Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (3): 669-685.doi: 10.3724/SP.J.1006.2024.34055
• CROP GENETICS & BREEDINGZ·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Rui1(), ZHANG Fu-Yao1, ZHAN Peng-Jie1, CHU Jian-Qiang1, JIN Min-Shan2, ZHAO Wei-Jun1, CHENG Qing-Jun1,*()
[1] |
Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA, 2013, 110: 453-458.
doi: 10.1073/pnas.1215985110 pmid: 23267105 |
[2] |
李顺国, 刘猛, 刘斐, 邹剑秋, 陆晓春, 刁现民. 中国高粱产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 471-482.
doi: 10.3864/j.issn.0578-1752.2021.03.002 |
Li S G, Liu M, Liu F, Zou J Q, Lu X C, Diao X M. Current status and future prospective of sorghum production and seed industry in China. Sci Agric Sin, 2021, 54: 471-482 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.002 |
|
[3] | 邹剑秋, 王艳秋, 柯福来. 高粱产业发展现状及前景展望. 山西农业大学学报(自然科学版), 2020, 40(3): 2-8. |
Zou J Q, Wang Y Q, Ke F L. Developing situation and prospect forecast of sorghum industry in China. J Shanxi Agric Univ (Nat Sci Edn), 2020, 40(3): 2-8 (in Chinese with English abstract). | |
[4] |
张福耀, 平俊爱, 赵威军. 中国酿造高粱品质遗传改良研究进展. 农学学报, 2019, 9(3): 21-25.
doi: 10.11923/j.issn.2095-4050.cjas18030019 |
Zhang F Y, Ping J A, Zhao W J. Genetic quality improvement of brewing sorghum in China: research progress. J Agric, 2019, 9(3): 21-25 (in Chinese with English abstract).
doi: 10.11923/j.issn.2095-4050.cjas18030019 |
|
[5] |
李嵩博, 唐朝臣, 陈峰, 谢光辉. 中国粒用高粱改良品种的产量和品质性状时空变化. 中国农业科学, 2018, 51: 246-256.
doi: 10.3864/j.issn.0578-1752.2018.02.005 |
Li S B, Tang C C, Chen F, Xie G H. Temporal and spatial changes in yield and quality with grain sorghum variety improvement in China. Sci Agric Sin, 2018, 51: 246-256 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.02.005 |
|
[6] |
Vogan P J, Sage R F. Water-use efficiency and nitrogen-use efficiency of C(3)-C(4) intermediate species of Flaveria juss. (Asteraceae). Plant Cell Environ, 2011, 34: 1415-1430.
doi: 10.1111/pce.2011.34.issue-9 |
[7] |
Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-462.
doi: 10.1038/nature11917 |
[8] |
Yang Y Y, Liu L, Zhang F, Zhang X Y, Xu W, Liu X J, Li Y, Wang Z, Xie Y W. Enhanced nitrous oxide emissions caused by atmospheric nitrogen deposition in agroecosystems over China. Environ Sci Pollut Res Int, 2021, 28: 15350-15360.
doi: 10.1007/s11356-020-11591-5 |
[9] | 米国华. 论作物养分效率及其遗传改良. 植物营养与肥料学报, 2017, 23: 1525-1535. |
Mi G H. Nutrient use efficiency in crops and its genetic improvement. J Plant Nutr Fert, 2017, 23: 1525-1535 (in Chinese with English abstract). | |
[10] | 凌宏清, 袁力行. 我国作物养分高效研究的现状与未来发展趋势. 中国基础科学, 2016, 18(2): 54-60. |
Ling H Q, Yuan L X. Research status of crop nutrient efficiency and its future development in China. China Basic Sci, 2016, 18(2): 54-60 (in Chinese with English abstract). | |
[11] |
Tantray A Y, Hazzazi Y, Ahmad A. Physiological, agronomical, and proteomic studies reveal crucial players in rice nitrogen use efficiency under low nitrogen supply. Int J Mol Sci, 2022, 23: 6410.
