
10 茎周长Stem circumference (SC) cv2.arcLength()计算封闭轮廓的周长
Perimeter of the stem (closed contour) was calculated with cv2.arcLength()
11 茎面积Stem area (SA) * cv2.contourArea()格林公式计算茎轮廓的面积
Area of stem (closed contour) was calculated with cv2.contourArea()
12 空腔面积Cavity area (CA) cv2.contourArea()格林公式计算空腔轮廓的面积
Area of cavity (closed contour) was calculated with cv2.contourArea()
13 去腔茎面积SA-CA 茎面积减去空腔面积
Stem area minus cavity area
14 皮厚度Rind thickness (RT) 皮指外围厚壁组织, 下同。将大维管束最大离心距和小维管束最小离心距的平均视作内环半径, 茎半径减内环半径
Rind thickness was calculated as the stem semidiameter minus the r of the inner edge of rind. The r was estimated by the average of the maximal LVBD and the minimum SVBD.
15 内环面积Parenchyma area (PA) * 以圆面积计算公式πr²计算得到内环面积
Parenchyma area was calculated with πr²
16 皮面积Rind area (RA) 茎面积减去内环面积
Stem area minus parenchyma area
二级参数Secondary parameter
17 大维管束数目占比
Proportion of NLVB (%)
大维管束数目占总维管束数目的百分比
Proportion of the number of LVB to the total number of vascular bundles (%)
18 大维管束面积占比
Proportion of TALVB (%)
大维管束面积和占维管束总面积的百分比
Proportion of the total area of LVB to the total area of all vascular bundles (%)
19 大小维管束平均面积比值
ALVB/ASVB
大维管束平均面积与小维管束平均面积之比
The ratio of the area of LVB to the area of SVB
20 大(小)维管束面积占茎比
Percentage of TALVB to (SA-CA) (%)
大(小)维管束面积和占去腔茎面积的百分比
Percentage of the total area of LVB (or SVB) to the stem area (without cavity area) (%)
21 大维管束面积占内环比
Percentage of TALVB to (PA-CA) (%)
大维管束面积和占内环面积(减空腔后)的百分比
Percentage of the total area of LVB to the parenchyma area (without cavity area) (%)
22 小维管束面积占皮比
Percentage of TASVB to RA (%)
小维管束面积和占皮面积的百分比
Percentage of the total area of SVB to the rind area (%)
23 大(小)维管束相对离心距LVBD/ SD/2 大(小)维管束到茎中心的平均距离与茎半径的比值
Ratio of the distance of LVB (or SVB) to the stem semidiameter
24 小维管束“周长密度”NSVB/SC 小维管束数目除以茎周长
Number of SVB divided by the length of stem circumference
25 小维管束“面积密度”NSVB/RA 小维管束数目除以皮面积
Number of SVB divided by the rind area
26 大维管束“面积密度”NLVB/(PA-CA) 大维管束数目除以内环面积(减空腔后)
Number of LVB divided by the parenchyma area (without cavity area)
27 空腔面积占茎比
Percentage of CA to SA (%)
空腔面积占茎面积的百分比
Percentage of the cavity area to stem area (%)

Table 3

Statistics of vascular bundle parameters and agronomic traits of sorghum germplasm resources"

性状和参数
Trait and parameter
均值
Mean
最小值
Min.
最大值
Max.
变异系数
CV (%)
偏度
Skew.
峰度
Kurt.
大维管束数目NLVB 209.4 89 390 32.5 0.4 -0.6
小维管束数目NSVB 173.5 65 282 29.0 0.0 -0.3
总维管束数目TNVB 382.9 163 672 29.8 0.3 -0.5
大维管束平均面积ALVB (mm2) 0.023 0.013 0.047 27.2 1.3 2.1
小维管束平均面积ASVB (mm2) 0.010 0.003 0.020 45.4 0.6 -0.6
大维管束离心距LVBD (mm) 3.5 2.1 5.2 18.4 0.3 0.1
小维管束离心距SVBD (mm) 4.5 2.9 7.0 17.5 0.4 0.4
茎直径SD (mm) 9.7 6.3 14.6 16.8 0.4 0.4
茎周长SC (mm) 29.6 19.2 45.0 17.1 0.4 0.4
空腔面积CA (mm2) 1.8 0.0 11.9 153.2 2.0 4.2
去腔茎面积SA-CA (mm2) 68.9 28.4 159.8 35.7 1.1 1.7
皮厚度RT (mm) 0.5 0.3 0.9 20.0 0.6 1.0
皮面积RA (mm2) 9.2 4.1 21.0 32.6 1.2 3.0
大维管束数目占比Proportion of NLVB (%) 54.5 43.8 65.2 8.2 -0.2 -0.2
大维管束面积占比Proportion of TALVB (%) 74.7 54.7 88.7 10.5 -0.5 -0.3
大小维管束平均面积比值ALVB/ASVB 2.7 1.5 5.3 37.2 0.8 -0.5
大维管束面积占茎百分比Percentage of ALVB to (SA-CA) (%) 7.2 4.3 11.5 24.7 0.5 -0.4
大维管束面积占内环百分比Percentage of TALVB to (PA-CA) (%) 7.6 4.6 12.2 24.3 0.5 -0.4
小维管束面积占茎百分比Percentage of TASVB to (SA-CA) (%) 2.6 0.8 7.1 52.7 0.9 0.3
小维管束面积占皮面积百分比Percentage of TASVB to RA (%) 19.8 5.9 44.2 56.7 0.5 -1.1
大维管束相对离心距2LVBD/ SD (%) 71.6 65.8 76.6 2.9 -0.3 -0.2
小维管束相对离心距2SVBD/ SD (%) 93.4 90.1 96.2 1.6 -0.2 -0.7
小维管束周长密度NSVB/SC(No. mm-1) 5.8 2.8 8.4 20.9 -0.4 -0.1
小维管束面积密度NSVB/RA(No. mm-2) 19.9 8.4 36.2 32.2 0.5 -0.1
大维管束面积密度NLVB/(PA-CA) (No. mm-2) 3.3 2.0 4.8 17.2 0.1 -0.1
空腔面积占茎百分比Percentage of CA to SA (%) 2.7 0.0 16.3 144.6 1.6 2.3
株高Plant height (cm) 161.5 71.0 278.0 27.8 0.5 -0.2
单株鲜重Plant fresh weight (g) 265.7 79.0 609.7 38.4 1.4 2.3
穗长Panicle length (cm) 25.9 8.7 41.0 19.9 -0.3 0.7
穗重Panicle weight (g) 54.6 10.2 194.6 72.7 1.7 2.7
一级枝梗数No. of primary rachis branches (NPRB) 50.1 27.8 90.8 26.2 1.1 1.2
千粒重1000-grain weight (g) 20.3 7.0 33.1 22.2 0.2 1.1

Fig. 1

Correlation analysis of the primary parameters of stem vascular bundles TALVB: total area of large vascular bundles; CA: cavity area; SA: stem area; LVBD: large vascular bundle distance; SD: stem diameter; NLVB: the number of large vascular bundles; TASVB: total area of small vascular bundles; RA: rind area. df = 90, r0.05 = 0.205."

Table 4

Principal component analysis (PCA) of vascular bundle parameters (27) in sorghum"

性状和参数
Traits and parameters
PC1
(40.4%)*
PC2
(21.8%)*
PC3
(10.2%)*
PC4
(8.4%)*
PC5
(7.1%)*
大维管束数目NLVB 7.7 0.5 2.5 1.4 1.8
小维管束数目NSVB 7.7 0.2 2.0 1.4 1.9
总维管束数目TNVB 8.3 0.1 2.5 1.5 0
大维管束平均面积ALVB 4.9 0.2 9.6 0.1 0.1
小维管束平均面积ASVB 4.0 3.4 10.5 3.5 0.1
大维管束离心距LVBD 7.4 3.3 0.3 0.6 0.3
小维管束离心距SVBD 7.3 3.5 0.2 0.3 0.8
茎直径SD 7.1 4.0 0 0.1 0.8
茎周长SC 7.3 3.7 0.1 0.3 0.8
空腔面积CA 0.3 2.5 0.2 23.7 1.6
去腔茎面积SA-CA 7.4 3.1 0 0 1.3
皮厚度RT 0.1 4.3 9.4 7.9 0.1
皮面积RA 3.0 5.6 5.9 0.2 0.8
大维管束数目占比Proportion of NLVB 0.1 4.8 0 0 27.2
大维管束面积占比Proportion of TALVB 0.5 11.4 2.9 3.2 4.7
大小维管束平均面积比值ALVB/ASVB 0.9 7.6 3.6 4.9 0.1
大维管束面积占茎百分比Percentage of ALVB to (SA-CA) 4.8 1.2 2.4 1.0 14.0
大维管束面积占内环百分比Percentage of TALVB to (PA-CA) 4.5 1.2 3.1 1.1 14.7
小维管束面积占茎百分比Percentage of TASVB to (SA-CA) 2.0 10.3 5.0 1.0 0
小维管束面积占皮百分比Percentage of TASVB to RA 3.8 8.8 0.5 1.4 0
大维管束相对离心距2LVBD/SD 3.3 0 8.3 8.5 2.5
小维管束相对离心距2SVBD/SD 2.6 0.6 10.0 8.6 0.3
小维管束“周长密度”NSVB/SC 3.0 5.7 3.5 3.8 2.2
小维管束“面积密度”NSVB/RA 0.8 7.0 13.2 0.4 0.3
大维管束“面积密度”NLVB/(PA-CA) 0.1 4.8 4.3 4.7 20.8
空腔面积占茎百分比Percentage of CA to SA 1.1 2.2 0 20.4 2.9

Fig. 2

Heat map of the correlation between core parameters of stem vascular bundles and agronomic traits in sorghum stem NLVB: the number of large vascular bundles; TALVB: total area of large vascular bundles; LVBD: large vascular bundle distance; SD: stem diameter; NSVB: the number of small vascular bundles; SC: stem circumference; TASVB: total area of small vascular bundles; RA: rind area; CA: cavity area; SA: stem area; PA: parenchyma area. df = 90, r0.05 = 0.205."

Fig. 3

Scatter plots of the significant correlations between vascular bundles parameter and agronomic traits in sorghum stem ***, **, and * indicate significant correlations at the 0.001, 0.01, and 0.05 probability levels, respectively. LVB: large vascular bundles; SVB: small vascular bundles; TVB: total vascular bundles; SC: stem circumference; TASVB: total area of small vascular bundles; RA: rind area."

Fig. 4

Clustering analysis of sorghum resources and the vascular bundle of representative materials"

Fig. 5

Boxplots for the comparison of the characters of three classes of sorghum resources Abbreviations are the same as those given in Table 3."

[1] 王瑞, 凌亮, 詹鹏杰, 于纪珍, 楚建强, 平俊爱, 张福耀. 控制高粱分蘖与主茎株高一致性的基因定位. 作物学报, 2019, 45: 829-838.
doi: 10.3724/SP.J.1006.2019.84111
Wang R, Ling L, Zhan P J, Yu J Z, Chu J Q, Ping J A, Zhang F Y. Mapping of genes confessing same height of tiller and main stem in sorghum. Acta Agron Sin, 2019, 45: 829-838. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84111
[2] 周驰燕, 李国辉, 许轲, 张晨晖, 杨子君, 张芬芳, 霍中洋, 戴其根, 张洪程. 不同类型水稻品种茎叶维管束与同化物运转特征. 作物学报, 2022, 48: 2053-2065.
doi: 10.3724/SP.J.1006.2022.12038
Zhou C Y, Li G H, Xu K, Zhang J Y, Yang Z J, Zhang F F, Huo Z Y, Dai Q G, Zhang H C. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties. Acta Agron Sin, 2022, 48: 2053-2065. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12038
[3] 汪灿, 阮仁武, 袁晓辉, 胡丹, 杨浩, 林婷婷, 何沛龙, 李燕, 易泽林. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014, 40: 1846-1856.
doi: 10.3724/SP.J.1006.2014.01846
Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Lin T T, He P L, Li Y, Yi Z L. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat. Acta Agron Sin, 2014, 40: 1846-1856 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01846
[4] Muhammad A, Hao H H, Xue Y L, Alam A, Bai S M, Hu W C, Muhammad S, Hu Z, Samad R A, Li Z H, Liu P Y, Gong Z Q, Wang L Q. Survey of wheat straw stem characteristics for enhanced resistance to lodging. Cellulose, 2020, 27: 2469-2484.
doi: 10.1007/s10570-020-02972-7
[5] 周海宇, 江禹奉, 杨明冲, 程伟东, 覃兰秋, 谢小东, 谢和霞, 覃宝祥, 王令强. 玉米茎秆强度与维管束及纤维评价. 植物遗传资源学报, 2022, 23: 1636-1643.
Zhou H Y, Jiang Y F, Yang M C, Cheng W D, Qin L Q, Xie X D, Xie H X, Qin B X, Wang L Q. Evaluation of stalk strength, vascular bundle and fiber in maize. J Plant Genet Resour, 2022, 23: 1636-1643. (in Chinese with English abstract)
[6] 刘晓东, 王春光, 郭文斌, 栗霞飞, 靳敏, 杜晓雪. 甜高粱弯曲力学特性试验研究. 农机化研究, 2020, 42(7): 180-185.
Liu X D, Wang C G, Guo W B, Li X F, Jin M, Du X X. Experiments on bending mechanical properties of sweet sorghum. J Agric Mechan Res, 2020, 42(7): 180-185. (in Chinese with English abstract)
[7] 李源, 赵海明, 游永亮, 武瑞鑫, 张遂林, 刘贵波. 饲草高粱茎秆特征与抗倒性关系分析. 草地学报, 2020, 28: 1798-1804.
doi: 10.11733/j.issn.1007-0435.2020.06.037
Li Y, Zhao H Y, You Y L, Wu R X, Zhang S L, Liu G B. Analysis of the relationship between stem traits and lodging resistance of forage sorghum. Acta Agrest Sin, 2020, 28: 1798-1804. (in Chinese with English abstract)
[8] 冯金凤, 张保军, 赵广才, 常旭虹, 王德梅, 杨玉双. 氮磷钾肥对小麦产量及主茎维管束的影响. 麦类作物学报, 2012, 32: 923-925.
Feng J F, Zhang B J, Zhao G C, Chang X H, Wang D M, Yang Y S. Effect of nitrogen phosphorus potassium fertilizer application on grain yield and main stem vascular bundle of wheat. J Triticeae Crops, 2012, 32: 923-925 (in Chinese with English abstract).
[9] 李国辉, 张国, 崔克辉. 水稻穗颈维管束特征及其与茎鞘同化物转运和产量的关系. 植物生理学报, 2019, 55: 329-341.
Li G H, Zhang G, Cui K H. Characteristics of vascular bundles of peduncle and its relationship with translocation of stem assimilates and yield in rice. Plant Physiol J, 2019, 55: 329-341. (in Chinese with English abstract)
doi: 10.1111/ppl.1982.55.issue-3
[10] Kanbar A, Shakeri E, Alhajturki D, Riemann M, Bunzel M, Morgano M T, Stapf D, Nick P. Sweet versus grain sorghum: differential sugar transport and accumulation are linked with vascular bundle architecture. Ind Crops Prod, 2021, 167: 113550.
doi: 10.1016/j.indcrop.2021.113550
[11] 徐胜勇, 段宏兵, 李东臣, 王令强, 刘生锐, 王怡田. 小麦茎秆截面参数显微图像测量系统. 农业机械学报, 2017, 48(7): 46-52.
Xu S Y, Duan H B, Li D C, Wang L Q, Liu S R, Wang Y T. Measurement system for parameters of wheat stem section based on microimage processing. Trans CSAM, 2017, 48(7): 46-52. (in Chinese with English abstract)
[12] 徐胜勇, 彭程里, 陈可, 王令强, 任喜峰, 段宏兵. 基于扇环形区域图像分割的小麦秸秆截面参数测量方法. 农业机械学报, 2018, 49(4): 53-59.
Xu S Y, Peng C L, Chen K, Wang L Q, Ren X F, Duan H B. Measurement method of wheat stalks cross section parameters based on sector ring region image segmentation. Trans CSAM, 2018, 49(4): 53-59. (in Chinese with English abstract)
[13] 陈燕, 朱成宇, 胡小春, 王令强. 基于改进Unet的小麦茎秆截面参数检测. 农业机械学报, 2021, 52(7): 169-176.
Chen Y, Zhu C Y, Hu X C, Wang L Q. Detection of wheat stem section parameters based on improved Unet. Trans CSAM, 2021, 52(7): 169-176. (in Chinese with English abstract)
[14] Du J J, Zhang Y, Guo X Y, Ma L M, Shao M, Pan X D, Zhao C J. Micron-scale phenotyping quantification and three-dimensional microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning. Funct Plant Biol, 2016, 44: 10-22.
doi: 10.1071/FP16117 pmid: 32480542
[15] Zhang Y, Ma L M, Wang J L, Wang X D, Guo X Y, Du J J. Phenotyping analysis of maize stem using micro-computed tomography at the elongation and tasseling stages. Plant Methods, 2020, 16: 2.
doi: 10.1186/s13007-019-0549-y pmid: 31911811
[16] Wu D, Wu D, Feng H, Duan L F, Dai G X, Liu X, Wang K, Yang P, Chen G X, Gay A P, Doonan J H, Niu Z Y, Xiong L Z, Yang W N. A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits. Plant Commun, 2021, 2: 100165.
doi: 10.1016/j.xplc.2021.100165
[17] Yu L J, Shi J W, Huang C L, Duan L F, Wu D, Fu D B, Wu C Y, Xiong L Z, Yang W N, Liu Q. An integrated rice panicle phenotyping method based on X-ray and RGB scanning and deep learning. Crop J, 2021, 9: 42-56.
doi: 10.1016/j.cj.2020.06.009
[1] WANG Yuan, WANG Jin-Song, DONG Er-Wei, LIU Qiu-Xia, WU Ai-Lian, JIAO Xiao-Yan. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets [J]. Acta Agronomica Sinica, 2023, 49(7): 1968-1978.
[2] LI Bang, LIU Chun-Juan, GUO Jun-Jie, WU Yu-Xin, DENG Zhi-Cheng, ZHANG Min, CUI Tong, LIU Chang, ZHOU Yu-Fei. Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1372-1385.
[3] WANG Jin-Song, BAI Ge, ZHANG Yan-Hui, SHEN Tian-Yu, DONG Er-Wei, JIAO Xiao-Yan. Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(3): 845-855.
[4] CHEN Bing-Ru, YU Miao, GE Zhan-Yu, LI Hong-Kui, HUANG Yan, LI Hai-Qing, SHI Gui-Shan, XIE Li, XU Ning, YAN Feng, GAO Shi-Jie, ZHOU Zi-Yang, WANG Nai. Analysis of heterotic groups and heterosis patterns of sorghum in early- maturing area [J]. Acta Agronomica Sinica, 2023, 49(2): 343-353.
[5] SONG Jie, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LI Liang, WANG Shao-Xiang, HUANG Jin-Ling, LIU Peng. Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2908-2919.
[6] WANG Qian, LIU Shao-Xiong, CHAI Xiao-Jiao, LI Hai, ZHANG Fen, LU Ping, WANG Rui-Yun, LIU Min-Xuan. Content diversity of phenolic compounds of waxy sorghum grains in different provinces, cities, and autonomous regions of China [J]. Acta Agronomica Sinica, 2022, 48(10): 2505-2516.
[7] CHENG Yan-Shuang, HU Mei-Yan, DU Zhi-Min, YAN Bing-Chun, LI Li, WANG Yi-Wei, JU Xiao-Tang, SUN Li-Li, XU Hai. Effects of nitrogen reduction on stem vascular bundles, panicle and yield characters of RIL populations in Liaojing 5/Akitakaomaqi and their correlation [J]. Acta Agronomica Sinica, 2021, 47(5): 964-973.
[8] WANG Yuan, WANG Jin-Song, DONG Er-Wei, WU Ai-Lian, JIAO Xiao-Yan. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution [J]. Acta Agronomica Sinica, 2021, 47(2): 342-350.
[9] DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle [J]. Acta Agronomica Sinica, 2021, 47(12): 2459-2470.
[10] ZHANG Rui-Dong,XIAO Meng-Ying,XU Xiao-Xue,JIANG Bing,XING Yi-Fan,CHEN Xiao-Fei,LI Bang,AI Xue-Ying,ZHOU Yu-Fei,HUANG Rui-Dong. Responses of sorghum hybrids to germination temperatures and identification of low temperature resistance [J]. Acta Agronomica Sinica, 2020, 46(6): 889-901.
[11] GUO Xue-Min,ZHAO Xiao-Man,XU Ke,WANG Xin-Rui,ZHANG Chen-Yu,DONG-FANG Yang. Anatomy and microscopic observation of Ricinus communis seed structure [J]. Acta Agronomica Sinica, 2020, 46(6): 914-923.
[12] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[13] Rui WANG,Liang LING,Peng-Jie ZHAN,Ji-Zhen YU,Jian-Qiang CHU,Jun-Ai PING,Fu-Yao ZHANG. Mapping of genes confessing same height of tiller and main stem in sorghum [J]. Acta Agronomica Sinica, 2019, 45(6): 829-838.
[14] ZHANG Xiao-Xiao,PAN Ying-Hong,REN Fu-Li,PU Wei-Jun,WANG Dao-Ping,LI Yu-Bin,LU Ping,LI Gui-Ying,ZHU Li. Establishment of an accurate evaluation method for drought resistance based on multilevel phenotype analysis in sorghum [J]. Acta Agronomica Sinica, 2019, 45(11): 1735-1745.
[15] Jing DONG,Xiao-Ping LU,Kun-Ming ZHANG,Chun-Lei XUE,Rui-Xia ZHANG. Analysis of SNP and Allele-specific Expression in Transcriptome of Sorghum bicolor × Sorghum sudanense and Their Parents [J]. Acta Agronomica Sinica, 2018, 44(12): 1809-1817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .