Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2684-2698.doi: 10.3724/SP.J.1006.2024.41022

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of stay-green-related traits in wheat under drought condition

CHEN Chen1(), CHENG Yu-Kun1, WANG Wei1,2, REN Yi1, ZHANG Hai-Yan1, CHEN Hui-Bo1, GENG Hong-Wei1,*()   

  1. 1College of Agronomy, Xinjiang Agricultural University / Special High Quality Triticeae Crops Engineering and Technology Research Center, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Department of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
  • Received:2024-03-14 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-18
  • Contact: *E-mail: hw-geng@163.com
  • Supported by:
    Special Project of Key Research and Development Task of Xinjiang Autonomous Region(2022B02001-3);Xinjiang Agriculture Research System(Wheat, XJARS-01)

Abstract:

Drought is the primary abiotic stress that significantly affects wheat production. Extending the duration of leaf greenness, thereby increasing photosynthetic time and efficiency, is crucial for wheat in ensuring organic matter accumulation under drought stress and ultimately stabilizing wheat yield. Understanding the developmental and genetic characteristics of flag leaf greenness retention in wheat and identifying stable molecular markers closely associated with greenness-related genes, independent of environmental influences, can significantly accelerate the breeding process for drought resistance. In this study, we utilized a DH population consisting of 174 lines derived from Yangmai 16 and Zhongmai 895 as experimental materials. We conducted phenotypic evaluations of the percentage of green leaf area (GLA) and relative chlorophyll content (SPAD value) in flag leaves at 10 d, 14 d, 18 d, 22 d, 26 d, and 30 d post-flowering under two moisture environments: normal drip irrigation (NI) and drought stress (DS). We simulated the change in GLA using the Gompertz model and performed QTL mapping for eleven greenness-related traits, including time to maximum senescence rate (TMRS), green leaf area duration (GLAD), average senescence rate (ARS), time to the beginning of rapid senescence (T1), time to the end of rapid senescence (T2), and the dynamic SPAD value of the flag leaf. The results revealed a phenomenon of transgressive segregation in GLA, aging characteristic parameters, and dynamic SPAD values of the DH population and parents under both well-watered and drought conditions, demonstrating certain differences. A consistent trend of slow-rapid-slow decline in GLA was observed at different time points across all families and parents, with rapid senescence primarily occurring at 18 d, 22 d, and 26 d Except for the negative correlation between ARS and GLA-10D, positive correlations were observed among all other traits. The heritability of each trait ranged from 0.50 to 0.81. Linkage analysis identified a total of 27 stable loci associated with greenness retention in wheat across two or more environments. Among these, 11 loci were associated with wheat senescence characterization trait parameters, and 16 loci were associated with dynamic SPAD values of the flag leaf. These loci were distributed on chromosomes 1A, 1B, 4B, 4D, 5D, 7B, and 7D, explaining 3.86%-14.11% and 2.99%-17.45% of the phenotypic variance, respectively. One QTL regulating T1 and five SPAD values on chromosomes 4B, 4D, and 7B were consistently detected across the three environments, explaining 8.97%-14.11% and 6.85%-17.45% of the phenotypic variance, respectively. The results of QTL co-localization effect analysis revealed that loci containing Rht-D1b and AA genotypes exhibited significant enhancement and cumulative effects on SPAD-10D, while loci containing GG and TT genotypes showed significant enhancement and cumulative effects on SPAD-18D. Four QTL clusters with significant effects were identified on chromosomes 4B, 4D, 7B, and 7D. Notably, the segment of the QTL cluster on chromosome 4D (18.80-28.58 Mb) remained unaffected by water availability and contained the Rht-D1 gene. The loci regulating SPAD-0D and SPAD-10D might be influenced by the multiplicative effect of this gene. Candidate gene analysis identified eight candidate genes, such as TraesCS4D01G054000, TraesCS1B01G434300, and TraesCS7B01G010200, which are associated with greenness retention. These findings provide a theoretical foundation for molecular marker-assisted breeding aimed at improving greenness retention in wheat.

Key words: wheat, stay-green-related traits, QTL localization, convergent effect, candidate genes

Table S1

Statistical analysis of the proportion of green leaf area in the flag leaf of DH population and parents"

性状
Trait
环境
Environment
处理
Treatment
亲本 Parents DH家系 DH Lines
扬麦16
Yangmai 16
中麦895
Zhongmai 895
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV
偏度
Skew.
峰度
Kurt.
GLA-10D E1 NI 10.00 10.00 9.10 10.00 9.94* 0.17 0.02 ‒2.92 8.46
DS 9.80 9.80 7.70 10.00 9.72 0.47 0.05 ‒2.45 6.13
E2 NI 10.00 10.00 9.10 10.00 9.98 0.09 0.01 ‒6.80 54.47
DS 9.80 10.00 8.80 10.00 9.97 0.14 0.01 ‒6.21 43.19
BLUE NI 10.00 10.00 9.20 10.00 9.96* 0.11 0.01 ‒3.68 17.89
DS 9.80 9.90 8.50 10.04 9.85 0.26 0.03 ‒2.55 7.19
GLA-14D E1 NI 9.60 10.00* 7.20 10.00 9.51* 0.58 0.06 ‒1.82 3.23
DS 7.60 8.80 4.00 10.00 8.63 1.30 0.15 ‒1.50 2.17
E2 NI 9.90 10.00 8.70 10.00 9.94 0.18 0.02 ‒4.68 23.94
DS 9.70 10.00* 8.30 10.00 9.93 0.22 0.02 ‒4.51 24.31
BLUE NI 9.75 10.00* 8.60 10.00 9.73* 0.31 0.03 ‒1.74 2.76
DS 8.65 9.40* 6.95 10.09 9.28 0.67 0.07 ‒1.47 2.01
GLA-18D E1 NI 6.30 7.90* 3.00 10.00 7.80* 1.58 0.20 ‒0.87 0.16
DS 2.90 4.60* 0.50 9.20 4.55 2.26 0.50 0.11 ‒0.95
E2 NI 9.40 10.00* 6.60 10.00 9.72* 0.49 0.05 ‒3.35 14.61
DS 8.80 10.00* 7.50 10.00 9.61 0.55 0.06 ‒1.95 3.78
BLUE NI 7.85 8.95 6.35 10.00 8.76* 0.82 0.09 ‒0.86 0.08
DS 5.85 7.30 4.30 9.60 7.08 1.18 0.17 0.00 ‒0.78
GLA-22D E1 NI 2.80 4.00* 0.50 9.60 4.42* 2.14 0.49 0.40 ‒0.83
DS 0.90 1.50* 0.00 7.20 2.21 1.67 0.75 0.58 ‒0.55
E2 NI 8.50 10.00* 6.10 10.00 9.08* 0.86 0.09 ‒1.06 0.84
DS 7.80 9.70* 4.00 9.90 7.83 1.31 0.17 ‒0.53 ‒0.44
BLUE NI 5.65 7.00 3.80 9.47 6.75* 1.19 0.18 0.14 ‒0.75
DS 4.35 5.60 2.00 8.30 5.02 1.19 0.24 0.01 ‒0.35
GLA-26D E1 NI 0.50 1.70* 0.00 7.60 1.93* 1.44 0.75 1.27 2.04
DS 0.00 0.90* 0.00 2.80 0.41 0.62 1.54 1.80 2.94
E2 NI 5.70 6.80* 1.50 8.80 5.56* 1.00 0.18 0.25 1.65
DS 4.30 5.50* 1.00 7.40 3.54 1.71 0.48 0.09 ‒0.97
BLUE NI 3.10 4.25 1.80 7.07 3.75* 0.99 0.26 0.73 0.52
DS 2.15 3.20 0.50 4.75 1.97 1.00 0.51 0.23 ‒0.69
GLA-30D E2 NI 1.10 2.60* 0.00 4.80 1.64* 1.08 0.66 0.87 0.45
DS 0.90 1.20 0.00 4.60 0.82 0.64 0.78 1.48 6.11

Fig. 1

Curve fitting results of biparental and DH populations under two moisture treatments in two environments E1: 2021-2022 Manasi; E2: 2022-2023 Sanping; Blue line: predicted value under normal drip irrigation conditions; red line: predicted value under drought stress conditions; Blue dots: measured values under normal drip irrigation conditions; Red dots: measured values under drought stress conditions."

Table 1

Statistical analysis of DH population and parental aging parameters"

性状
Trait
环境
Environ-
ment
处理
Treatment
亲本 Parents DH家系 DH line
扬麦16
Yangmai 16
中麦895
Zhongmai 895
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV
偏度
Skew.
峰度
Kurt.
TMRS (d) E1 NI 20.65 22.50* 13.93 31.27 22.71* 2.81 0.12 0.22 0.94
DS 16.84 18.82* 8.71 25.19 18.95 2.64 0.14 -0.42 0.74
E2 NI 27.69 29.02* 24.08 30.81 27.83* 1.16 0.04 0.37 0.36
DS 26.03 27.61* 22.29 30.92 25.93 1.55 0.06 -0.05 -0.29
BLUE NI 24.17 25.76 20.08 30.10 25.27* 1.67 0.07 0.28 0.48
DS 21.43 23.21 16.86 27.35 22.45 1.76 0.08 -0.22 0.11
GLAD (d) E1 NI 26.95 29.39* 19.74 40.53 28.76* 3.60 0.13 0.87 1.37
DS 23.38 25.33* 16.39 31.99 23.95 3.15 0.13 0.02 -0.80
E2 NI 32.28 33.39 27.28 39.02 32.32* 2.01 0.06 0.29 0.63
DS 31.14 31.67 25.20 37.11 30.07 2.16 0.07 0.10 -0.14
BLUE NI 29.61 31.39 25.67 38.44 30.55* 2.28 0.07 0.59 0.78
DS 27.26 28.50 21.33 33.00 27.01 2.09 0.08 -0.02 -0.29
ARS (% d-1) E1 NI -0.41 -0.38* -0.67 -0.27 -0.38* 0.06 0.15 -1.35 4.70
DS -0.52 -0.45* -1.30 -0.32 -0.47 0.11 0.24 -3.99 22.73
E2 NI -0.31 -0.31 -0.37 -0.26 -0.32* 0.02 0.06 -0.13 0.12
DS -0.32 -0.32 -0.41 -0.27 -0.34 0.03 0.07 -0.06 0.10
BLUE NI -0.36 -0.34 -0.52 -0.28 -0.35* 0.03 0.09 -1.08 4.13
DS -0.42 -0.39 -0.75 -0.32 -0.41 0.06 0.14 -3.16 15.50
T1 (d) E1 NI 18.93 20.61* 10.08 29.36 21.06* 2.99 0.14 -0.23 1.22
DS 15.05 17.04* 4.59 23.91 17.58 2.84 0.16 -0.85 2.20
E2 NI 26.43 27.82* 22.97 29.75 26.60* 1.06 0.04 0.35 1.25
DS 24.62 26.50* 20.94 29.23 24.79 1.49 0.06 -0.09 -0.39
BLUE NI 22.68 24.22 18.01 28.85 23.82* 1.70 0.07 0.01 0.57
DS 19.84 21.77 15.30 25.82 21.20 1.79 0.08 -0.40 0.43
T2 (d) E1 NI 22.38 24.39* 17.78 33.18 24.37* 2.81 0.12 0.59 0.94
DS 18.63 20.60* 12.82 26.46 20.32 2.60 0.13 -0.10 -0.31
E2 NI 28.95 30.22* 25.20 32.32 29.06* 1.33 0.05 0.33 -0.05
DS 27.43 28.72* 23.43 32.61 27.06 1.66 0.06 -0.01 -0.27
BLUE NI 25.66 27.30 22.15 32.39 26.71* 1.74 0.07 0.46 0.47
DS 23.03 24.66 18.41 28.90 23.70 1.78 0.08 -0.09 -0.09

Table S2

Statistical analysis of DH population and parental SPAD values"

性状
Trait
环境
Environment
处理
Treatment
亲本 Parents DH家系 DH Lines
扬麦16
Yangmai 16
中麦895
Zhongmai 895
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV
偏度
Skew.
峰度
Kurt.
SPAD-0D E1 NI 59.21 59.97 54.92 67.10 61.43 2.45 0.04 ‒0.45 0.26
DS 58.49 62.09* 54.99 66.86 61.19 2.31 0.04 ‒0.04 ‒0.05
E2 NI 59.66 60.42 53.36 64.38 59.33* 1.96 0.03 ‒0.09 0.32
DS 57.20 58.39 51.62 63.60 58.86 2.17 0.04 ‒0.58 0.51
BLUE NI 59.43 60.19 54.92 63.99 60.39 1.91 0.03 ‒0.60 0.20
DS 57.85 60.24* 53.30 63.94 60.02 1.94 0.03 ‒0.43 0.09
SPAD-10D E1 NI 59.63 59.49 54.69 68.00 62.48 2.63 0.04 ‒0.33 ‒0.11
DS 61.59 67.49* 55.17 70.06 62.72 2.76 0.04 0.03 ‒0.09
E2 NI 60.31 63.15* 55.60 65.71 60.89* 2.18 0.04 0.03 ‒0.49
DS 58.14 62.35* 55.70 65.29 60.26 2.00 0.03 ‒0.05 ‒0.37
BLUE NI 59.97 61.32 56.79 65.69 61.69* 2.04 0.03 ‒0.10 ‒0.78
DS 59.87 64.92* 56.73 67.52 61.48 2.02 0.03 0.19 0.06
SPAD-14D E1 NI 57.24 62.31* 52.54 70.12 61.76* 3.27 0.05 ‒0.18 0.11
DS 57.78 58.75 48.51 67.22 59.28 3.88 0.07 ‒0.39 ‒0.10
E2 NI 59.64 62.21 54.21 65.83 60.26 2.46 0.04 ‒0.19 ‒0.37
DS 59.90 63.29* 52.85 67.15 60.36 2.91 0.05 ‒0.26 ‒0.59
BLUE NI 58.44 62.26* 54.96 67.06 61.01 2.54 0.04 ‒0.14 ‒0.37
DS 58.84 61.02 51.90 65.19 59.82 2.79 0.05 ‒0.34 ‒0.47
SPAD-18D E1 NI 48.60 57.59* 40.34 67.61 56.29* 5.04 0.09 ‒0.59 0.41
DS 28.86 43.55* 7.68 65.41 48.49 9.49 0.20 ‒0.81 1.33
E2 NI 57.90 59.93* 50.93 65.89 59.03* 2.63 0.04 ‒0.10 ‒0.35
DS 56.68 60.49 50.61 64.82 58.18 2.55 0.04 ‒0.27 ‒0.22
BLUE NI 53.25 58.76* 48.66 64.23 57.68* 3.34 0.06 ‒0.38 ‒0.34
DS 42.77 52.02 35.59 63.45 53.38 5.22 0.10 ‒0.54 0.20
SPAD-22D E1 NI 32.36 43.49* 16.52 65.24 44.34* 9.65 0.22 ‒0.43 ‒0.09
DS 8.26 15.36* 4.30 54.44 25.04 11.43 0.46 0.26 ‒0.75
E2 NI 49.19 54.03* 37.76 63.07 53.53* 4.82 0.09 ‒0.66 0.37
DS 38.04 52.33* 11.29 61.09 45.88 11.88 0.26 ‒0.98 0.38
BLUE NI 40.77 48.76 30.56 62.94 48.97* 6.26 0.13 ‒0.39 ‒0.07
DS 23.15 33.85 9.40 54.56 35.46 9.43 0.27 ‒0.34 ‒0.11
SPAD-26D E1 NI 6.45 11.92* 5.52 47.54 16.27* 7.63 0.47 1.36 3.13
DS 3.84 5.38* 2.97 25.72 8.30 3.39 0.41 1.57 4.09
E2 NI 33.14 43.16* 17.11 57.05 33.86* 8.58 0.25 0.32 ‒0.25
DS 27.06 35.05* 6.24 56.54 18.99 13.07 0.69 1.15 0.27
BLUE NI 19.80 27.54 12.74 48.81 25.10* 6.55 0.26 0.66 1.02
DS 15.45 20.22 3.12 35.17 13.63 7.21 0.53 1.12 0.33
SPAD-30D E2 NI 6.20 11.81* 3.27 44.51 11.29* 6.44 0.57 1.94 5.22
DS 4.27 8.09 1.90 31.35 7.61 3.95 0.52 3.10 14.24

Fig. 2

Correlation analysis of stay-green-related traits in wheat under different moisture environments *: significant at P < 0.05; **: significant at P < 0.01; ***: significant at P < 0.001; normal drip irrigation in the lower left and drought stress in the upper right."

Table S3

Analysis of variance (ANOVA) and heritability of greening-related traits"

性状
Trait
均方值Mean Square
基因型
Genotype (G)
环境
Environment (E)
G×E互作
G×E
H²
%GLA-10D 0.22*** 5.07*** 0.11*** 0.60
%GLA-14D 1.56*** 131.19*** 0.86*** 0.60
%GLA-18D 6.49*** 2017.33*** 3.15*** 0.60
%GLA-22D 8.65*** 3441.3*** 3.51*** 0.66
%GLA-26D 5.39*** 1698.58*** 2.36*** 0.64
%GLA-30D 2.04*** 115.07*** 1.09*** 0.57
SPAD-0D 25.05*** 575.43*** 4.81 0.81
SPAD-10D 26.64*** 494.54*** 6.52*** 0.78
SPAD-14D 47.01*** 353.41*** 10.88*** 0.79
SPAD-18D 126.52*** 7855.07*** 40.73*** 0.74
SPAD-22D 372.19*** 51022.18*** 129.11*** 0.73
SPAD-26D 266.73*** 39912.29*** 116.02*** 0.68
SPAD-30D 62.44*** 2345.09*** 50.92*** 0.50
TMRS 18.13*** 5199.24*** 5.87*** 0.72
GLAD 24.98*** 4316.17*** 12.16*** 0.57
ARS 0.00*** 1.58*** 0.01*** 0.56
T1 18.79*** 5521.38*** 6.65*** 0.69
T2 18.56*** 4912.08*** 6.16*** 0.71

Table 2

Stabilizing QTL loci for senescence characterization parameters and SPAD values in different moisture environments"

位点
QTL
环境
Environment
处理
Treatment
左标记
Left marker
右标记
Right marker
置信区间
Confidence interval (cM)
位置
Position (Mb)
LOD值
LOD value
表型贡献率
PVE (%)
加性效应
Additive effect
QTMRS.xjau-4B E1/BLUE NI AX-110194463 AX-111651924 120.5‒122.0 7.21‒19.03 4.72‒6.06 10.34‒11.46 0.53‒1.04
QTMRS.xjau-5D E1/BLUE NI AX-111162962 AX-110717870 163.5‒168.5 459.07‒465.11 3.68‒4.28 7.26‒7.68 0.46‒0.83
QTMRS.xjau-4D E2/BLUE DS AX-108944764 AX-94558069 52.5‒53.5 15.91‒16.59 7.35‒8.85 11.46‒11.93 ‒0.65‒-0.59
QTMRS.xjau-7D E2/BLUE DS AX-109167420 AX-111918348 109.5‒112.5 72.30‒77.23 3.17‒3.62 3.86‒5.31 0.37‒0.41
QGLAD.xjau-4D E2/BLUE DS AX-108944764 Rht-D1 52.5‒55.5 15.91‒18.80 6.39‒10.61 6.97‒10.72 ‒0.90‒-0.72
QT1.xjau-4B E1/BLUE NI AX-86170717 AX-111651924 120.5‒122.0 7.21‒22.87 5.01‒6.11 10.13‒11.68 0.55‒1.10
QT1.xjau-5D E1/BLUE NI AX-111162962 AX-110035093 161.5‒168.5 459.07‒464.13 4.75‒4.97 8.16‒9.32 0.53‒0.92
QT1.xjau-4D E1/E2/BLUE DS AX-95659047 AX-94558069 49.5‒53.5 12.77‒16.59 7.47‒9.55 8.97‒14.11 -0.99‒-0.55
QT1.xjau-7D E2/BLUE DS AX-109167420 AX-111918348 109.5‒112.5 72.30‒77.23 5.01‒5.51 6.56‒7.00 0.47‒0.52
QT2.xjau-4D E2/BLUE DS AX-108944764 AX-94558069 52.5‒53.5 15.91‒16.59 9.38‒9.41 6.34‒12.58 -0.72‒-0.66
QT2.xjau-7B E1/BLUE DS AX-111478329 AX-108883282 1.5‒2.5 1.21‒4.47 3.11‒5.80 5.94‒7.74 -0.65‒-0.56
QSPAD-0D.xjau-4D.1 E2/BLUE NI Rht-D1 AX-109445215 56.5‒60.5 18.80‒28.58 4.24‒5.10 3.64‒11.65 -0.73‒-0.59
QSPAD-0D.xjau-4D.2 E2/BLUE DS AX-89421921 Rht-D1 54.5‒55.5 18.80‒19.29 5.35‒7.80 9.37‒12.20 -0.90‒-0.63
QSPAD-10D.xjau-4D.1 E1/BLUE NI AX-89421921 Rht-D1 54.5‒55.5 18.80‒19.29 6.15‒10.69 9.06‒14.86 -0.95‒-0.91
QSPAD-10D.xjau-1A E1/BLUE DS AX-94629887 AX-109406391 0.0‒0.5 8.64‒20.09 4.30‒5.82 4.86‒8.37 0.56‒0.94
QSPAD-10D.xjau-4B E1/E2/BLUE DS AX-95685381 AX-94912823 43.5‒46.5 171.62‒172.72 5.59‒10.27 8.79‒14.06 0.86‒0.89
QSPAD-10D.xjau-4D.2 E1/BLUE DS AX-89421921 Rht-D1 54.5‒55.5 18.80‒19.29 7.13‒13.05 10.72‒17.18 -0.98‒-0.98
QSPAD-14D.xjau-4B E2/BLUE NI AX-95685381 AX-108888649 43.5‒44.5 171.62‒263.38 8.39‒11.51 12.81‒17.04 1.22‒1.39
QSPAD-14D.xjau-4D E2/BLUE NI AX-111071805 AX-111662392 61.5‒63.5 27.15‒33.06 6.03‒10.24 9.64‒15.73 -1.12‒-0.80
QSPAD-18D.xjau-4B E1/E2/BLUE NI AX-95685381 AX-108888649 43.5‒44.5 171.62‒263.38 6.27‒8.18 9.75‒13.49 1.13‒1.69
QSPAD-18D.xjau-4D E1/E2/BLUE NI AX-95659047 AX-108944764 47.5‒52.5 12.77‒15.91 6.75‒13.27 10.92‒17.45 -2.18‒-1.01
QSPAD-18D.xjau-7B E1/BLUE DS AX-111581943 AX-110629026 0.0‒1.5 6.07‒7.00 3.33‒4.66 2.99‒7.05 ‒2.36‒‒0.90
QSPAD-22D.xjau-4D E1/E2/BLUE DS AX-108944764 AX-109478820 52.5‒57.5 15.91‒30.66 5.26‒9.05 7.21‒12.81 -4.45‒-3.75
QSPAD-22D.xjau-7D E2/BLUE DS AX-110941147 AX-111918348 111.5‒112.5 76.62‒77.23 4.50‒6.25 5.02‒5.94 2.57‒3.78
QSPAD-26D.xjau-7B E1/E2/BLUE NI AX-111581943 AX-110629026 0.0‒1.5 6.07‒7.00 3.42‒8.74 6.85‒13.27 -2.70‒-2.50
QSPAD-26D.xjau-1B E2/BLUE DS AX-110534755 AX-111590092 128.5‒129.5 653.94‒665.05 2.90‒4.64 6.60‒10.30 -3.05‒-2.39
QSPAD-26D.xjau-4D E2/BLUE DS AX-89421921 Rht-D1 54.5‒57.5 18.80‒19.29 4.21‒5.48 8.06‒9.76 -3.41‒-2.35

Fig. 3

Chromosomal locations of QTL loci for senescence-related traits in the DH population"

Fig. 4

Comprehensive effect analysis between stable QTL loci"

Table 3

Screening for candidate gene"

位点
QTL
左标记
Left marker
右标记
Right marker
物理位置
Position (Mb)
候选基因
Gene ID
功能注释
Functional annotation
QTMRS.xjau-4B AX-110194463 AX-111651924 15.18 TraesCS4B01G021200 基本螺旋-环-螺旋(BHLH) DNA结合超家族蛋白
Basic helix-loop-helix (BHLH) DNA-binding superfamily protein
QTMRS.xjau-4B AX-110194463 AX-111651924 13.30 TraesCS4B01G018400 衰老相关家族蛋白, 推测(DUF581)
Senescence-associated family protein, putative (DUF581)
QT1.xjau-4D AX-95659047 AX-94558069 16.30 TraesCS4D01G037000 半胱氨酸蛋白酶, 推测
Cysteine protease, putative
QSPAD-10D.xjau-4B AX-95685381 AX-94912823 171.62 TraesCS4B01G131400 蛋白质锌诱导的促进因子1
Protein zinc induced facilitator-like 1
QSPAD-14D.xjau-4D AX-111071805 AX-111662392 30.00 TraesCS4D01G054000 GRAS转录因子
GRAS transcription factor
QSPAD-18D.xjau-4D AX-95659047 AX-108944764 15.52 TraesCS4D01G033900 锌指家族蛋白
Zinc finger family protein
QSPAD-26D.xjau-1B AX-110534755 AX-111590092 658.91 TraesCS1B01G434300 WRKY家族转录因子
WRKY family transcription factor
QSPAD-26D.xjau-7B AX-111581943 AX-110629026 6.40 TraesCS7B01G010200 叶绿体POR1的蛋白伴侣样蛋白Protein chaperone-like protein of POR1, chloroplastic
[1] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
doi: 10.1126/science.1183700 pmid: 20150489
[2] Ahmed H G M, Zeng Y, Shah A N, Yar M M, Ullah A, Ali M. Conferring of drought tolerance in wheat (Triticum aestivum L.) genotypes using seedling indices. Front Plant Sci, 2022, 13: 961049.
[3] Mantri N, Patade V, Penna S, Ford R, Pang E. Abiotic stress responses in plants:present and future. New York: Springer, 2011. pp 1-19.
[4] Biswal A K, Kohli A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed, 2013, 31: 749-766.
[5] 杨斌, 闫雪, 温宏伟, 王曙光, 逯腊虎, 范华, 景蕊莲, 孙黛珍. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究. 作物杂志, 2020, (4): 45-52.
Yang B, Yan X, Wen H W, Wang S G, Lu L H, Fan H, Jing R L, Sun D Z. Study on the evaluation of stay-green traits of wheat and its correlation with yield-related traits under different water conditions. Crops, 2020, (4): 45-52 (in Chinese with English abstract).
[6] 杜燕, 孙黛珍, 王曙光, 史雨刚, 杨进文. 小麦品种持绿性与农艺性状及产量性状相关分析. 山西农业科学, 2021, 49: 699-704.
Du Y, Sun D Z, Wang S G, Shi Y G, Yang J W. Correlation analysis of stay-green with agronomic characters and yield characters of wheat varieties. J Shanxi Agric Sin, 2021, 49: 699-704 (in Chinese with English abstract).
[7] Zhang K, Zhang Y, Chen G, Tian J. Genetic analysis of grain yield and leaf chlorophyll content in common wheat. Cereal Res Commun, 2009, 37: 499-511.
[8] 吕国锋, 范金平, 张伯桥, 高德荣, 王慧, 刘业宇, 吴素兰, 程凯, 王秀娥. 小麦旗叶衰老过程不同数学模型拟合比较及衰老特征分析. 作物学报, 2019, 45: 144-152.
doi: 10.3724/SP.J.1006.2019.81014
Lyu G F, Fan J P, Zhang B Q, Gao D R, Wang H, Liu Y Y, Wu S L, Cheng K, Wang X E. Comparison of different mathematical models describing flag leaf senescence process of wheat and characteristics of leaf senescence process. Acta Agron Sin, 2019, 45: 144-152 (in Chinese with English abstract).
[9] 陈耀宇, 王曙光, 闫雪, 梁增浩, 史雨刚, 孙黛珍. 不同水分条件下小麦持绿相关性状与产量的关系. 山西农业科学, 2019, 47: 991-997.
Chen Y Y, Wang S G, Yan X, Liang Z H, Shi Y G, Sun D Z. Relationships between stay green traits and yield of wheat under different water conditions. J Shanxi Agric Sin, 2019, 47: 991-997 (in Chinese with English abstract).
[10] Wang S, Liang Z, Sun D, Dong F, Chen W, Wang H, Jing R. Quantitative trait loci mapping for traits related to the progression of wheat flag leaf senescence. J Agric Sci, 2015, 153: 1234-1245.
[11] Hassan M A, Yang M J, Rasheed A, Tian X L, Reynolds M, Xia X C, Xiao Y G, He Z H. Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping. Plant Physiol, 2021, 187: 2623-2636.
doi: 10.1093/plphys/kiab431 pmid: 34601616
[12] Vijayalakshmi K, Fritz A K, Paulsen G M, Bai G, Pandravada S, Gill B S. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed, 2010, 26: 163-175.
[13] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证. 作物学报, 2023, 49: 744-754.
doi: 10.3724/SP.J.1006.2023.21018
Yang B, Qiao L, Zhao J J, Wu B B, Wen H W, Zhang S W, Zheng X W, Zheng J. QTL mapping and validation of chlorophyll content of flag leaves in wheat (Triticum aestivum L.). Acta Agron Sin, 2023, 49: 744-754 (in Chinese with English abstract).
[14] 高雪, 贾中立, 林凯丽, 侯学通, 郑福兴, 耿洪伟. 水旱条件下小麦叶面积指数和叶绿素含量QTL定位. 植物遗传资源学报, 2021, 22: 1109-1119.
doi: 10.13430/j.cnki.jpgr.20210129002
Gao X, Jia Z L, Lin K L, Hou X T, Zheng F X, Geng H W. QTL mapping of leaf area index and chlorophyll content in wheat with normal irrigation and under drought stress. J Plant Genet Resour, 2021, 22: 1109-1119 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20210129002
[15] 刘大同, 余徐润, 朱冬梅, 刘健, 张晓, 高德荣. 扬麦16“灌浆快”与颖果显微结构和内源生长素的关系. 麦类作物学报, 2017, 37: 739-749.
Liu D T, Yu X R, Zhu D M, Liu J, Zhang X, Gao D R.Relationship between caryopsis microstructure and endogenous auxin level and the fast grain filling of Yangmai 16. J Triticeae Crops, 2017, 37: 739-749 (in Chinese with English abstract).
[16] 何中虎, 阎俊, 张勇.高产矮秆抗倒广适小麦新品种中麦895. 中国种业, 2014, (6): 76-77.
He Z H, Yan J, Zhang Y.New high-yielding, short-stalked and widely-adapted wheat variety Chinese Seed Industry Zhongmai 895. China Seed Industry, 2014, (6): 76-77 (in Chinese with English abstract).
[17] 陈新民, 王凤菊, 李思敏, 张文祥. 小麦与玉米杂交产生小麦单倍体与双单倍体的稳定性. 作物学报, 2013, 39: 2247-2252.
doi: 10.3724/SP.J.1006.2013.02247
Chen X M, Wang F J, Li S M, Zhang W X. Stable production of wheat haploid and doubled haploid by wheat × maize cross. Acta Agron Sin, 2013, 39: 2247-2252 (in Chinese with English abstract).
[18] Pask A J D, Pietragalla J, Mullan D M, Reynolds M P. Physiological Breeding: II. A Field Guide to Wheat Phenotyping. Chapter 12: Leaf area, green crop area and senescence. Mexico: CIMMYT, 2012. pp 58-62.
[19] Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2020, 216: 3.
[20] 辛筱筱, 栗孟飞, 刘媛, 程宏波, 常磊, 陈菁菁, 柴守玺, 杨德龙. 不同水分条件下小麦回交导入系群体旗叶持绿性与千粒重的遗传相关分析. 干旱地区农业研究, 2018, 36(1): 207-212.
Xin X X, Li M F, Liu Y, Cheng H B, Chang L, Chen J J, Chai S X, Yang D L. Genetic analysis of stay-green of flag leaf and thousand-grain weight in introgression lines of wheat under different water conditions. Agric Res Arid Areas, 2018, 36(1): 207-212 (in Chinese with English abstract).
[21] Verma V, Foulkes M J, Worland A J, Sylvester-Bradley R, Caligari P, Snape J W. Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica, 2004, 135: 255-263.
[22] Shi Y G, Lian Y, Shi H W, Wang S G, Fan H, Sun D Z, Jing R L. Dynamic analysis of QTLs for green leaf area duration and green leaf number of main stem in wheat. Cereal Res Commun, 2019, 47: 250-263.
doi: 10.1556/0806.47.2019.06
[23] Zhang Z B, Xu P, Jia J Z, Zhou R H. Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Aust J Crop Sci, 2010, 4: 571-579.
[24] 郑福兴, 颜安, 高雪, 严勇亮, 王睿, 耿洪伟. 水旱处理下小麦叶绿素相对含量全基因组关联分析. 植物遗传资源学报, 2021, 22: 1334-1347.
doi: 10.13430/j.cnki.jpgr. 20210309003
Zheng F X, Yan A, Gao X, Yan Y L, Wang R, Geng H W. Genome-wide association scanning of chlorophyll SPAD in wheat under water and drought treatments. J Plant Genet Resour, 2021, 22: 1334-1347 (in Chinese with English abstract).
[25] 王琴, 刘泽厚, 万洪深, 魏会廷, 龙海, 李涛, 邓光兵, 李俊, 杨武云. 川麦42和川农16抗穗发芽QTL定位及聚合效应分析. 中国农业科学, 2020, 53: 3421-3431.
doi: 10.3864/j.issn.0578-1752.2020.17.001
Wang Q, Liu Z H, Wan H S, Wei H T, Long H, Li T, Deng G B, Li J, Yang W Y. Identification and pyramiding of QTLs for traits associated with pre-harvest sprouting resistance in two wheat cultivars Chuanmai 42 and Chuannong 16. Sci Agric Sin, 2020, 53: 3421-3431 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.17.001
[26] 陈黄鑫, 李聪, 吴坤燕, 王岳, 牟杨, 唐华苹, 唐力为, 兰秀锦, 马建. 四倍体小麦株高和穗长性状的QTL定位及其遗传效应分析. 麦类作物学报, 2022, 42: 799-807.
Chen H X, Li C, Wu K Y, Wang Y, Mou Y, Tang H P, Tang L W, Lan X J, Ma J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. J Triticeae Crops, 2022, 42: 799-807 (in Chinese with English abstract).
[27] 张泽源, 李玥, 赵文莎, 顾晶晶, 张傲琰, 张海龙, 宋鹏博, 吴建辉, 张传量, 宋全昊, 简俊涛, 孙道杰, 王兴荣. 小麦粒重相关性状的QTL定位及分子标记的开发. 中国农业科学, 2023, 56: 4137-4149.
doi: 10.3864/j.issn.0578-1752.2023.21.001
Zhang Z Y, Li Y, Zhao W S, Gu J J, Zhang A Y, Zhang H L, Song P B, Wu J H, Zhang C L, Song Q H, Jian J T, Sun D J, Wang X R. QTL mapping and molecular marker development of traits related to grain weight in wheat. Sci Agric Sin, 2023, 56: 4137-4149 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.21.001
[28] 温明星, 肖进, 徐涛, 孙丽, 王宗宽, 王海燕, 王秀娥. 利用55K芯片进行小麦生育期相关性状的QTL定位及效应分析. 作物学报, 2023, 49: 3188-3203.
doi: 10.3724/SP.J.1006.2023.31014
Wen M X, Xiao J, Xu T, Sun L, Wang Z K, Wang H Y, Wang X E. Mapping and effect analysis of QTL for phenology traits in wheat using 55K chip technology. Acta Agron Sin, 2023, 49: 3188-3203 (in Chinese with English abstract).
[29] Xie Q, Mayes S, Sparkes D L. Early anthesis and delayed but fast leaf senescence contribute to individual grain dry matter and water accumulation in wheat. Field Crops Res, 2016, 187: 24-34.
[30] Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelm E P, Sparks C A, Al-Kaff N, Korolev A, Boulton M I, Phillips A L, Hedden P, Nicholson P, Thomas S G. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol, 2011, 157: 1820-1831.
[31] Chen Z Y, Cheng X J, Chai L L, Wang Z H, Bian R L, Li J, Zhao A J, Xin M M, Guo W L, Hu Z R, Peng H R, Yao Y Y, Sun Q X, Ni Z F. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theor Appl Genet, 2020, 133: 149-162.
[32] Lin Y, Jiang X J, Hu H Y, Zhou K Y, Wang Q, Yu S F, Yang X L, Wang Z Q, Wu F K, Liu S H, Li C X, Deng M, Ma J, Chen G D, Wei Y M, Zheng Y L, Liu Y X. QTL mapping for grain number per spikelet in wheat using a high-density genetic map. Crop J, 2021, 9: 1108-1114.
doi: 10.1016/j.cj.2020.12.006
[33] Kim S H, Yoon J, Kim H, Lee S J, Paek N C. Rice basic Helix-Loop-Helix 079 (OsbHLH079) delays leaf senescence by attenuating ABA signaling. Rice, 2023, 16: 60.
[34] 莫黎杰, 刘夏瞳, 李慧, 陆海. 植物半胱氨酸蛋白酶在植物生长发育中的功能研究. 生物技术通报, 2021, 37(6): 202-212.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1220
Mo L J, Liu X T, Li H, Lu H. On the function of plant cysteine protease in plant growth and development. Biotechnol Bull, 2021, 37(6): 202-212 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1220
[35] 张洁琳, 付畅. 半胱氨酸蛋白酶及半胱氨酸蛋白酶抑制剂对逆境胁迫的应答. 分子植物育种, 2018, 16: 4453-4459.
Zhang J L, Fu C. Response of cysteine protease and cysteine protease inhibitor to adverse stress. Mol Plant Breed, 2018, 16: 4453-4459 (in Chinese with English abstract).
[36] 孙丽丽, 晋秀娟, 赵锴, Islam Md A, 卢娟, 王曙光, 孙黛珍. 小麦衰老相关基因TaSAG3的生物信息学及表达模式分析. 华北农学报, 2022, 37(2): 18-27.
doi: 10.7668/hbnxb.20192703
Sun L L, Jin X J, Zhao K, Islam Md A, Lu J, Wang S G, Sun D Z. Bioinformatics and expression pattern analysis of senescence associated gene TaSAG39 in wheat. Acta Agric Boreali-Sin, 2022, 37(2): 18-27 (in Chinese with English abstract).
[37] Sharma S, Kaur G, Kumar A, Meena V, Kaur J, Pandey A K. Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress. BMC Mol Biol, 2019, 20: 22.
doi: 10.1186/s12867-019-0139-6 pmid: 31547799
[38] 任静, 王奇, 闫彩霞, 杨德光, 单世华. 花生GRAS基因家族全基因组鉴定与表达模式分析. 分子植物育种, 网络首发[2023-11-08], http://kns.cnki.net/kcms/detail/46.1068.S.20231107.0935.004.html.
Ren J, Wang Q, Yan C X, Yang D G, Shan S H. Genome-wide identification and expression analysis of GRAS gene family in peanut. Mol Plant Breed, Published online [2023-11-08], http://kns.cnki.net/kcms/detail/46.1068.S.20231107.0935.004.html (in Chinese with English abstract).
[39] 王智兰, 韩康妮, 杜晓芬, 李禹欣, 连世超, 王军. 谷子GRAS转录因子家族的全基因组鉴定、表达分析及标记开发. 核农学报, 2022, 36: 1723-1737.
doi: 10.11869/j.issn.100-8551.2022.09.1723
Wang Z L, Han K N, Du X F, Li Y X, Lian S C, Wang J. Identification, expression analysis and marker development of GRAS transcription factor in foxtail millet. J Nucl Agric Sci, 2022, 36: 1723-1737 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2022.09.1723
[40] Yin M Z, Wang Y P, Zhang L H, LI J Z, Quan W L, Yang L, Wang Q F, Chan Z L. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. J Exp Bot, 2017, 68: 2991-3005.
[41] 王淑叶, 伍国强, 魏明. WRKY转录因子调控植物逆境胁迫响应的作用机制. 生物工程学报, 2024, 40: 35-52.
Wang S Y, Wu G Q, Wei M. Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses. Chin J Biotechnol, 2024, 40: 35-52 (in Chinese with English abstract).
[42] 张丽, 甘露, 卢振华, 曹高燚, 邱丽娜, 丁博, 谢晓东, 秦志列, 王俊斌. 小麦WRKY转录因子TaWRKY72B的克隆、亚细胞定位及表达分析. 麦类作物学报, 2024, 44: 7-15.
Zhang L, Gan L, Lu Z H, Cao G Y, Qiu L N, Ding B, Xie X D, Qin Z L, Wang J B. Cloning, subcellular localization and expression analysis of WRKY transcription factor TaWRKY72B in wheat. J Triticeae Crops, 2024, 44: 7-15 (in Chinese with English abstract).
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[3] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[4] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[5] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[6] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[7] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[8] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[9] QIN Na, YE Zhen-Yan, ZHU Can-Can, FU Sen-Jie, DAI Shu-Tao, SONG Ying-Hui, JING Ya, WANG Chun-Yi, LI Jun-Xia. QTL mapping for flavonoid content and seed color in foxtail millet [J]. Acta Agronomica Sinica, 2024, 50(7): 1719-1727.
[10] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[11] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[12] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[13] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
[14] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[15] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad YOUSOF, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!