doi: 10.3390/ijms23126410 |
[12] |
Hou M M, Yu M, Li Z Q, Ai Z Y, Chen J G. Molecular regulatory networks for improving nitrogen use efficiency in rice. Int J Mol Sci, 2021, 22: 9040.
doi: 10.3390/ijms22169040 |
[13] |
Tang W J, Ye J, Yao X M, Zhao P Z, Xuan W, Tian Y L, Zhang Y Y, Xu S, An H Z, Chen G M, Yu J, Wu W, Ge Y W, Liu X L, Li J, Zhang H Z, Zhao Y Q, Yang B, Jiang X Z, Peng C, Zhou C, Terzaghi W, Wang C M, Wan J M. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun, 2019, 10: 5279.
doi: 10.1038/s41467-019-13187-1 pmid: 31754193 |
[14] |
Gao Z Y, Wang Y F, Chen G, Zhang A P, Yang S L, Shang L G, Wang D Y, Ruan B P, Liu C L, Jiang H Z, Dong G J, Zhu L, Hu J, Zhang G H, Zeng D L, Guo L B, Xu G H, Teng S, Harberd N P, Qian Q. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun, 2019, 10: 5207.
doi: 10.1038/s41467-019-13110-8 pmid: 31729387 |
[15] |
Lupini A, Preiti G, Badagliacca G, Abenavoli M R, Sunseri F, Monti M, Bacchi M. Nitrogen use efficiency in durum wheat under different nitrogen and water regimes in the Mediterranean Basin. Front Plant Sci, 2021, 11: 607226.
doi: 10.3389/fpls.2020.607226 |
[16] |
Cormier F, Gouis J L, Dubreuil P, Lafarge S, Praud S. A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet, 2014, 127: 2679-2693.
doi: 10.1007/s00122-014-2407-7 pmid: 25326179 |
[17] |
Sandhu N, Kaur A, Sethi M, Kaur S, Varinderpal-Singh, Sharma A, Bentley A R, Barsby T, Chhuneja P. Genetic dissection uncovers genome-Wide marker-trait associations for plant growth, yield, and yield-related traits under varying nitrogen levels in nested synthetic wheat introgression libraries. Front Plant Sci, 2021, 12: 738710.
doi: 10.3389/fpls.2021.738710 |
[18] |
Ciampitti I A, Lemaire G. From use efficiency to effective use of nitrogen: a dilemma for maize breeding improvement. Sci Total Environ, 2022, 826: 154125.
doi: 10.1016/j.scitotenv.2022.154125 |
[19] |
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas C D, Lea P J, Bertrand Hirel B. Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. J Exp Bot, 2014, 65: 5657-5671.
doi: 10.1093/jxb/eru227 |
[20] |
Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot, 2004, 55: 295-306.
doi: 10.1093/jxb/erh006 pmid: 14739258 |
[21] |
刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018, 51: 3074-3083.
doi: 10.3864/j.issn.0578-1752.2018.16.004 |
Liu P, Wu A L, Wang J S, Nan J K, Dong E W, Jiao X Y, Ping J A, Bai W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Sci Agric Sin, 2018, 51: 3074-3083 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.16.004 |
|
[22] |
Singh P, Kumar K, Jha A K, Yadava P, Pal M, Rakshit S, Singh I. Global gene expression profiling under nitrogen stress identifies key genes involved in nitrogen stress adaptation in maize (Zea mays L.). Sci Rep, 2022, 12: 4211.
doi: 10.1038/s41598-022-07709-z |
[23] |
Ge L H, Dou Y N, Li M M, Qu P J, He Z, Liu Y, Xu Z S, Chen J, Chen M, Ma Y Z. SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants. Int J Mol Sci, 2019, 20: 5741.
doi: 10.3390/ijms20225741 |
[24] |
Sultana N, Islam S, Juhasz A, Yang R C, She M Y, Alhabbar Z, Zhang J J, Ma W J. Transcriptomic study for identification of major nitrogen stress responsive genes in australian bread wheat cultivars. Front Genet, 2020, 11: 583785.
doi: 10.3389/fgene.2020.583785 |
[25] | Ding Q Q, Wang X T, Hu L Q, Qi X, Ge L H, Xu W Y, Xu Z S, Zhou Y B, Jia G Q, Diao X M, Min D H, Ma Y Z, Chen M. MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress. Hereditas, 2018, 40: 327-338. |
[26] |
Yan H S, Shi H W, Hu C M, Luo M Z, Xu C J, Wang S G, Li N, Tang W S, Zhou Y B, Wang C X, Xu Z S, Chen J, Ma Y Z, Sun D Z, Chen M. Transcriptome differences in response mechanisms to low-nitrogen stress in two wheat varieties. Int J Mol Sci, 2021, 22: 12278.
doi: 10.3390/ijms222212278 |
[27] |
Zhang C J, Hou Y Q, Hao Q N, Chen H F, Chen L M, Yuan S L, Shan Z H, Zhang X J, Yang Z L, Qiu D Z, Zhou X N, Huang W J. Genome-wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PLoS One, 2015, 10: e0125174.
doi: 10.1371/journal.pone.0125174 |
[28] |
Jagadhesan B, Sathee L, Meena H S, Jha S K, Chinnusamy V, Kumar A, Kumar S. Genome wide analysis of NLP transcription factors reveals their role in nitrogen stress tolerance of rice. Sci Rep, 2020, 10: 9368.
doi: 10.1038/s41598-020-66338-6 pmid: 32523127 |
[29] |
Gelli M, Duo Y C, Konda A R, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics, 2014, 15: 179.
doi: 10.1186/1471-2164-15-179 pmid: 24597475 |
[30] |
Zhu Z X, Li D, Wang P, Li J H, Lu X C. Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings. Theor Exp Plant Physiol, 2020, 32: 271-285.
doi: 10.1007/s40626-020-00183-w |
[31] |
Massel K, Campbell B C, Mace E S, Tai S S, Tao Y F, Worland B G, Jordan D R, Botella J R, Godwin I D. Whole genome sequencing reveals potential new targets for improving nitrogen uptake and utilization in Sorghum bicolor. Front Plant Sci, 2016, 7: 1544.
pmid: 27826302 |
[32] | 王瑞, 平俊爱, 张福耀, 詹鹏杰, 楚建强. 高粱育种资源耐瘠性鉴定及评价. 作物杂志, 2020, (6): 30-37. |
Wang R, Ping J A, Zhang F Y, Zhan P J, Chu J Q. Identification and evaluation of sorghum breeding resources for barren tolerance. Crops, 2020, (6): 30-37 (in Chinese with English abstract). | |
[33] |
Chalmel F, Lardenois A, Thompson J D, Muller J, Sahel J-A, Léveillard T, Poch O. GOAnno: GO annotation based on multiple alignment. Bioinformatics, 2005, 21: 2095-2096.
pmid: 15647299 |
[34] |
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173 |
[35] |
Kanehisa M, Araki M, Goto S, Hattor M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 2008, 36: D480-D484.
doi: 10.1093/nar/gkm882 pmid: 18077471 |
[36] |
Mao X Z, Cai T, Olyarchuk J G, Wei L P. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21: 3787-3793.
doi: 10.1093/bioinformatics/bti430 pmid: 15817693 |
[37] |
Miyake K, Ito T, Senda M, Ishikawa R, Harada T, Niizeki M, Akada S. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol Biol, 2003, 53: 237-245.
pmid: 14756320 |
[38] |
Lea U S, Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 2007, 225: 1245-1253.
doi: 10.1007/s00425-006-0414-x pmid: 17053893 |
[39] | 胡利斧. 谷子低氮胁迫转录组分析及SiMYB3基因特性与功能鉴定. 中国农业科学院硕士学位论文, 北京, 2015. |
Hu L F. Transcriptome Analysis of Foxtail millet (Setaria italic) under Low Nitrogen Stress and Characteristics and Functional Identification of SiMYB3. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[40] | 张玉宁, 史宏志, 王景, 周炎, 杨惠娟. 高、低硝态氮营养条件下烟草根系基因表达谱及代谢途径的差异分析. 烟草科技, 2019, 52(4): 1-8. |
Zhang Y N, Shi H Z, Wang J, Zhou Y, Yang H J. Analysis of gene expression profile and metabolic pathway of tobacco root at high and low levels of nitrate nitrogen. Tobacco Sci Technol, 2019, 52(4): 1-8 (in Chinese with English abstract). | |
[41] |
刘天奇, 高红秀, 谢威, 张雪晴, 陈娜娜, 梅雪锋, 邢佳妮, 徐振华, 张忠臣. 水稻分蘖期氮素应答的转录组动态分析. 华北农学报, 2021, 36(1): 44-53.
doi: 10.7668/hbnxb.20191406 |
Liu T Q, Gao H X, Xie W, Zhang X Q, Chen N N, Mei X F, Xing J N, Xu Z H, Zhang Z C. Dynamic transcriptome analysis of rice response to nitrogen treatment at tillering stage. Acta Agric Boreali-Sin, 2021, 36(1): 44-53 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20191406 |
|
[42] |
Less H, Galili G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol, 2008, 147: 316-330.
doi: 10.1104/pp.108.115733 pmid: 18375600 |
[43] | 王娇, 李萍, 宗毓铮, 张东升, 史鑫蕊, 杨净, 郝兴宇. 大气CO2浓度和气温升高对玉米灌浆期碳氮代谢的影响. 中国生态农业学报, 2023, 31: 325-335. |
Wang J, Li P, Zong Y Z, Zhang D S, Shi X R, Yang J, Hao X Y. Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage. Chin J Eco-Agric, 2023, 31: 325-335 (in Chinese with English abstract). | |
[44] | 师进霖, 陈恩波, 姜跃丽. PEG6000渗透胁迫对甜瓜幼苗叶片渗透调节物质及膜脂过氧化的影响. 西北农业学报, 2010, 19(1): 186-189. |
Shi J L, Chen E B, Jiang Y L. Effect of osmotic stress with PEG6000 on smolytes and lipid peroxidation in muskmelon seedling leaves. Acta Agric Boreali-occident Sin, 2010, 19(1): 182-185 (in Chinese with English abstract). | |
[45] |
Warth B, Parich A, Bueschl C, Schoefbeck D, Neumann NKN, Kluger B, Schuster K, Krska R, Adam G, Lemmens M, Schuhmacher R. GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 2015, 11: 722-738.
pmid: 25972772 |
[46] | Dhiman A, Nanda A, Ahmad S A. Quest for staunch effects of flavonoids: utopian protection against hepatic ailments. Arab J Chem, 2012, 12: 1702-1711. |
[47] |
Masclaux D C, Daniel V F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot, 2010, 105: 1141-1157.
doi: 10.1093/aob/mcq028 |
[48] |
Xu G, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol, 2012, 63: 153-182.
doi: 10.1146/annurev-arplant-042811-105532 pmid: 22224450 |
[49] |
Krapp A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol, 2015, 25: 115-122.
doi: 10.1016/j.pbi.2015.05.010 pmid: 26037390 |
[50] |
Ohashi M, Ishiyama K, Kojima S, Konishi N, Nakano K, Kanno K, Hayakawa T, Yamaya T. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant Cell Physiol, 2015, 56: 769-778.
doi: 10.1093/pcp/pcv005 pmid: 25634963 |
[51] | 王嘉文, 吴刚, 徐云敏. 谷氨酰胺合成酶在植物氮同化及再利用中的研究进展. 分子植物育种, 2019, 17: 1373-1377. |
Wang J W, Wu G, Xu Y M. Research progress of glutamine synthetase in plant nitrogen assimilation and recycling. Mol Plant Breed, 2019, 17: 1373-1377 (in Chinese with English abstract). | |
[52] |
Zhong C, Cao X C, Hu J J, Zhu L F, Zhang J H, Huang J L, Jin Q Y. Nitrogen metabolism in adaptation of photosynthesis to water stress in rice grown under different nitrogen levels. Front Plant Sci, 2017, 8: 1079.
doi: 10.3389/fpls.2017.01079 pmid: 28690622 |
[53] | 姜苏育. 低氮营养对小麦幼苗根系生长与氮素吸收利用的影响及其生理机制. 南京农业大学博士学位论文, 江苏南京, 2018. |
Jiang S Y. Effects of N-deficiency Supply on Root Growth and Nitrogen Uptake in Wheat Seedlings and its Physiological Mechanism. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2018 (in Chinese with English abstract). |
[1] | ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589. |
[2] | CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339. |
[3] | FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538. |
[4] | WANG Yuan, WANG Jin-Song, DONG Er-Wei, LIU Qiu-Xia, WU Ai-Lian, JIAO Xiao-Yan. Effect of nitrogen application level on grain starch accumulation at grain filling stage in sorghum spikelets [J]. Acta Agronomica Sinica, 2023, 49(7): 1968-1978. |
[5] | LU Meng-Qi, XIE Ruo-Han, LI Xiang, YANG Ming-Chong, HE Zi-Wei, GAO Jie, ZHAO Xiao-Yan, SHEN Xiang-Ling, CHEN Yan, WANG Ji-Bin, HU Li-Hua, DUAN Ming-Zheng, WANG Ling-Qiang. Relationship of “LabelmeP1.0”-derived vascular parameters with agronomic traits in sorghum [J]. Acta Agronomica Sinica, 2023, 49(7): 1954-1967. |
[6] | LI Bang, LIU Chun-Juan, GUO Jun-Jie, WU Yu-Xin, DENG Zhi-Cheng, ZHANG Min, CUI Tong, LIU Chang, ZHOU Yu-Fei. Effects of exogenous tryptophan on root elongation of sorghum seedlings under low nitrogen stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1372-1385. |
[7] | WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868. |
[8] | WANG Jin-Song, BAI Ge, ZHANG Yan-Hui, SHEN Tian-Yu, DONG Er-Wei, JIAO Xiao-Yan. Impacts of long-term fertilization on post-anthesis leaf senescence, antioxidant enzyme activities and yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(3): 845-855. |
[9] | CHEN Bing-Ru, YU Miao, GE Zhan-Yu, LI Hong-Kui, HUANG Yan, LI Hai-Qing, SHI Gui-Shan, XIE Li, XU Ning, YAN Feng, GAO Shi-Jie, ZHOU Zi-Yang, WANG Nai. Analysis of heterotic groups and heterosis patterns of sorghum in early- maturing area [J]. Acta Agronomica Sinica, 2023, 49(2): 343-353. |
[10] | LIU Qiu-Xia, DONG Er-Wei, HAUNG Xiao-Lei, WANG Jin-Song, WANG Yuan, JIAO Xiao-Yan. Response of sorghum grain yield and quality to nitrogen application in different ecozones [J]. Acta Agronomica Sinica, 2023, 49(10): 2766-2776. |
[11] | YANG Ya-Jie, LI Yu-Ying, SHEN Zhuang-Zhuang, CHEN Tian, RONG Er-Hua, WU Yu-Xiang. Differential expressed analysis by transcriptome sequencing in leaves of different ploidy Gossypium herbaceum [J]. Acta Agronomica Sinica, 2022, 48(11): 2733-2748. |
[12] | WANG Qian, LIU Shao-Xiong, CHAI Xiao-Jiao, LI Hai, ZHANG Fen, LU Ping, WANG Rui-Yun, LIU Min-Xuan. Content diversity of phenolic compounds of waxy sorghum grains in different provinces, cities, and autonomous regions of China [J]. Acta Agronomica Sinica, 2022, 48(10): 2505-2516. |
[13] | WANG Yuan, WANG Jin-Song, DONG Er-Wei, WU Ai-Lian, JIAO Xiao-Yan. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution [J]. Acta Agronomica Sinica, 2021, 47(2): 342-350. |
[14] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[15] | DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle [J]. Acta Agronomica Sinica, 2021, 47(12): 2459-2470. |
|