Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (6): 1394-1405.doi: 10.3724/SP.J.1006.2024.31030

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat

MA Yan-Ming1,2,*(), LOU Hong-Yao3, WANG Wei1, SUN Na4, YAN Guo-Rong1, ZHANG Sheng-Jun4, LIU Jie2, NI Zhong-Fu2, XU Lin1,*()   

  1. 1Institute of Crop Germplasm Resource, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    3Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    4Institute of Agricultural Sciences of Ili Prefecture, Yining 835011, Xinjiang, China
  • Received:2023-04-26 Accepted:2024-01-31 Online:2024-06-12 Published:2024-03-01
  • Contact: * E-mail: ymma213@sina.com;E-mail: hnsyxulin@163.com
  • Supported by:
    National Science and Technology Resource Sharing Service Platform: National Crop Germplasm Resource Bank Project(NCGRC-2021-029);Third National Census and Collection of Crop Germplasm Resources(19191234)

Abstract:

Seven grain quality traits were tested in the panel of 188 winter wheat accessions from Xinjiang. Twelve co-associated genetic loci were detected in four different environments via GWAS, explaining 6.021%-31.467% phenotypic variation. Two pleiotropism loci, located on chromosomes 6A and 2B, associated with protein content and settlement value, protein content and bulk density of wheat. Five pleiotropism loci, located on 3A, 1B, 6B, 7B, and 7D, shared by protein content and wet gluten content. One pleiotropism locus, located on 5B chromosome, associated with settlement value, bulk density of wheat and grain hardness. Three pleiotropism loci located on 7A, 3B, and 2D, respectively, which shared by protein content, settlement value, and wet gluten content, while one pleiotropism locus with unknown site was also associated with protein content, settlement value, and wet gluten content. These associated loci or genes might be employed to select favorite wheat genotypes, and cultivate elite wheat genotypes via marker-assisted selection in wheat quality breeding. Candidate genes at stable loci associated with multiple traits were searched, and 11 candidate genes that might be related to wheat grain quality with multiple traits and environments were screened. Among them, TraesCS6B01G347500 encoded a storage and transportation protein, TraesCS1B01G395400 encoded a carbohydrate transport protein/sugar transport protein, and TraesCS2D01G246500 gene encoded a protein ESKIMO1 related to cold tolerance, salt tolerance, and water conservation. These genes can be used as candidate genes for allelic variation analysis and marker development, provide molecular tools for wheat marker assisted selection breeding.

Key words: Xinjiang, winter wheat, kernel quality, genetic diversity, genome-wide association analysis

Table 1

Different growth conditions for wheat agronomic traits determination"

序号No. 编号Code 年份Year 地点Location 经度Longitude (°E) 纬度Latitude (°N)
E1 AN2017 2017 新疆乌鲁木齐市Urumqi, Xinjiang 86.22 44.31
E2 AN2018 2018 新疆乌鲁木齐市Urumqi, Xinjiang 86.22 44.31
E3 YN2017 2017 新疆伊宁市Yining, Xinjiang 81.32 43.92
E4 YN2018 2018 新疆伊宁市Yining, Xinjiang 81.32 43.92

Table 2

Comparison of grain quality traits between wheat landraces and modern cultivars"

性状
Trait
环境
Environment
地方品种Landrace 育成品种Bred cultivar 各性状
均值差
MD
变幅
Range
平均值
Average
标准差
STD
变异系数
CV (%)
变幅
Range
平均值
Average
标准差
STD
变异系数
CV (%)
籽粒蛋白质
含量GPC (%)
E1 12.68-19.99 15.45 1.59 10.30 13.55-22.30 16.51 1.97 11.96 -1.07
E2 13.62-18.69 15.63 1.04 6.63 14.05-22.09 16.62 1.69 10.16 -1.00
E3 12.84-19.97 15.64 1.24 7.92 12.12-18.45 14.42 1.16 8.04 1.21
E4 13.44-17.54 15.53 0.77 4.98 12.68-18.89 14.99 1.11 7.40 0.54
湿面筋含量
WGC (%)
E1 27.89-44.70 34.28 3.61 10.53 30.63-50.26 37.40 4.39 11.73 -3.11
E2 29.60-41.77 34.48 2.40 6.95 31.29-51.58 37.70 3.84 10.18 -3.23
E3 27.66-41.65 33.58 2.70 8.03 25.29-41.42 31.92 2.87 9.00 1.66
E4 28.73-37.87 33.56 1.82 5.44 26.78-42.60 33.13 2.59 7.81 0.43
沉降值
SV (mL)
E1 29.85-54.05 39.95 5.19 12.99 31.33-65.21 41.82 7.53 18.00 -1.87
E2 25.09-43.71 34.33 3.76 10.95 26.29-58.39 37.77 7.21 19.09 -3.44
E3 21.94-65.53 39.58 6.81 17.22 21.47-44.58 31.44 5.02 15.98 8.14
E4 25.73-48.84 36.64 4.12 11.24 20.94-47.43 32.47 5.18 15.95 4.17
淀粉含量
ST (%)
E1 65.43-73.70 70.43 1.53 2.17 64.35-73.59 70.13 2.19 3.12 0.30
E2 67.37-73.93 71.37 1.25 1.75 63.38-73.77 69.94 2.25 3.21 1.42
E3 55.50-74.64 67.89 2.92 4.30 63.96-76.08 70.89 2.33 3.28 -3.00
E4 63.07-72.45 68.44 1.85 2.70 62.15-72.94 69.90 2.11 3.01 -1.46
籽粒硬度
GH (%)
E1 52.72-69.61 63.75 2.78 4.35 58.45-76.91 69.61 4.14 5.94 -5.87
E2 51.05-70.25 63.60 3.16 4.97 54.53-76.40 68.69 4.99 7.27 -5.09
E3 43.26-68.13 61.35 3.79 6.18 58.38-79.31 68.55 4.06 5.92 -7.20
E4 56.55-69.29 62.89 2.35 3.73 57.39-74.93 67.06 3.66 5.46 -4.18
出粉率
PER (%)
E1 67.65-74.57 71.08 1.38 1.93 67.34-76.54 72.42 2.07 2.85 -1.34
E2 69.32-75.36 73.15 1.16 1.59 68.99-76.50 72.71 2.03 2.79 0.45
E3 49.39-74.85 70.07 3.31 4.73 65.80-76.25 72.43 2.06 2.85 -2.36
E4 66.96-74.61 71.33 1.42 1.99 66.14-75.34 71.74 1.82 2.54 -0.41
容重
TW (g L-1)
E1 773.73-824.06 799.52 9.74 1.22 765.59-848.13 804.06 20.17 2.51 -4.54
E2 799.86-830.42 817.48 6.89 0.84 779.10-842.03 812.54 17.39 2.14 4.94
E3 732.22-831.40 774.04 18.22 2.35 739.17-834.47 801.08 19.92 2.49 -27.04
E4 753.31-823.28 783.44 13.20 1.68 729.87-818.90 792.64 17.39 2.19 -9.19

Fig. 1

Differences of grain quality traits between wheat landraces and modern cultivars in Xinjiang * and ** represent significant differences at P < 0.05 and P < 0.01, respectively. ns represents no significant difference. Abbreviations are the same as those given in Table 1."

Table 3

Correlation coefficients among seven grain quality traits under different environments"

性状
Trait
籽粒蛋白质
含量GPC (%)
湿面筋含量
WGC (%)
沉降值
SV (mL)
淀粉含量
ST (%)
籽粒硬度
GH (%)
出粉率
PER (%)
容重
TW (g L-1)
GPC E1 → 0.993** 0.916** -0.819** 0.111 -0.198** 0.033
WGC 0.984** 0.898** -0.809** 0.188* -0.156* 0.027
SV 0.901** 0.880** -0.830** 0.068 -0.292** -0.139
ST -0.875** -0.888** -0.769** 0.124 0.582** 0.381**
GH 0.024 0.151* 0.168* 0.032 0.671** 0.348**
PER -0.545** -0.509** -0.402** 0.717** 0.447** 0.626**
TW -0.449** -0.471** -0.504** 0.671** 0.483** 0.602** ← E2
GPC E3 → 0.973** 0.894** -0.804** -0.485** -0.598** -0.482**
WGC 0.963** 0.831** -0.749** -0.321** -0.542** -0.428**
SV 0.879** 0.792** -0.840** -0.557** -0.615** -0.579**
ST -0.799** -0.749** -0.786** 0.680** 0.808** 0.747**
GH -0.288** -0.110 -0.298** 0.488** 0.681** 0.592**
PER -0.632** -0.626** -0.552** 0.814** 0.419** 0.573**
TW -0.553** -0.514** -0.596** 0.872** 0.467** 0.679** ← E4

Fig. 2

Manhattan and QQ plots of seven grain quality traits Abbreviations are the same as those given in Tables 1 and 2."

Table 4

Repeat association loci related to grain quality traits"

性状
Trait
标记
Marker
染色体
Chr.
位置
Position
P值(均值)
P-value (mean)
表型变异率PVE (%)
籽粒蛋白质含量/沉降值GPC/SV AX_109046760 6A 375,955,442 3.67E-04 8.208-10.613
籽粒蛋白质含量/容重GPC/TW AX_111542084 2B 595,845,967 4.04E-04 8.601-12.774
籽粒蛋白质含量/湿面筋含量GPC/WGC AX_89596424 3A 513,927,853 2.81E-04 9.510-17.708
籽粒蛋白质含量/湿面筋含量GPC/WGC AX_111067142 1B 627,053,917 2.69E-04 9.153-10.943
籽粒蛋白质含量/湿面筋含量GPC/WGC AX_111566434 6B 612,059,412 4.49E-04 6.554-10.619
籽粒蛋白质含量/湿面筋含量GPC/WGC AX_111499605 7B 568,091,130 4.37E-04 8.395-11.468
籽粒蛋白质含量/湿面筋含量GPC/WGC AX_111106049 7D 135,928,531 7.41E-04 6.463-9.147
沉降值/容重/籽粒硬度SV/TW/GH AX_109272182 5B 26,961,478 1.41E-04 8.207-14.775
籽粒蛋白质含量/沉降值/湿面筋含量GPC/SV/WGC AX_111474675 7A 646,938,062 1.71E-04 9.625-13.464
籽粒蛋白质含量/沉降值/湿面筋含量GPC/SV/WGC AX_108790822 3B 141,628,162 2.68E-04 9.530-12.222
籽粒蛋白质含量/沉降值/湿面筋含量GPC/SV/WGC AX_109792377 2D 287,999,674 6.42E-04 6.233-10.184
籽粒蛋白质含量/沉降值/湿面筋含量/容重GPC/SV/WGC/TW AX_111768696 UN 239 4.24E-04 8.451-14.836
[1] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 99-106.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric, 2018, 8(1): 99-106. (in Chinese with English abstract)
[2] 班进福, 刘彦军, 郭进考, 魏益民, 张国丛, 彭义峰, 郭家宝. 2009年冀中小麦品质状况分析. 中国粮油学报, 2011, 26(3): 5-10.
Ban J F, Liu Y J, Guo J K, Wei Y M, Zhang G C, Peng Y F, Guo J B. Progress of wheat breeding in China and the future perspective. China J Cereals Oils, 2011, 26(3): 5-10. (in Chinese with English abstract)
[3] 何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 张勇, 王德森, 夏兰芹, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳. 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学, 2006, 39: 1091-1101.
He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Zhang Y, Wang D S, Xia L Q, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y. Establishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Chin Agric Sci, 2006, 39: 1091-1101. (in Chinese with English abstract)
[4] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202-215.
doi: 10.3724/SP.J.1006.2011.00202
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202-215. (in Chinese with English abstract)
[5] 杨丽娟, 付亮, 蒋志凯, 王士坤, 魏芳. 2016-2018年度国家区试小麦品种品质性状灰色关联度分析与评价. 中国农学通报, 2020, 36(19): 135-140.
doi: 10.11924/j.issn.1000-6850.casb20190500142
Yang L J, Fu L, Jiang Z K, Wang S K, Wei F. The quality traits of new wheat varieties in south Huang-Huai winter-wheat region test during 2016-2018 based on grey relational analysis. China Agron Bull, 2020, 36(19): 135-140. (in Chinese with English abstract)
[6] 刘爱峰, 段友臣, 程敦公, 李豪圣, 曹新有, 宋健民, 楚秀生, 刘建军. 山东小麦种质资源品质特性多样性研究及利用. 植物遗传资源学报, 2012, 13: 515-520.
doi: 10.13430/j.cnki.jpgr.2012.04.003
Liu A F, Duan Y C, Cheng D G, Li H S, Cao X Y, Song J M, Chu X S, Liu J J. Quality characteristics diversity of wheat germplasm in Shandong and its utilization in wheat breeding. J Plant Genet Resourc, 2012, 13: 515-520. (in Chinese with English abstract)
[7] Ma D Y, Zhang Y, Xia X C, Craig F. Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in Puroindoline balleles. J Cereal Sci, 2009, 50: 126-130.
[8] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状. 作物学报, 2018, 44: 697-705.
doi: 10.3724/SP.J.1006.2018.00697
Zhao D H, Zhang Y, Wang D S, Huang L, Chen X M, Xiao Y G, Yan J, Zhang Y, He Z H. Pan bread and steamed bread qualities of novel-released cultivars in northern winter wheat region of China. Acta Agron Sin, 2018, 44: 697-705. (in Chinese with English abstract)
[9] 张璐, 崔柳青, 王晓曦, 谭晓荣. 面筋蛋白与小麦加工品质关系研究进展. 河南工业大学学报: 自然科学版, 2012, 33(4): 95-100.
Zhang L, Cui L Q, Wang X X, Tan X R. Research progress on relationship between gluten and wheat processing quality. J Henan Univ Technol (Nat Sci Edn), 2012, 33(4): 95-100. (in Chinese with English abstract)
[10] 邓梅, 张雄, 钟小娟, 江千涛. 不同生态环境对四川小麦品种(系)籽粒淀粉含量及理化特性的影响. 麦类作物学报, 2019, 39(1): 64-72.
Deng M, Zhang X, Zhong X J, Jiang Q T. Effect of different ecological environments on content and physicochemical properties of starch in wheat varieties (lines) in Sichuan province. J Triticeae Crops, 2019, 39(1): 64-72. (in Chinese with English abstract)
[11] 宋健民, 刘爱峰, 李豪圣, 戴双, 刘建军, 赵振东, 刘广田. 小麦籽粒淀粉理化特性与面条品质关系研究. 中国农业科学, 2008, 41: 272-279.
Song J M, Liu A F, Li H S, Dai S, Liu J J, Zhao Z D, Liu G T. Relationship between starch physiochemical properties of wheat grain and noodle quality. Chin Agric Sci, 2008, 41: 272-279. (in Chinese with English abstract)
[12] Hernández Z J E, Figueroa J D C, Rayas-Duarte P, Martínez- Flores H E, Arámbula G V, Luna G B, Peña R J. Influence of high and low molecular weight glutenins on stress relaxation of wheat kernels and the relation to sedimentation and rheological properties. J Cereal Sci, 2012, 55: 344-350.
[13] Sun L J, Liu M L, Xu L L, Li X F, Mao X D. Wheat sedimentation value determination based on near infrared spectroscopy. Adv Mater Res, 2012, 605: 996-1000.
[14] 赵雅霞, 马宏, 石蕾. 2019年度新疆小麦质量调查. 农产品加工, 2021, (8): 77-79.
Zhao Y X, Ma H, Shi L. Investigation and quality measurement of Xinjiang wheat harvest in 2019. Farm Prod Proc, 2021, (8): 77-79. (in Chinese with English abstract)
[15] 刘锐, 魏益民, 张波. 小麦蛋白质与面条品质关系的研究进展. 麦类作物学报, 2011, 31: 1183-1187.
Liu R, Wei Y M, Zhang B. Review on relationship between wheat protein and noodle quality. J Triticeae Crops, 2011, 31(6): 1183-1187. (in Chinese with English abstract)
[16] 芦静, 张新忠, 吴新元, 黄天荣. 小麦品质性状与面制食品加工特性相关性研究. 新疆农业科学, 2002, 39: 290-292.
Lu J, Zhang X Z, Wu X Y, Huang T R. Investigation on correlation between quality characters of wheat and processing quality of flour food. Xinjiang Agric Sci, 2002, 39: 290-292. (in Chinese with English abstract)
[17] 桑伟, 穆培源, 徐红军, 庄丽, 王亮, 于芳祥, 韩新年, 聂迎彬, 邹波. 新疆春小麦品种主要品质性状及其与新疆拉面加工品质的关系. 麦类作物学报, 2008, 28: 772-779.
Sang W, Mu P Y, Xu H J, Zhuang L, Wang L, Yu F X, Han X N, Nie Y B, Zou B. Main quality traits of the spring wheat cultivars from Xinjiang and their correlations with processing quality of Xinjiang hand-stretched noodle. J Triticeae Crops, 2008, 28: 772-779. (in Chinese with English abstract)
[18] 刘锐, 魏益民, 邢亚楠, 张波, 张影全. 小麦淀粉与面条质量关系的研究进展. 麦类作物学报, 2013, 33: 1058-1063.
Liu R, Wei Y M, Xing Y N, Zhang B, Zhang Y Q. Review on the relationship between starch and noodle quality in wheat. J Triticeae Crops, 2013, 33: 1058-1063. (in Chinese with English abstract)
[19] Meng L Z, Xiang C, Liu H W, Yang L, Mai C Y, Yu L Q, Wei Y L, Li H J, Zhang H J, Zhou Y. The impact of modern plant breeding on dominant Chinese wheat cultivars (Triticum aestivum L.) revealed by SSR and functional markers. Genet Resour Crop Evol, 2018, 65: 55-65
[20] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析. 作物学报, 2020, 46: 1539-1556.
doi: 10.3724/SP.J.1006.2020.91077
Ma Y M, Lou H Y, Chen Z Y, Xiao J, Xu L, Ni Z F, Liu J. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis. Acta Agron Sin, 2020, 46: 1539-1556 (in Chinese with English abstract)
[21] 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异. 作物学报, 2018, 44: 657-671.
doi: 10.3724/SP.J.1006.2018.00657
Jian D W, Zhou Y, Liu H W, Yang L, Mai C Y, Yu L Q, Han X N, Zhang H J, Li H J. Functional markers reveal genetic variations in wheat improved cultivars and landraces from Xinjiang. Acta Agron Sin, 2018, 44: 657-671. (in Chinese with English abstract)
[22] 殷贵华, 于林平, 朱京立, 李勇, 李波. 近红外谷物分析仪在小麦品质分析中的应用性研究. 粮油仓储科技通讯, 2007, (2): 47-48.
Yin G H, Yu L P, Zhu J L, Li Y, Li B. Study on the application of near infrared grain analyzer in wheat quality analysis. Grain Oil Storag Technol Commun, 2007, (2): 47-48. (in Chinese with English abstract)
[23] Yu J, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 2006, 17: 155-160.
[24] 李鸿恩, 张玉良, 吴秀琴, 李宗智. 我国小麦种质资源主要品质特性鉴定结果及评价. 中国农业科学, 1995, 28(5): 29-37.
Li H E, Zhang Y L, Wu X Q, Li Z Z. Identification results and evaluation of main quality characteristics of wheat germplasm resources in China. Chin Agric Sci, 1995, 28(5): 29-37. (in Chinese with English abstract)
[25] 赵乃新, 王乐凯, 程爱华, 兰静, 戴常军. 面包烘焙品质与小麦品质性状的相关性. 麦类作物学报, 2003, 23(3): 33-36.
Zhao N X, Wang L K, Cheng A H, Lan J, Dai C J. Correlation between bread baking quality and wheat quality parameters. J Triticeae Crops, 2003, 23(3): 33-36 (in Chinese with English abstract).
[26] 信志红, 郭建平, 谭凯炎, 刘凯文, 杨荣光, 张利华, 孙义. 冬小麦籽粒品质评价及其对气象因子的响应研究. 中国生态农业学报, 2019, 27:1205-1217.
Xin Z H, Guo J P, Tan K Y, Liu K W, Yang R G, Zhang L H, Sun Y. Evaluation of grain quality of winter wheat and its response to meteorological factors. Chin J Ecol Agric, 2019, 27: 1205-1217. (in Chinese with English abstract)
[27] 吴新元, 芦静, 张新忠, 黄天荣, 李建疆, 周安定, 梁晓东, 曹俊梅, 高永红, 曾潮武. 新疆小麦品质生态区划研究. 新疆农业科学, 2017, 54: 1373-1383.
doi: 10.6048/j.issn.1001-4330.2017.08.001
Wu X Y, Lu J, Zhang X Z, Huang T R, Li J J, Zhou A D, Liang X D, Cao J M, Gao Y H, Zeng C W. Study of ecological division for wheat quality in Xinjiang. Xinjiang Agric Sci, 2017, 54: 1373-1383. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2017.08.001
[28] 李宗智, 卢少源, 张彩英, 常文锁. 小麦遗传资源籽粒硬度和面粉沉降值的研究. 中国农业科学, 1993, 26(4): 15-20.
Li Z Z, Lu S Y, Zhang C Y, Chang W S. Study on grain hardness and flour settlement value of wheat genetic resources. Agric Sci China, 1993, 26(4): 15-20. (in Chinese with English abstract)
[29] 李春喜, 翁正鹏, 邵云, 李昊烊, 马守臣, 马冠群. 华北平原两熟区不同夏播作物对土壤养分和小麦籽粒产量及品质的影响. 麦类作物学报, 2020, 40: 1215-1222.
Li C X, Weng Z P, Shao Y, Li H Y, Ma S C, Ma G Q. Effect of different summer-sowing crops on soil nutrients and wheat grain yield and quality in the double cropping area of North China Plain. J Triticeae Crops, 2020, 40: 1215-1222. (in Chinese with English abstract)
[30] 向永玲, 方正武, 赵记伍, 高德荣, 张晓, 王晓玲. 灌浆期涝渍害对弱筋小麦籽粒产量及品质的影响. 麦类作物学报, 2020, 40: 730-736.
Xiang Y L, Fang Z W, Zhao J W, Gao D R, Zhang X, Wang X L. Effect of waterlogging at grain filling stage on grain yield and quality of weak gluten wheat. J Triticeae Crops, 2020, 40: 730-736. (in Chinese with English abstract)
[31] 晁漫宁, 史新月, 张健龙, 张一岚, 王志成, 李春艳, 孙风丽, 张超, 奚亚军. 灌浆期持续干旱对小麦光合、抗氧化酶活性、籽粒产量和品质的影响. 麦类作物学报, 2020, 40: 494-502.
Chao M N, Shi X Y, Zhang J L, Zhang Y L, Wang Z C, Li C Y, Sun F L, Zhang C, Xi Y J. Effects of persistent drought at grain filling stage on flag leaf photosynthesis, antioxidant enzyme activity, grain yield and quality of wheat. J Triticeae Crops, 2020, 40: 494-502. (in Chinese with English abstract)
[32] Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum Aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177.
doi: 10.1534/genetics.105.044586 pmid: 16079235
[33] Admas A, Adil E B, Samira E H, Zakaria K, Kenza E, Wuletaw T. Genetic analysis of grain protein content and dough quality traits in elite spring bread wheat (Triticum aestivum) lines through association study. J Cereal Sci, 2021, 100: 103214.
[34] 胡文静, 张晓, 刘巧, 方正武, 高德荣. 普通小麦籽粒硬度的全基因组关联分析. 麦类作物学报, 2021, 41: 157-163.
Hu W J, Zhang X, Liu Q, Fang Z W, Gao D R. Genome-wide association study of grain hardness in common wheat. J Triticeae Crops, 2021, 41: 157-163. (in Chinese with English abstract)
[35] 郭宝晋, 张国华, 蒋方山, 郭营, 李斯深. 小麦品种(系)粉质仪参数和沉淀值的全基因组关联分析. 山东农业科学, 2018, 50(9): 7-12.
Guo B J, Zhang G H, Jiang F S, Guo Y, Li S S. Genome-wide association analysis of farinograph parameters and sedimentation value in wheat. Shandong Agric Sci, 2018, 50(9): 7-12. (in Chinese with English abstract)
[36] 姜朋, 张平平, 张旭, 陈小霖, 姚金保, 马鸿翔. 弱筋小麦宁麦9号及其衍生系的蛋白质含量遗传多样性及关联分析. 作物学报, 2015, 41: 1828-1835.
doi: 10.3724/SP.J.1006.2015.01828
Jiang P, Zhang P P, Zhang X, Chen X L, Yao J B, Ma H X. Genetic diversity and association analysis of protein content in weak gluten wheat Ningmai 9 and its derived lines. Acta Agron Sin, 2015, 41: 1828-1835. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01828
[37] Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177.
doi: 10.1534/genetics.105.044586 pmid: 16079235
[38] Ravel C, Praud S, Murigneux A, Linossier L, Dardevet M, Balfourier F, Dufour P, Brunel D, Charmet G. Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular- weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor Appl Genet, 2006, 112: 738-743.
[1] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[2] HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003.
[3] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[4] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[5] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[6] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[7] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[8] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[9] WANG Qian, ZHANG Li-Yuan, XU Yue, LI Hai, LIU Shao-Xiong, XUE Ya-Peng, LU Ping, WANG Rui-Yun, LIU Min-Xuan. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet [J]. Acta Agronomica Sinica, 2023, 49(8): 2308-2318.
[10] WANG Rang-Jian, YANG Jun, ZHANG Li-Lan, GAO Xiang-Feng. Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots [J]. Acta Agronomica Sinica, 2023, 49(7): 1843-1859.
[11] TIAN Min, LIU Xin-Chun, PAN Jia-Jia, LIANG Li-Jing, DONG Lei, LIU Mei-Chi, FENG Zong-Yun. Genome-wide association analysis of cellulose content and hemicellulose content in grains of barley [J]. Acta Agronomica Sinica, 2023, 49(6): 1726-1732.
[12] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[13] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[14] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[15] MA Ya-Jie, BAO Jian-Xi, GAO Yue-Xin, LI Ya-Nan, QIN Wen-Xuan, WANG Yan-Bo, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association analysis of plant height and ear height related traits in maize [J]. Acta Agronomica Sinica, 2023, 49(3): 647-661.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .