Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 134-148.doi: 10.3724/SP.J.1006.2025.44035

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis of expression patterns of laccase gene family members in Brassica napus and their association with stem fracture resistance

XU Lin-Shan1(), GAO Geng-Dong1, WANG Yu1, WANG Jia-Xing1, YANG Ji-Zhao1, WU Ya-Rui1, ZHANG Xiao-Han1, CHANG Ying1, LI Zhen1, XIE Xiong-Ze2, GONG De-Ping3, WANG Jing1,*(), GE Xian-Hong1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
    3Jingzhou Academy of Agricultural Sciences, Jingzhou 434000, Hubei, China
  • Received:2024-02-27 Accepted:2024-08-15 Online:2025-01-12 Published:2024-09-02
  • Contact: *E-mail: wangjing@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program ‘Creation and Application of New Germplasm of Multi-resistance Rapeseed’(2023YFD1201402);Hubei Key Research and Development Program ‘High-throughput Intelligent Selection and Breeding of High-yield Rapeseed Varieties with High Resistance to Dense Planting’(2023BBB030)

Abstract:

Laccase is a family of copper-containing polyphenol oxidases primarily involved in lignin synthesis and resistance to various stresses in plants. In this study, members of the laccase gene family (BnaLACs) in Brassica napus were identified, and their physical and chemical properties were measured, including the number of amino acids, molecular weight, isoelectric point, instability index, and aliphatic index. The chromosome positions, evolutionary relationships, gene structures, and tissue expression patterns of these genes were subsequently predicted and analyzed. The results showed that the Brassica napus genome contains 53 BnaLAC family members, which are generally alkaline and stable proteins. Most BnaLACs are located in the vacuole membrane and outside the cell. Gene structure analysis revealed that BnaLACs have conserved structures. Tissue expression pattern analysis indicated that BnaLACs are expressed in all tissues except anthers, with higher expression levels in roots, seeds, silique walls, and stems. The expression pattern of BnaLAC4s in stems was specifically analyzed, and it was found that BnaA05G0074200ZS is significantly correlated with lodging resistance in Brassica napus. Haplotype analysis showed significant differences in lodging resistance and lignin content between different BnaA05G0074200ZS haplotype lines. The results of this study provide a foundation for further analysis of the functions of the laccase gene family in Brassica napus and the mechanisms underlying stem lodging resistance.

Key words: Brassica napus, laccase, evolution, expression pattern, haplotype, lodging resistance

Table 1

Primers used for BnaA05G0074200ZS validation"

引物类型Primer type 引物名称Primer name 引物序列Primer sequence (5°-3°)
单倍型鉴定引物
Haplotype identification primer
BnaLAC-A5-3329-F1 CTACTGTTGTTCGTCGTTTCTATTG
BnaLAC-A5-3329-R2 CTACTCACACACATTATTGTGGCT
BnaA5LAC-3K-F2 CTCCTCGGTTCTCTTTCTTCTA
BnaA5LAC-3K-R2 CATCTAATTGTATGTCTTATCGCCTTT
qRT-PCR引物
qRT-PCR primer
qRTBnaLAC-A5F2 AGGCGCTTAAGTCTGGATTAGCCC
qRTBnaLAC-A5R2 AACGGTTTGACGTAGACAGCGTCC
BnENTH-F GTTTAGACCCGTTGCTGCTC
BnENTH-R TTGTCCATCTCAGCCATTTG

Fig. 1

Distribution of BnaLACs on chromosomes in Brassica napus"

Fig. 2

Phylogenetic tree of LAC family members in Arabidopsis thaliana and Brassica napus There are nine categories, each marked with a different color."

Fig. 3

Analysis of conserved motifs and gene structures of LAC family members in Arabidopsis thaliana and Brassica napus According to the phylogenetic relationship, the BnaLAC family was divided into nine categories, each of which was marked with a different color. A total of ten conserved motifs have been identified by the BnaLAC family, with different motifs represented by squares of different colors. Yellow squares in the gene structure represent exons, green squares represent UTR regions, and black lines represent introns."

Fig. 4

Tissue expression patterns of BnaLACs family throughout the growth period of Brassica napus The expression of BnaLACs in each tissue were 2 mm and 4 mm buds, filament, petal, pollen, sepal, cotyledon, vegetative rosette, 1-23 leaves, root, seeds 14-64 days after flowering, silique wall 2- -60 days after flowering, middle, and upper stems."

Fig. 5

Expression patterns of BnaLACs family members in different tissue A: BnaLACs expression in cotyledon, vegetative rosette and 1-23 leaves. B: BnaLACs expression in seeds 14-64 days after flowering. C: expression level of BnaLACs in silique wall 2-60 days after flowering. D: BnaLACs expression in lower, middle and upper stems. E: expression level of BnaLACs in root. F: expression of BnaLACs in buds of 2 mm and 4 mm. G: expression of BnaLACs in filament."

Fig. 6

BnaLAC4s expression pattern and lignin content in ZS11 and lodging cultivar L23 A, B, and C are the expression patterns of ZS11 in Brassica napus database. D, E, and F are the expression patterns of BnaLAC4s in ZS11 and L23, ZS11: Zhongshuang 11. G: lignin content. Student’s t-test, * indicates significant difference at the 0.05 probability level."

Fig. 7

Haplotype distribution of BnaA05G0074200ZS in natural populations A: haplotype type of BnaA05G0074200ZS. B: relationship between BnaA05G0074200ZS haplotype and flexural strength in natural population; Student's t test, P=0.016 < 0.05, the difference was significant. C: Relative expression levels of BnaA05G0074200ZS in different haplotypes, hap1 for C152 and C344, hap2 for C275 and C474. Different letters indicate significant difference at the P < 0.05 level by one-way ANOVA. D: Lignin content for different haplotypes."

Table 2

BnaLAC family members and physicochemical properties"

[1] Hakulinen N, Rouvinen J. Three-dimensional structures of laccases. Cell Mol Life Sci, 2015, 72: 857-868.
[2] Hüttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol, 2001, 55: 387-394.
[3] Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol Rev, 2006, 30: 215-242.
[4] Hoopes J T, Dean J F. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem, 2004, 42: 27-33.
[5] Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet A M, Goffner D. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol, 2002, 129: 145-155.
[6] McCaig B C, Meagher R B, Dean J F D. Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta, 2005, 221: 619-636.
[7] Zhang Y C, Yu Y, Wang C Y, Li Z Y, Liu Q, Xu J, Liao J Y, Wang X J, Qu L H, Chen F, Xin P Y, Yan C Y, Chu J F, Li H Q, Chen Y Q. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol, 2013, 31: 848-852.
[8] Liang M X, Haroldsen V, Cai X N, Wu Y J. Expression of a putative laccase gene, ZmLAC1, in maize primary roots under stress. Plant Cell Environ, 2006, 29: 746-753.
[9] Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R. LACCASE5 is required for lignification of the Brachypodium distachyon Culm. Plant Physiol, 2015, 168: 192-204.
[10] Peng D L, Chen X G, Yin Y P, Lu K L, Yang W B, Tang Y H, Wang Z L. Lodging resistance of winter wheat (Triticum aestivum L.): lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Res, 2014, 157: 1-7.
[11] Bonawitz N D, Chapple C. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet, 2010, 44: 337-363.
[12] Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Phillipe L B, Nero B, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell, 2011, 23: 1124-1137.
[13] Cesarino I, Araújo P, Sampaio Mayer J L, Vicentini R, Berthet S, Demedts B, Vanholme B, Boerjan W, Mazzafera P. Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot, 2013, 64: 1769-1781.
[14] Zhou J L, Lee C H, Zhong R Q, Ye Z H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell, 2009, 21: 248-266.
[15] Swetha C, Basu D, Pachamuthu K, Tirumalai V, Nair A, Prasad M, Shivaprasad P V. Major domestication-related phenotypes in Indica rice are due to loss of miRNA-mediated laccase silencing. Plant Cell, 2018, 30: 2649-2662.
[16] Lu S F, Li Q Z, Wei H R, Chang M J, Tunlaya-Anukit S, Kim H, Liu J, Song J Y, Sun Y H, Yuan L C, Yeh T F, Peszlen I, Ralph J, Sederoff R R, Chiang V L. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA, 2013, 110: 10848-10853.
[17] Sharma N K, Yadav S, Gupta S K, Irulappan V, Francis A, Senthil-Kumar M, Chattopadhyay D. MicroRNA397 regulates tolerance to drought and fungal infection by regulating lignin deposition in chickpea root. Plant Cell Environ, 2023, 46: 3501-3517.
[18] Cai X N, Davis E J, Ballif J, Liang M X, Bushman E, Haroldsen V, Torabinejad J, Wu Y J. Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot, 2006, 57: 2563-2569.
[19] Wang C Y, Zhang S C, Yu Y, Luo Y C, Liu Q, Ju C L, Zhang Y C, Qu L H, Lucas W J, Wang X J, Chen Y Q. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J, 2014, 12: 1132-1142.
[20] Liang M X, Davis E, Gardner D, Cai X N, Wu Y J. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta, 2006, 224: 1185-1196.
[21] Wang G D, Li Q J, Luo B, Chen X Y. Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat Biotechnol, 2004, 22: 893-897.
[22] Deng W, Zhao W, Yang Y. Degradation and detoxification of chlorophenols with different structure by LAC-4 laccase purified from White-Rot fungus Ganoderma lucidum. Int J Environ Res Public Health, 2022, 19: 8150.
[23] Wei J Z, Tirajoh A, Effendy J, Plant A L. Characterization of salt-induced changes in gene expression in tomato (Lycopersicon esculentum) roots and the role played by abscisic acid. Plant Sci, 2000, 159: 135-148.
[24] Shen Y O, Zhang Y Z, Chen J, Lin H J, Zhao M J, Peng H W, Liu L, Yuan G S, Zhang S Z, Zhang Z M, Pan G T. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb. Physiol Plant, 2013, 147: 270-282.
[25] Hu Q, Min L, Yang X Y, Jin S X, Zhang L, Li Y Y, Ma Y Z, Qi X W, Li D Q, Liu H B, Lindsey K, Zhu L F, Zhang X L. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol, 2018, 176: 1808-1823.
[26] Bao W, Whetten R, Sederoff R R. A laccase associated with lignification in loblolly pine xylem. Science, 1993, 260: 672-674.
[27] Chou E Y, Schuetz M, Hoffmann N, Watanabe Y, Sibout R, Samuels A L. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J Exp Bot, 2018, 69: 1849-1859.
[28] Wang J H, Feng J J, Jia W T, Chang S, Li S Z, Li Y X. Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels, 2015, 8: 145.
[29] Turlapati P V, Kim K W, Davin L B, Lewis N G. The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta, 2011, 233: 439-470.
[30] Zhao Q, Nakashima J, Chen F, Yin Y B, Fu C X, Yun J F, Shao H, Wang X Q, Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell, 2013, 25: 3976-3987.
[31] Ménard D, Blaschek L, Kriechbaum K, Lee C C, Serk H, Zhu C T, Lyubartsev A, Nuoendagula, Bacsik Z, Bergström L, Mathew A, Kajita S, Pesquet E. Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. Plant Cell, 2022, 34: 4877-4896.
[32] Whitehill J G A, Henderson H, Schuetz M, Skyba O, Yuen M M S, King J, Samuels A L, Mansfield S D, Bohlmann J. Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. Plant Cell Environ, 2016, 39: 1646-1661.
[33] Joo Y, Kim H, Kang M, Lee G, Choung S, Kaur H, Oh S, Choi J W, Ralph J, Baldwin I T, Kim S G. Pith-specific lignification in Nicotiana attenuata as a defense against a stem-boring herbivore. New Phytol, 2021, 232: 332-344.
[34] Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. Plant Cell, 2023, 35: 889-909.
[35] 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7.
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. China Oils Fats, 2022, 47(2): 1-7 (in Chinese with English abstract).
[36] Welton F A. Lodging in oats and wheat. Botanical Gazatte, 1928, 85: 121.
[37] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响. 作物学报, 2021, 47: 1724-1740.
Lou H X, Ji J L, Kuai J, Wang B, Xu L, Li Z, Liu F, Huang W, Liu S Y, Yin Y F, Wang J, Zhou G S. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. Acta Agron Sin, 2021, 47: 1724-1740 (in Chinese with English abstract).
[38] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
[39] Xie J M, Chen Y R, Cai G J, Cai R L, Hu Z, Wang H. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.
[40] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucl Acids Res, 2015, 43: W39-W49.
[41] Cuzens J C, Miller J R. Acid hydrolysis of bagasse for ethanol production. Renew Energy, 1997, 10: 285-290.
[42] Attitalla I H. Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pak J Biol Sci, 2011, 14: 998-999.
[43] Li Z, Gao G D, Xu L S, Wang Z K, Wang C Y, Yang T H, Kuai J, Wang B, Xu Z H, Zhao J, King G J, Wang J, Zhou G S. Reducing nitrogen application at high planting density enhances secondary cell wall formation and decreases stem lodging in rapeseed. Eur J Agron, 2024, 156: 127162.
[44] Pourcel L, Routaboul J M, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17: 2966-2980.
[45] Yonekura-Sakakibara K, Yamamura M, Matsuda F, Ono E, Nakabayashi R, Sugawara S, Mori T, Tobimatsu Y, Umezawa T, Saito K. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. Plant Cell, 2021, 33: 129-152.
[46] Gavnholt B, Larsen K, Rasmussen S K. Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci, 2002, 162: 873-885.
[47] Miguel P A, Schneider I, Kroll P, Hofhuis H, Metzger S, Pauly M, Hay A. Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proc Natl Acad Sci USA, 2022, 119: e2202287119.
[48] Li Q, Fu C F, Liang C L, Ni X J, Zhao X H, Chen M, Ou L J. Crop lodging and the roles of lignin, cellulose, and hemicellulose in lodging resistance. Agronomy, 2022, 12: 1795.
[49] Zeng R F, Fu L M, Deng L, Liu M F, Gan Z M, Zhou H, Hu S F, Hu C G, Zhang J Z. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. Plant J, 2022, 110: 828-848.
[50] Pin P A, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen J J L, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 2010, 330: 1397-1400.
[51] Qin Z R, Wu J J, Geng S F, Feng N, Chen F J, Kong X C, Song G Y, Chen K, Li A L, Mao L, Wu L. Regulation of FT splicing by an endogenous cue in temperate grasses. Nat Commun, 2017, 8: 14320.
[1] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[2] LOU Hong-Xiang, HUANG Xiao-Yu, JIANG Meng, NING Ning, BIAN Meng-Lei, ZHANG Lei, LUO Dong-Xu, QIN Meng-Qian, KUAI Jie, WANG Bo, WANG Jing, ZHAO Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Optimal allocation of sowing date and sowing rate of late-sowing rapeseed in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2024, 50(8): 2091-2105.
[3] LIU Zhen, CHEN Li-Min, LI Zhi-Tao, ZHU Jin-Yong, WANG Wei-Lu, QI Zhe-Ying, YAO Pan-Feng, BI Zhen-Zhen, SUN Chao, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of ARM gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(6): 1451-1466.
[4] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[5] ZHONG Yuan, ZHU Tian-Yu, DAI Cheng, MA Chao-Zhi. Developing and resistance assessing of phosphite-tolerant herbicide transgenic Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1158-1171.
[6] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[7] ZHOU Xiang-Yu, XU Jin-Song, XIE Ling-Li, XU Ben-Bo, ZHANG Xue-Kun. Physiological mechanisms in response to waterlogging during seedling stage of Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 1015-1029.
[8] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[9] FAN Zi-Pei, LI Long, SHI Yu-Gang, SUN Dai-Zhen, LI Chao-Nan, JING Rui-Lian. Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 403-413.
[10] YANG Shi-Jie, WANG Hua-Zhi, PAN Yi-Min, HUANG Rui, HOU Sen, QIN Hui-Bin, MU Zhi-Xin, WANG Hai-Gang. Genome-wide association analysis for plant height in foxtail millet (Setaria italica L.) germplasm resources in Shanxi, China [J]. Acta Agronomica Sinica, 2024, 50(12): 2984-2997.
[11] HUANG Xiao-Yu, LOU Hong-Xiang, SHAO Dong-Li, ZHANG Zhe, JIANG Bo, XIAO Ya-Dan, CHANG Ying, GUO An-Da, ZHAO Jie, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Exploring the functions of different leaf types of directly-sown rapeseed under high density [J]. Acta Agronomica Sinica, 2024, 50(10): 2550-2561.
[12] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[13] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[14] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[15] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .