Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2296-2307.doi: 10.3724/SP.J.1006.2023.21051

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat

LIU Shi-Jie1(), YANG Xi-Wen1, MA Geng1,2, FENG Hao-Xiang1, HAN Zhi-Dong1, HAN Xiao-Jie1, ZHANG Xiao-Yan1, HE De-Xian1, MA Dong-Yun1,2, XIE Ying-Xin1,2, WANG Li-Fang1,2,*(), WANG Chen-Yang1,2,*()   

  1. 1 College of Agronomy, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, Henan, China
    2 Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2022-09-30 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-27
  • Contact: WANG Li-Fang,WANG Chen-Yang E-mail:liushijie9787@163.com;wanglifang605@126.com;xmzxwang@163.com
  • Supported by:
    National Natural Science Foundation of China(32001475);Key Science and Technology Project of Henan Province(222102110166);Key Scientific Research Project of Henan Province(21A210025);Science and Technology Innovation Fund of Henan Agricultural University(KJCX2020A01)

Abstract:

The morphological and physiological characteristics of the root system determine the ability of a plant to obtain nutrients and water. In winter wheat, to building a sensible root population structure, coordinating root-shoot growth, and improving the efficiency of N fertilizer utilization, root morphological characteristic and root activity in response to water and nitrogen (N) and their relationships with dry matter accumulation in shoots, yield, and N utilization were analyzed. A field experiment was conducted using split-plot on design two factors. Two main levels of water supply, W0 (no irrigation during the whole growth period) and W1 (irrigation once each at the jointing and flowering stages), and three secondary levels of N application [N0 (0 kg hm-2), N180 (180 kg hm-2), and N300 (300 kg hm-2)] were set. Compared with W0, W1 inhibited the increase of root length density but increased the root average diameter in the 0-20 cm and 20-40 cm soil layers, increased root surface area and root dry weight density in the 0-20 cm soil layer, significantly increased root activity by 4.98%-22.7%, reduced root-shoot ratio by 1.47%-11.25%, and yield, N uptake efficiency, and partial productivity of N fertilizer increased by 15.50%, 13.40%, and 14.91%, respectively. Compared with N0, N application promoted root growth, significantly increased the average root diameter, root length density, root surface area, root dry weight density, and root activity, while decreasing the root-shoot ratio. N180 was more beneficial to root growth than N300, N180 improved root morphological indicators and activity, while increasing yield, N uptake efficiency and agronomic use efficiency of N fertilizer by 2.53%, 44.51%, and 39.37%, respectively. Correlation analysis revealed that root dry weight density from jointing stage to flowering stages was positively correlated with the yield and N use efficiency, while the root-shoot ratio was negatively correlated with yield and positively correlated with N use efficiency. Therefore, appropriate levels of irrigation and N application optimized root morphology and distribution, improved root activity, coordinated root and shoot dry matter distribution and improved yield and N utilization. In winter wheat production, W1N180 is beneficial to promote the synergistic improvement of yield and N use efficiency.

Key words: winter wheat, root characteristics, root-shoot ratio, yield, nitrogen use efficiency

Fig. 1

Daily average temperature and rainfall in winter wheat growing season during 2020-2021 and 2021-2022 period"

Table 1

Soil water content and total nitrogen in 0-40 cm soil layer in experiment site at sowing and maturity stages"

土层
Soil layer (cm)
处理
Treatment
土壤含水量Soil water content (%) 全氮含量Total nitrogen (g kg-1)
播前Sowing 收获Maturity 播前Sowing 收获Maturity
0-20 W0N0 16.46 5.19 0.86 0.76
W0N180 16.46 5.73 0.86 0.92
W0N300 16.46 5.29 0.86 0.90
W1N0 16.87 8.47 0.88 0.79
W1N180 16.87 8.19 0.88 0.91
W1N300 16.87 8.24 0.88 0.85
20-40 W0N0 16.09 5.51 0.69 0.41
W0N180 16.09 5.80 0.69 0.37
W0N300 16.09 5.39 0.69 0.48
W1N0 15.98 9.16 0.70 0.42
W1N180 15.98 8.77 0.70 0.52
W1N300 15.98 8.43 0.70 0.59

Table 2

Effects of water and nitrogen treatment on winter wheat yield and its component from 2020 to 2022"

