Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (11): 3096-3104.doi: 10.3724/SP.J.1006.2025.54028

• RESEARCH NOTES • Previous Articles     Next Articles

Functional analysis of the sweetpotato β-Amylase IbBAM48829

ZHANG Shun-Jie1,2,3,4(), WU Wei-Tai1, RAN Xi-Yue1,2,3,4, ZHAO Zi-Han1,2,3,4, HAN Yong-Hui1,2,3,4, WU Zheng-Dan1,5,*(), ZHANG Kai1,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2 Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
    3 Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
    4 Chongqing Beibei Germplasm Bank of Tuber and Root Crops, Chongqing 400715, China
    5 College of Agriculture, Guangxi University / National Demonstration Center for Experimental Plant Science Education, Nanning 530004, Guangxi, China
  • Received:2025-02-27 Accepted:2025-08-14 Online:2025-11-12 Published:2025-08-26
  • Contact: *E-mail: wudandan0905@163.com; E-mail: zhangkai2010s@163.com
  • Supported by:
    Technology Innovation and Application Development Key Project of Chongqing(cstc2021jscx-gksbX0022);Key Project of Chongqing Natural Science Foundation Innovation and Development Joint Fund (Chongqing Municipal Education Commission)(CSTB2025NSCQ-LZX0022);Guangxi Natural Science Foundation Project(2023GXNSFBA026297);Special Fund for Chongqing Beibei Germplasm Bank of Tuber and Root Crops(ZWZZ2020005);and the Special Fund for the Innovation Team of Tuber and Root Crops Industry Technology System in Chongqing

Abstract:

β-Amylase in the storage roots of sweetpotato (Ipomoea batatas (L.) Lam.) catalyzes the hydrolysis of starch into sugars, influencing dry matter content, sweetness, texture, and ultimately, commercial value. Identifying key β-amylase genes and elucidating their functions is essential for improving the quality and palatability of sweetpotato. In this study, we focused on the β-amylase candidate gene IbBAM48829, previously identified through transcriptome analysis based on its differential expression during storage root development. The expression pattern of IbBAM48829 across various sweetpotato tissues was analyzed by RT-qPCR. To investigate its subcellular localization, the pCAMBIA1300-IbBAM48829-GFP expression vector was constructed and transiently expressed in Nicotiana benthamiana leaves. In addition, the pEarleyGate101-IbBAM48829 overexpression vector was generated using Gateway cloning and introduced into Arabidopsis thaliana Col-0 plants via the floral dip method for heterologous expression and functional analysis. The results showed that IbBAM48829 was expressed at lower levels in storage roots but at higher levels in petioles and leaves. Subcellular localization analysis suggested that the IbBAM48829 protein may localize to both the cytoplasm and chloroplasts. Transgenic Arabidopsis lines overexpressing IbBAM48829 displayed no significant differences in growth or flowering phenotypes compared to wild-type plants. However, these lines exhibited significantly increased starch and soluble sugar contents in the leaves, along with a higher thousand-seed weight, while starch content in the root tips remained unchanged. These findings suggest that IbBAM48829 may play a critical role in leaf starch metabolism, potentially accelerating starch degradation and generating osmotically active metabolites that promote stomatal opening and enhance the accumulation of photosynthetic products.

Key words: sweetpotato, β-amylase, starch, heterologous expression, functional analysis

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Application
T48829-F CACCATGAGTTTGGCACACCAAAT PCR扩增
PCR amplification
T48829-R ATGCCTGAGAGCTTCTTGCAC
488-OE-F AGAACACGGGGGACGATGAGTTTGGCACACCAAATTGG
488-OE-R CGACTCTAGAGGATCATGCCTGAGAGCTTCTTGCAC
IbUBI-F CTTGCTGGAGATTCCGATGT 表达模式分析
Expression pattern analysis
IbUBI-R CTTGCTGGAGATTCCGATGT
AtActin-F ACACTGTGCCAATCTACGAGGGTT
AtActin-R ACAATTTCCCGCTCTGCTGTTGTG
48829Q-F GGAGGAGGAATTATGAGTATGTATC
48829Q-R CTTGAATTTCCACTATGGTTTCAC
Fbar CGACATCCGCCGTGCCACCGA 阳性鉴定
Positive detection
Rbar GTACCGGCAGGCTGAAGTCCAGC

Fig. 1

Expression pattern of the IbBAM48829 gene in sweetpotato variety XS22"

Fig. 2

Subcellular localization of IbBAM48829 标尺: 20 μm。 Scale bar: 20 μm."

Fig. 3

Heterologous expression of the IbBAM48829 gene in Arabidopsis A: phenotype of transgenic Arabidopsis plants with heterologous overexpression of IbBAM48829; 1: Col-0; 2-4: transgenic Arabidopsis plants with heterologous overexpression of IbBAM48829. B: expression of IbBAM48829 in leaves of transgenic Arabidopsis."

Fig. 4

Heterogenous expression of IbBAM48829 altered the starch and soluble sugar contents in Arabidopsis A: thousand seeds weights of transgenic Arabidopsis plants. B: soluble sugar content of transgenic Arabidopsis leaves. C: starch content of transgenic Arabidopsis leaves. D: iodine stain on leaves of transgenic Arabidopsis; 1: Col-0; 2-4: Arabidopsis plants with heterogenous overexpression of IbBAM48829. E: iodine staining on roots of Col-0 Arabidopsis. F: iodine staining on roots of Arabidopsis plant with heterogenous overexpression of IbBAM48829. Scale bar: 50 μm. *, **, ***, and **** indicate significant difference at the 0.05, 0.01, 0.001, and 0.0001 probability levels, respectively."

Fig. 5

Heterogenous expression of IbBAM48829 influences the morphology of guard cells in the leaf of Arabidopsis A: Col-0. B: Arabidopsis plant with heterogenous overexpression of IbBAM48829. Scale bar: 50.0 μm."

[1] Lai Y C, Wang S Y, Gao H Y, Nguyen K M, Nguyen C H, Shih M C, Lin K H. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chem, 2016, 199: 556-564.
doi: 10.1016/j.foodchem.2015.12.053 pmid: 26776008
[2] 杨世雄, 张玲, 张欢欢, 张雪梅, 李雪, 梁叶星, 高飞虎. 甘薯淀粉的食品应用研究进展. 贵州农业科学, 2022, 50(10): 114-119.
Yang S X, Zhang L, Zhang H H, Zhang X M, Li X, Liang Y X, Gao F H. Research progress on application of sweet potato starch in food. Guizhou Agric Sci, 2022, 50(10): 114-119 (in Chinese with English abstract).
[3] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003
[4] David L C, Lee S K, Bruderer E, Abt M R, Fischer-Stettler M, Tschopp M A, Solhaug E M, Sanchez K, Zeeman S C. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. Plant Physiol, 2022, 188: 191-207.
[5] Zeeman S C, Kossmann J, Smith A M. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol, 2010, 61: 209-234.
doi: 10.1146/annurev-arplant-042809-112301 pmid: 20192737
[6] Toda H, Nitta Y, Asanami S, Kim J P, Sakiyama F. Sweet potato β-amylase. Eur J Biochem, 1993, 216: 25-38.
pmid: 8103452
[7] Ziegler P. CerealBeta-amylases. J Cereal Sci, 1999, 29: 195-204.
[8] Weise S E, Kim K S, Stewart R P, Sharkey T D. Beta-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol, 2005, 137: 756-761.
doi: 10.1104/pp.104.055996 pmid: 15665241
[9] Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S C, Smith A M. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 2004, 136: 2687-2699.
[10] Monroe J D, Breault J S, Pope L E, Torres C E, Gebrejesus T B, Berndsen C E, Storm A R. Arabidopsis β-Amylase2 is a K+-requiring, catalytic tetramer with sigmoidal kinetics. Plant Physiol, 2017, 175: 1525-1535.
[11] Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, et al. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008, 20: 1040-1058.
[12] Lao N T, Schoneveld O, Mould R M, Hibberd J M, Gray J C, Kavanagh T A. An Arabidopsis gene encoding a chloroplast-targeted beta-amylase. Plant J, 1999, 20: 519-527.
pmid: 10652124
[13] Reinhold H, Soyk S, Simková K, Hostettler C, Marafino J, Mainiero S, Vaughan C K, Monroe J D, Zeeman S C. β-amylase- like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23: 1391-1403.
[14] Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol, 2006, 141: 840-850.
doi: 10.1104/pp.106.079186 pmid: 16698902
[15] Wang Y, Feng Y F, Yan M, Pu X Q, Lu D Y, Yuan H Z, Wu C Y. Transcriptome analyses reveal the mechanism of changes in the sugar constituents of jujube fruits under saline-alkali stress. Agronomy, 2023, 13: 2243.
[16] Liang G P, Hou Y J, Wang H, Wang P, Mao J, Chen B H. VaBAM1 weakens cold tolerance by interacting with the negative regulator VaSR1 to suppress β-amylase expression. Int J Biol Macromol, 2023, 225: 1394-1404.
[17] 杨泽峰, 徐暑晖, 王一凡, 张恩盈, 徐辰武. 禾本科植物β-淀粉酶基因家族分子进化及响应非生物胁迫的表达模式分析. 科技导报, 2014, 32(31): 29-36.
doi: 10.3981/j.issn.1000-7857.2014.31.002
Yang Z F, Xu S H, Wang Y F, Zhang E Y, Xu C W. Molecluar evolution and expression patterns under abiotic stresses of beta-amylase gene family in grasses. Sci Technol Rev, 2014, 32(31): 29-36 (in Chinese with English abstract).
doi: 10.3981/j.issn.1000-7857.2014.31.002
[18] Zhang Y, Zhu J, Khan M, Wang Y, Xiao W, Fang T, Qu J, Xiao P, Li C L, Liu J H. Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiol, 2023, 191: 591-609.
[19] Yang Y L, Sun F L, Wang P L, Yusuyin M, Kuerban W, Lai C X, Li C P, Ma J, Xiao F. Genome-wide identification and preliminary functional analysis of BAM (β-amylase) gene family in upland cotton. Genes, 2023, 14: 2077.
[20] Nakamura K, Ohto M A, Yoshida N, Nakamura K. Sucrose-induced accumulation of beta-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol, 1991, 96: 902-909.
doi: 10.1104/pp.96.3.902 pmid: 16668273
[21] 陈显让, 李红兵, 康乐, 郭尚洙, 邓西平. 甘薯块根膨大后期β-淀粉酶和淀粉含量相关性分析. 食品工业科技, 2013, 34(19): 93-96.
Chen X R, Li H B, Kang L, Guo S Z, Deng X P. Analysis on relativity between the starch contents and β-amylase activities during storageroot development later stage of sweetpotato. Sci Technol Food Ind, 2013, 34(19): 93-96 (in Chinese with English abstract).
[22] 黄小芳, 毕楚韵, 黄伟群, 刘江洪, 胡韵卓, 黄碧芳, 林世强, 陈选阳. 甘薯β-淀粉酶家族基因的全基因组鉴定和表达分析. 华南农业大学学报, 2021, 42(5): 50-59.
Huang X F, Bi C Y, Huang W Q, Liu J H, Hu Y Z, Huang B F, Lin S Q, Chen X Y. Genome-wide identification and expression analysis of the β-amylase gene family in Ipomoea batatas. J South China Agric Univ, 2021, 42(5): 50-59 (in Chinese with English abstract).
[23] Zhang K, Wu Z D, Tang D B, Lyu C W, Luo K, Zhao Y, Liu X, Huang Y X, Wang J C. Development and identification of SSR markers associated with starch properties and β-carotene content in the storage root of sweet potato (Ipomoea batatas L.). Front Plant Sci, 2016, 7: 223.
doi: 10.3389/fpls.2016.00223 pmid: 26973669
[24] Xiong Y F, Tian C X, Zhu J J, Zhang S J, Wang X, Chen W X, Han Y H, Du Y Z, Wu Z D, Zhang K. Dynamic changes of starch properties, sweetness, and β-amylases during the development of sweet potato storage roots. Food Biosci, 2024, 61: 104964.
[25] 吴正丹. 甘薯块根淀粉性状关键调控基因及关联SSR标记鉴定. 西南大学博士学位论文, 重庆, 2021.
Wu Z D. Development and Identification of SSR Markers Associated with Starch Properties and Functional Identification of Key Candidate Genes Controlling Starch Properties in the Storage Root of Sweet Potato (Ipomoea batatas L.). PhD Dissertation of Southwest University, Chongqing, China, 2021 (in Chinese with English abstract).
[26] Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502.
[27] 冯倩倩, 王文娟, 李海东, 潘勋. 利用激光扫描共聚焦显微镜研究叶绿体自发荧光. 清华大学学报(自然科学版), 2017, 57: 651-654.
doi: 10.16511/j.cnki.qhdxxb.2017.26.034
Feng Q Q, Wang W J, Li H D, Pan X. Autofluorescence of chloroplasts measured by a laser scanning confocal microscope. J Tsinghua Univ (Sci Technol), 2017, 57: 651-654 (in Chinese with English abstract).
[28] Feldmann K A, Marks M D, Christianson M L, Quatrano R S. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science, 1989, 243: 1351-1354.
pmid: 17808268
[29] Kunz H H, Häusler R E, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge U I, Schneider A. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol, 2010, 12: 115-128.
[30] Zeeman S C, Smith S M, Smith A M. The diurnal metabolism of leaf starch. Biochem J, 2007, 401: 13-28.
doi: 10.1042/BJ20061393 pmid: 17150041
[31] Outlaw W H, Manchester J. Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol, 1979, 64: 79-82.
doi: 10.1104/pp.64.1.79 pmid: 16660919
[32] Francisco P, Li J, Smith S M. The gene encoding the catalytically inactive β-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs. J Plant Physiol, 2010, 167: 890-895.
[33] Zhu H, Yang X, Wang X, Li Q Y, Guo J Y, Ma T, Zhao C M, Tang Y Y, Qiao L X, Wang J S, et al. The sweetpotato β-amylase gene IbBAM1.1 enhances drought and salt stress resistance by regulating ROS homeostasis and osmotic balance. Plant Physiol Biochem, 2021, 168: 167-176.
[34] Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F. Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 2011, 62: 545-555.
doi: 10.1093/jxb/erq288 pmid: 20876336
[35] Outlaw W H Jr, De Vlieghere-He X. Transpiration rate: an important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol, 2001, 126: 1716-1724.
pmid: 11500569
[36] Lee M, Choi Y, Burla B, Kim Y Y, Jeon B, Maeshima M, Yoo J Y, Martinoia E, Lee Y. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol, 2008, 10: 1217-1223.
doi: 10.1038/ncb1782 pmid: 18776898
[37] 梁国平. β-淀粉酶调控糖代谢参与葡萄的抗寒机理研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2022.
Liang G P. Study on the Mechanism of Cold Resistance via β-amylase Regulating Sugar Metabolism in Grapes. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2022 (in Chinese with English abstract).
[38] Flütsch S, Wang Y Z, Takemiya A, Vialet-Chabrand S R M, Klejchová M, Nigro A, Hills A, Lawson T, Blatt M R, Santelia D. Guard cell starch degradation yields glucose for rapid stomatal opening in Arabidopsis. Plant Cell, 2020, 32: 2325-2344.
[39] Drake P L, Froend R H, Franks P J. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot, 2013, 64: 495-505.
doi: 10.1093/jxb/ers347 pmid: 23264516
[40] Talbott L D, Zeiger E. Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol, 1996, 111: 1051-1057.
pmid: 12226347
[41] Amodeo G, Talbott L D, Zeiger E. Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation. Plant Cell Physiol, 1996, 37: 575-579.
[42] Horrer D, Flütsch S, Pazmino D, Matthews J S A, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr Biol, 2016, 26: 362-370.
doi: 10.1016/j.cub.2015.12.036 pmid: 26774787
[43] Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer H W, Zeeman S C, Santelia D. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell, 2016, 28: 1860-1878.
[1] YANG Ying-Cong, ZHANG Jun-Hao, TANG Yi-Zhe, QIAO Chang-Chang, WANG Peng-Bo, HUANG Ming, XU Guo-Wei, WANG He-Zheng. Effects of straw returning and phosphorus application rates on grain starch and the activities of starch synthesis-related enzymes in dryland wheat [J]. Acta Agronomica Sinica, 2025, 51(9): 2467-2484.
[2] ZHUO Feng-Qi, TANG Zhen-San, LEI Yu-Jun, CHENG Li-Xiang, ZHAO Tian-Tian, LYU Tai, YANG Chen, ZHANG Feng. Screening of low glycemic potato varieties (lines) based on cooking methods and regeneration temperature [J]. Acta Agronomica Sinica, 2025, 51(9): 2538-2546.
[3] WAN Hui-Lan, WU Hua-Ying, ZENG Dan, QIAN Zhen-Feng, ZHAO Chang-Zu, LIAO Ran-Chao, HE Li-Lian, LI Fu-Sheng. Cloning analysis and functional validation of EfWRKY51 gene related to cold tolerance in Erianthus fulvus [J]. Acta Agronomica Sinica, 2025, 51(8): 2048-2059.
[4] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[5] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[6] WU Mei-Juan, ZHANG Yin-Hui, LI Yuan-Hao, LIU Hai-Xia, HUANG Yi-Lin, LI Tian, LIU Hong-Xia, ZHANG Xue-Yong, HAO Chen-Yang, GUO Jie, HOU Jian. Functional dissection of sucrose synthase gene TaSUS2 regulating grain starch synthesis and quality in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1514-1525.
[7] XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109.
[8] ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117.
[9] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[10] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[11] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[12] XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431.
[13] YAN Bing-Chun, WAN Xue, ZHONG Min, LIU Yu-Qi, ZHAO Yan-Ze, JIANG Hong-Fang, LIU Ya, LIU Hui-Ling, MA Qin-Chun, GAO Ji-Ping, ZHANG Wen-Zhong. Effects of nitrogen levels on quality and fine grinding powder characteristics of northern japonica rice [J]. Acta Agronomica Sinica, 2025, 51(2): 503-515.
[14] LI Xu-Juan, LI Chun-Jia, TIAN Chun-Yan, KONG Chun-Yan, XU Chao-Hua, LIU Xin-Long. Identification of nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(8): 2131-2142.
[15] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!