处理
Treatment
2020-2021 2021-2022
穗数
NS (×104 spikes hm-2)
穗粒数
GNS
千粒重
TGW (g)
产量
GY (kg hm-2)
穗数
NS (×104 spikes hm-2)
穗粒数
GNS
千粒重
TGW (g)
产量
GY (kg hm-2)
W0 524.7 b 31.0 a 50.1 a 7420 b 461.4 b 32.5 b 50.5 a 7623 b
W1 586.4 a 31.8 a 49.0 b 8766 a 532.5 a 34.6 a 47.8 b 8570 a
N0 500.0 b 29.9 b 53.5 a 7614 b 369.2 c 31.7 b 52.3 a 6323 c
N180 575.4 a 31.2 ab 49.2 b 8253 a 541.7 b 34.1 a 49.4 b 9328 a
N300 591.3 a 33.1 a 45.8 c 8412 a 580.0 a 34.9 a 45.8 c 8638 b
W0N0 490.8 b 29.5 b 54.1 a 6977 a 358.3 b 31.0 b 52.8 a 5901 c
W0N180 535.8 a 30.7 ab 50.3 b 7555 a 507.5 a 32.9 ab 50.7 b 8824 a
W0N300 547.5 a 32.7 a 45.9 c 7727 a 518.3 a 33.7 a 48.0 c 8145 b
W1N0 509.2 b 30.3 b 52.8 a 8251 b 380.0 c 32.3 b 51.8 a 6746 c
W1N180 615.0 a 31.7 ab 48.3 b 8950 a 575.8 b 35.3 a 48.0 b 9832 a
W1N300 635.0 a 33.5 a 45.7 c 9098 a 641.7 a 36.0 a 43.6 c 9132 b
F-value
W 45.51*** 2.22NS 13.00** 76.10*** 44.10*** 14.62** 409.96*** 47.43***
N 37.93*** 10.96** 193.49*** 9.98** 146.67*** 13.29*** 795.35*** 174.79***
W×N 5.69* 0.01NS 2.41NS 0.10NS 7.53** 0.44NS 52.27*** 0.14NS

Table 3

Effects of water and nitrogen treatment on nitrogen use efficiencies in winter wheat from 2020 to 2022"

处理
Treatment
2020-2021 (kg kg-1) 2021-2022 (kg kg-1)
氮素利用效率
NUE
氮素吸收效率
UPE
氮肥农学效率
NAE
氮肥偏生产力
PFPF
氮素利用效率
NUE
氮素吸收效率
UPE
氮肥农学效率
NAE
氮肥偏生产力
PFPF
W0 32.30 b 1.20 b 2.86 a 33.87 b 41.90 b 1.03 b 11.86 b 38.09 b
W1 33.75 a 1.45 a 3.35 a 40.02 a 44.78 a 1.10 a 12.55 a 42.53 a
N0 35.58 a 52.36 a
N180 32.50 b 1.59 a 3.55 a 45.85 a 40.76 b 1.25 a 16.69 a 51.82 a
N300 30.99 c 1.06 b 2.66 a 28.04 b 36.90 c 0.89 b 7.72 b 28.79 b
W0N0 35.54 a 52.44 a
W0N180 31.03 b 1.48 a 3.21 a 41.97 a 39.07 b 1.21 a 16.24 a 49.02 a
W0N300 30.34 b 0.93 b 2.50 a 25.76 b 34.19 c 0.86 b 7.48 b 27.15 b
W1N0 35.63 a 52.28 a
W1N180 33.98 b 1.69 a 3.88 a 49.72 a 42.44 b 1.28 a 17.14 a 54.62 a
W1N300 31.65 c 1.20 b 2.82 b 30.33 b 39.62 c 0.92 b 7.95 b 30.44 b
F-value
W 17.52** 148.79*** 1.12NS 79.52*** 42.18*** 26.20*** 6.81* 40.60***
N 60.90*** 690.27*** 3.56NS 665.01*** 439.42*** 704.57*** 1152.16*** 1089.62***
W×N 5.70* 2.65NS 0.14NS 5.30NS 13.56*** 0.16NS 0.66NS 2.74NS

Fig. 2

Root morphological indices at different growth stages of winter wheat within different soil layers under different water and nitrogen treatments from 2020 to 2021 Treatments are the same as those given in Table 2. Values within the same growth period followed by different letters mean significant difference among the treatments at P < 0.05."

Table 4

Root morphological indices at anthesis stage of winter wheat within different soil layers under different water and nitrogen treatments from 2021 to 2022"

处理
Treatment
根系平均直径
Average root diameter
(mm)
根长密度
Root length density
(cm cm-3)
根表面积
Root surface area
(mm2 cm-3)
根干重密度
Root dry weight density
(g cm-3)
0-20 cm 20-40 cm 0-20 cm 20-40 cm 0-20 cm 20-40 cm 0-20 cm 20-40 cm
W0 0.30 b 0.29 b 5.21 a 1.70 a 49.07 b 15.48 a 406.03 b 122.37 a
W1 0.34 a 0.31 a 4.95 b 1.37 b 53.06 a 13.45 b 446.99 a 110.38 a
N0 0.31 b 0.29 b 3.74 c 1.22 c 36.07 c 11.11 c 354.81 c 104.34 c
N180 0.33 a 0.32 a 6.11 a 1.82 a 63.82 a 18.09 a 478.61 a 130.41 a
N300 0.32 b 0.29 b 5.40 b 1.57 b 53.32 b 14.19 b 446.10 b 114.37 b
W0N0 0.29 e 0.28 cd 3.79 d 1.31 d 34.58 d 11.50 d 345.64 d 110.46 c
W0N180 0.31 d 0.30 b 6.25 a 2.07 a 60.92 b 19.64 a 452.93 a 135.95 a
W0N300 0.30 e 0.28 d 5.59 bc 1.73 b 51.70 c 15.31 b 419.53 c 120.70 b
W1N0 0.32 c 0.30 b 3.69 d 1.13 e 37.56 d 10.73 d 363.98 d 98.22 d
W1N180 0.36 a 0.34 a 5.97 ab 1.57 bc 66.71 a 16.54 b 504.30 a 124.87 b
W1N300 0.34 b 0.29 bc 5.20 c 1.41 cd 54.93 c 13.08 c 472.68 a 108.05 c
F-value
W 226.38*** 41.32*** 4.37NS 62.99*** 9.03* 25.52*** 28.06*** 28.73***
N 33.28*** 27.47*** 130.94*** 69.64*** 148.26*** 100.60*** 91.92*** 46.08***
W×N 1.55NS 2.91NS 0.46NS 4.94NS 0.46NS 2.87NS 2.14NS 0.04NS

Table 5

Root activity at different growth stages of winter wheat within different soil layers under different water and nitrogen treatments from 2020 to 2021 (μg g-1 h-1 FW)"

处理
Treatment
0-20 cm 20-40 cm
拔节期
Jointing stage
开花期
Anthesis stage
灌浆期
Filling stage
成熟期
Maturity stage
拔节期
Jointing stage
开花期
Anthesis stage
灌浆期
Filling stage
成熟期
Maturity stage
W0 93.72 b 52.90 b 35.38 b 22.04 b 57.91 b 46.45 b 32.79 b 19.90 a
W1 104.50 a 62.98 a 43.61 a 24.22 a 60.87 a 49.75 a 36.85 a 21.24 a
N0 92.25 b 53.27 c 34.01 c 18.50 b 56.24 b 42.04 b 29.33 c 17.49 b
N180 105.42 a 62.46 a 44.87 a 24.56 a 61.74 a 52.67 a 39.06 a 22.59 a
N300 99.67 a 58.09 b 39.61 b 26.33 a 60.20 ab 49.59 a 36.07 b 21.64 a
W0N0 87.46 c 49.69 c 29.87 e 18.03 c 54.43 c 40.64 d 27.95 c 17.12 c
W0N180 97.55 bc 56.38 b 41.75 bc 22.94 b 59.71 abc 50.90 ab 37.35 a 21.16 b
W0N300 96.16 bc 52.63 bc 34.52 de 25.15 ab 59.59 abc 47.80 bc 33.07 b 21.43 b
W1N0 97.03 bc 56.85 b 38.15 cd 18.97 c 58.04 bc 43.43 cd 30.71 bc 17.86 c
W1N180 113.29 a 68.53 a 48.00 a 26.18 ab 63.77 a 54.44 a 40.76 a 24.01 a
W1N300 103.18 ab 63.56 a 44.69 ab 27.51 a 60.81 ab 51.38 ab 39.07 a 21.84 ab
F-value
W 14.97** 38.84*** 43.40*** 5.09* 4.97* 5.52* 15.25** 4.56 NS
N 7.49** 10.76** 25.20*** 24.03*** 6.07* 20.16*** 30.69*** 25.04***
W×N 0.86NS 0.86NS 0.82NS 0.48NS 0.44NS 0.03NS 0.90NS 1.48NS

Table 6

Dry biomass and root-shoot ratios of winter wheat under different water and nitrogen treatments"

指标
Index
处理
Treatment
拔节期
Jointing stage
开花期
Anthesis stage
灌浆期
Filling stage
成熟期
Maturity stage
根系干重 W0N0 590.4 a 700.4 c 635.1 b 552.0 c
Root dry weight (kg hm-2) W0N180 618.8 a 763.2 b 699.1 ab 599.3 abc
W0N300 586.9 a 727.1 bc 659.5 b 570.9 bc
W1N0 610.0 a 737.1 bc 673.3 ab 594.2 abc
W1N180 634.1 a 833.8 a 758.8 a 655.5 a
W1N300 612.5 a 764.5 b 699.0 ab 630.1 ab
地上部干重 W0N0 6771.0 c 10,609.0 c 12,823.1 c 14,550.4 d
Shoot dry weight (kg hm-2) W0N180 7446.6 ab 12,278.9 b 14,603.7 b 16,828.0 c
W0N300 7588.0 ab 12,656.8 b 14,933.0 b 17,757.2 c
W1N0 7093.7 bc 11,874.8 b 14,239.9 b 16,599.4 c
W1N180 7731.0 ab 14,924.7 a 16,800.4 a 21,055.9 b
W1N300 8007.3 a 15,237.4 a 17,632.8 a 22,499.9 a
根冠比 W0N0 0.087 a 0.066 a 0.050 a 0.038 a
Root-shoot ratio W0N180 0.083 a 0.062 ab 0.048 ab 0.036 ab
W0N300 0.077 a 0.058 abc 0.044 bc 0.032 bc
W1N0 0.086 a 0.062 ab 0.047 ab 0.036 ab
W1N180 0.082 a 0.056 bc 0.045 ab 0.031 bc
W1N300 0.077 a 0.050 c 0.040 c 0.028 c

Fig. 3

Correlation analysis of different growth stages root dry weight density, root-shoot ratio, grain yield, and nitrogen utilization GY: grain yield; JRWD, ARWD, FRWD, and MRWD represent root dry weight density at jointing, anthesis, filling, and maturity stage, respectively. JR/S, AR/S, FR/S, and MR/S represent the ratio of root to shoot at jointing, flowering, filling and maturity stage, respectively; UPE: N uptake efficiency; NAE: agronomic use efficiency of N fertilizer; PFPF: the partial productivity of N fertilizer. * indicates significant at the 0.05 probability level; ** indicates significant at the 0.01 probability level; *** indicates significant at the 0.001 probability level. The red circle shows a positive correlation and the blue shows a negative correlation."

[1] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[2] 马元喜. 小麦的根. 北京: 中国农业出版社, 1999.
Ma Y X. The Roots of Wheat. Beijing: China Agriculture Press, 1999. (in Chinese)
[3] Yang W U, Bian S F, Liu Z M, Wang L C, Wang Y J, Xu W H, Zhou Y. Drip irrigation incorporating water conservation measures: effects on soil water-nitrogen utilization, root traits and grain production of spring maize in semi-arid areas. J Integr Agric, 2021, 20: 3127-3142.
doi: 10.1016/S2095-3119(20)63314-7
[4] Forde B, Lorenzo H. The nutritional control of root development. Plant Soil, 2001, 232: 51-68.
doi: 10.1023/A:1010329902165
[5] 展文洁, 刘剑钊, 梁尧, 袁静超, 张洪喜, 刘松涛, 蔡红光, 任军. 不同耕作方式对玉米根系特性及养分吸收转运的影响. 植物营养与肥料学报, 2020, 26: 817-825.
Zhan W J, Liu J Z, Liang Y, Yuan J C, Zhang H X, Liu S T, Cai H G, Ren J. Effect of soil tillage modes on root morphology and nutrient uptake and translocation of maize. Plant Nutr Fert Sci, 2020, 26: 817-825. (in Chinese with English abstract)
[6] Chen J, Liu L T, Wang Z B, Zhang Y J, Sun H C, Song S J, Bai Z Y, Lu Z Y, Li C D. Nitrogen fertilization increases root growth and coordinates the root-shoot relationship in cotton. Front Plant Sci, 2020, 11: 880-893.
doi: 10.3389/fpls.2020.00880 pmid: 32655605
[7] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-55.
doi: 10.1016/j.fcr.2015.02.007
[8] 彭亚静, 汪新颖, 张丽娟, 郝晓然, 乔继杰, 王玮, 吉艳芝. 根层调控对小麦-玉米种植体系氮素利用及土壤硝态氮残留的影响. 中国农业科学, 2015, 48: 2187-2198.
doi: 10.3864/j.issn.0578-1752.2015.11.010
Peng Y J, Wang X Y, Zhang L J, Hao X R, Qiao J J, Wang W, Ji Y Z. Effects of root layer regulation on nitrogen utilization and soil NO3-N residue of wheat-maize system. Sci Agric Sin, 2015, 48: 2187-2198. (in Chinese with English abstract)
[9] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714-727.
doi: 10.3724/SP.J.1006.2021.01048
Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Seedling root characteristic and drought resistance of wheat in Shanxi province. Acta Agron Sin, 2021, 47: 714-727. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01048
[10] 马忠明, 陈娟, 刘婷婷, 吕晓东. 水氮耦合对固定道垄作栽培春小麦根长密度和产量的影响. 作物学报, 2017, 43: 1705-1714.
Ma Z M, Chen J, Liu T T, Lyu X D. Effects of water and nitrogen coupling on root length density and yield of spring wheat in permanent raised-bed cropping system. Acta Agron Sin, 2017, 43: 1705-1714. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01705
[11] Xu C L, Tao H B, Tian B J, Gao Y B, Ren J H, Wang P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Res, 2016, 196: 268-275.
doi: 10.1016/j.fcr.2016.07.009
[12] 张伟, 李鲁华, 吕新. 不同灌水量对滴灌春小麦根系时空分布、水分利用率及产量的影响. 西北农业学报, 2016, 25: 361-371.
Zhang W, Li L H, Lyu X. Effects of drip irrigation amount on root spatial and temporal distribution, water use efficiency and yield in spring wheat. Acta Agric Boreali-Occident Sin, 2016, 25: 361-371. (in Chinese with English abstract)
[13] 张素瑜, 王和洲, 杨明达, 王静丽, 贺德先. 水分与玉米秸秆还田对小麦根系生长和水分利用效率的影响. 中国农业科学, 2016, 49: 2484-2496.
doi: 10.3864/j.issn.0578-1752.2016.13.004
Zhang S Y, Wang H Z, Yang M D, Wang J L, He D X. Influence of returning corn stalks to field under different soil moisture contents on root growth and water use efficiency of wheat (Triticum aestivum L.). Sci Agric Sin, 2016, 49: 2484-2496. (in Chinese with English abstract)
[14] 段丽娜, 章建新, 薛丽华, 孙乾坤, 赵连佳. 施氮量对新疆滴灌冬小麦根系生长及产量的影响. 麦类作物学报, 2016, 36: 773-778.
Duan L N, Zhang J X, Xue L H, Sun Q K, Zhao L J. Effects of nitrogen application on the growth of root and yield of winter wheat under drip irrigation. J Triticeae Crops, 2016, 36: 773-778. (in Chinese with English abstract)
[15] 石祖梁, 杨四军, 张传辉, 顾克军. 氮肥运筹对稻茬小麦土壤硝态氮含量、根系生长及氮素利用的影响. 水土保持学报, 2012, 26(5): 118-122.
Shi Z L, Yang S J, Zhang C H, Gu K J. Effect of nitrogen application on soil nitrate nitrogen content, root growth and nitrogen utilization of winter wheat in rice-wheat rotation. J Soil Water Conserv, 2012, 26(5): 118-122. (in Chinese with English abstract)
[16] 陈智勇, 谢迎新, 张阳阳, 缑培欣, 马冬云, 康国章, 王晨阳, 郭天财. 小麦根长密度和根干重密度对氮肥的响应及其与产量的关系. 麦类作物学报, 2020, 40: 1223-1231.
Chen Z Y, Xie Y X, Zhang Y Y, Hou P X, Ma D Y, Kang G Z, Wang C Y, Guo T C. Response of root length density and root dry weight density to nitrogen fertilizer and their relationship with yield in wheat. J Triticeae Crops, 2020, 40: 1223-1231. (in Chinese with English abstract)
[17] Liu W X, Ma G, Wang C Y, Wang J R, Lu H F, Li S S, Feng W, Xie Y X, Ma D Y, Kang G Z. Irrigation and nitrogen regimes promote the use of soil water and nitrate nitrogen from deep soil layers by regulating root growth in wheat. Front Plant Sci, 2018, 9: 32.
doi: 10.3389/fpls.2018.00032 pmid: 29449850
[18] 孙婷, 张迪, 王冀川, 张建芳, 石元强, 比拉力·艾力, 朱娟. 滴灌水氮运筹对南疆春小麦根系生长及产量的影响. 干旱地区农业研究, 2020, 38: 10-20.
Sun T, Zhang D, Wang J C, Zhang J F, Shi Y Q, Bilali A, Zhu J. Effects of drip irrigation and nitrogen application on root growth and yield of spring wheat in southern Xinjiang. Agric Res Arid Areas, 2020, 38: 10-20. (in Chinese with English abstract)
[19] 陈娟, 马忠明, 吕晓东, 刘婷婷. 水氮互作对固定道垄作栽培春小麦根系生长及产量的影响. 应用生态学报, 2016, 27: 1511-1520.
doi: 10.13287/j.1001-9332.201605.033
Chen J, Ma Z M, Lyu X D, Liu T T. Influence of different levels of irrigation and nitrogen application on the root growth and yield of spring wheat under permanent raised bed. Chin J Appl Ecol, 2016, 27: 1511-1520. (in Chinese with English abstract)
[20] Bolinder M A, Ange D A, Dubuc J P. Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agric Ecosyst Environ, 1997, 63: 61-66.
doi: 10.1016/S0167-8809(96)01121-8
[21] 刘萍, 李明军, 丁义峰. 植物生理学实验. 北京: 科学出版社, 2016. pp 119-120.
Liu P, Li M J, Ding Y F. Plant Physiology Experiment. Beijing: Science Press, 2016. pp 119-120. (in Chinese)
[22] 张馨月, 王寅, 陈健, 陈安吉, 王莉颖, 郭晓颖, 牛雅郦, 张星宇, 陈利东, 高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响. 中国农业科学, 2019, 52: 34-44.
doi: 10.3864/j.issn.0578-1752.2019.01.004
Zhang X Y, Wang Y, Chen J, Chen A J, Wang L Y, Guo X Y, Niu Y L, Zhang X Y, Chen L D, Gao Q. Effects of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Sci Agric Sin, 2019, 52: 34-44. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.01.004
[23] Kareem S H S, Hawkesford M J, DeSilva J, Weerasinghe M, Wells D M, Pound M P, Atkinson J A, Foulkes M J. Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. Eur J Agron, 2022, 140: 126603.
doi: 10.1016/j.eja.2022.126603
[24] Rasmussen I S, Dresbll D B, Thorup-Kristensen K. Winter wheat cultivars and nitrogen (N) fertilization-Effects on root growth, N uptake efficiency and N use efficiency. Eur J Agron, 2015, 68: 38-49.
doi: 10.1016/j.eja.2015.04.003
[25] Liu X W, Zhang X Y, Chen S Y, Sun H Y, Shao L W. Subsoil compaction and irrigation regimes affect the root-shoot relation and grain yield of winter wheat. Agric Water Manag, 2015, 154: 59-67.
doi: 10.1016/j.agwat.2015.03.004
[26] 张志勇, 秦步坛, 熊淑萍, 王浩哲, 徐赛俊, 田文仲, 王小纯, 马新明. 小麦开花期灌水对土壤养分及根系分布的影响. 应用生态学报, 2022, 33: 1-11.
Zhang Z Y, Qin B Y, Xiong S P, Wang H Z, Xu S J, Tian W Z, Wang X C, Ma X M. Effects of irrigation at flowering stage on soil nutrient and root distribution in wheat field. Chin J Appl Ecol, 2022, 33: 1-11. (in Chinese with English abstract)
[27] Mu X, Chen F, Wu Q, Mi G H. Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. Eur J Agron, 2015, 63: 55-61.
doi: 10.1016/j.eja.2014.11.009
[28] Zhang H Z, Aziz K, Daniel K Y, Luo H H. Rational water and nitrogen management improves root growth, increases yield and maintains water use efficiency of cotton under mulch drip irrigation. Front Plant Sci, 2017, 8: 912-922.
doi: 10.3389/fpls.2017.00912 pmid: 28611817
[29] 方燕, 闵东红, 高欣, 王中华, 王军, 刘萍, 刘霞. 不同抗旱性冬小麦根系时空分布与产量的关系. 生态学报, 2019, 39: 2922-2934.
Fang Y, Min D H, Gao X, Wang Z H, Wang J, Liu P, Liu X. Relationship between spatiotemporal distribution of roots and grain yield of winter wheat varieties with differing drought tolerance. Acta Ecol Sin, 2019, 39: 2922-2934 (in Chinese with English abstract).
[30] Mehrabi F, Sepaskhah A R, Ahmadi S H. Winter wheat root distribution with irrigation, planting methods, and nitrogen application. Nutr Cycl Agroecosys, 2021, 119: 231-245.
doi: 10.1007/s10705-021-10120-1
[31] Wang C Y, Liu W X, Li Q X, Ma D Y, Lu H F, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res, 2014, 165: 138-149.
doi: 10.1016/j.fcr.2014.04.011
[32] 王秀波, 上官周平. 干旱胁迫下氮素对不同基因型小麦根系活力和生长的调控. 麦类作物学报, 2017, 37: 820-827.
Wang X B, Shang-Guan Z P. Effect of nitrogen on root vigor and growth in different genotypes of wheat under drought stress. J Triticeae Crops, 2017, 37: 820-827 (in Chinese with English abstract).
[33] 王艳哲, 刘秀位, 孙宏勇, 张喜英, 张连蕊. 水氮调控对冬小麦根冠比和水分利用效率的影响研究. 中国生态农业学报, 2013, 21: 282-289.
Wang Y Z, Liu X W, Sun H Y, Zhang X Y, Zhang L R. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat. Chin J Eco-Agric, 2013, 21: 282-289 (in Chinese with English abstract)
[34] 王宁, 冯克云, 南宏宇, 张铜会. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响. 中国农业科学, 2022, 55: 2187-2201.
doi: 10.3864/j.issn.0578-1752.2022.11.009
Wang N, Feng K Y, Nan H Y, Zhang T H. Effects of combined application of organic fertilizer and chemical fertilizer on root characteristics and yield of cotton under different water conditions. Sci Agric Sin, 2022, 55: 2187-2201. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.11.009
[35] Qi D, Hu T. Effects of nitrogen application rates and irrigation regimes on root growth and nitrogen-use efficiency of maize under alternate partial root-zone irrigation. J Soil Sci Plant Nutr, 2022, 22: 2793-2804.
doi: 10.1007/s42729-022-00846-4
[36] 田中伟, 樊永惠, 殷美, 王方瑞, 蔡剑, 姜东, 戴廷波. 长江中下游小麦品种根系改良特征及其与产量的关系. 作物学报, 2015, 41: 613-622.
doi: 10.3724/SP.J.1006.2015.00613
Tian Z W, Fan Y H, Yin M, Wang F R, Cai J, Jiang D, Dai T B. Genetic improvement of root growth and its relationship with grain yield of wheat cultivars in the middle-lower Yangtze river. Acta Agron Sin, 2015, 41: 613-622 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00613
[37] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141.
Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Trans CSAE, 2015, 31(10): 132-141. (in Chinese with English abstract)
[38] Liu W X, Wang J R, Wang C Y, Ma G, Wei Q R, Lu H F, Xie Y X, Ma D Y, Kang G Z. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China Plain. Front Plant Sci, 2018, 9: 1798-1812.
doi: 10.3389/fpls.2018.01798 pmid: 30568670
[1] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[2] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[3] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[4] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[5] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[6] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[7] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[8] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[9] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[10] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[11] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[12] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[13] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[14] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[15] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .