Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (12): 3198-3210.doi: 10.3724/SP.J.1006.2025.54052
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
WANG Yu-Jiao1,WANG Yong-Le1,TIAN Chang-Jiu1,YU Chun-Wang1,LYU Jia-Bin2,ZHU Jia-Bao1,*
| [1] Cheng Y, Zhou Y, Yang Y, Chi Y J, Zhou J, Chen J Y, Wang F, Fan B F, Shi K, Zhou Y H, et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol, 2012, 159: 810–825. [2] Kim D Y, Kwon S I, Choi C, Lee H, Ahn I, Park S R, Bae S C, Lee S C, Hwang D J. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene, 2013, 529: 208–214. [3] Song W B, Zhao H M, Zhang X B, Lei L, Lai J S. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Front Plant Sci, 2015, 6: 1177. [4] 凡超, 杨杰, 陈蓉, 刘伟, 向旭. 荔枝VQ基因家族鉴定及其对非生物胁迫的响应. 西北植物学报, 2024, 44: 739–750. Fan C, Yang J, Chen R, Liu W, Xiang X. Identification of the VQ gene family and their responses to abiotic stresses in Litchi chinensis. Acta Bot Boreali-Occident Sin, 2024, 44: 739–750 (in Chinese with English abstract). [5] 翟明明, 刘娜, 徐任园, 李欢欢, 王倩, 刘柏林, 汪奎, 方玉川, 郭东伟. 马铃薯VQ基因家族鉴定与表达分析. 农业生物技术学报, 2022, 30(1): 25–37. Zhai M M, Liu N, Xu R Y, Li H H, Wang Q, Liu B L, Wang K, Fang Y C, Guo D W. Identification and expression analysis of VQ gene family in Solanum tuberosum. J Agric Biotechnol, 2022, 30(1): 25–37 (in Chinese with English abstract). [6] Jing Y J, Lin R C. The VQ motif-containing protein family of plant-specific transcriptional regulators. Plant Physiol, 2015, 169: 371–378. [7] Wang Y J, Liu H L, Zhu D Y, Gao Y M, Yan H W, Xiang Y. Genome-wide analysis of VQ motif-containing proteins in Moso bamboo (Phyllostachys edulis). Planta, 2017, 246: 165–181. [8] Liu Y, Liu X L, Yang D D, Yin Z, Jiang Y L, Ling H, Huang N, Zhang D W, Wu J F, Liu L L, et al. A comprehensive identification and expression analysis of VQ motif-containing proteins in sugarcane (Saccharum spontaneum L.) under phytohormone treatment and cold stress. Int J Mol Sci, 2022, 23: 6334. [9] Zhai M M, Ao Z X, Qu H R, Guo D W. Overexpression of the potato VQ31 enhances salt tolerance in Arabidopsis. Front Plant Sci, 2024, 15: 1347861. [10] Yuan G B, Qian Y, Ren Y, Guan Y L, Wu X X, Ge C L, Ding H D. The role of plant-specific VQ motif-containing proteins: an ever-thickening plot. Plant Physiol Biochem, 2021, 159: 12–16. [11] Cai H Y, Zhang M, Liu Y H, He Q, Chai M N, Liu L P, Chen F Q, Huang Y M, Yan M K, Zhao H M, et al. Genome-wide classification and evolutionary and functional analyses of the VQ family. Trop Plant Biol, 2019, 12: 117–131. [12] Hao Z Y, Tian J F, Fang H, Fang L, Xu X, He F, Li S Y, Xie W Y, Du Q, You X M, et al. A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism. Cell Rep, 2022, 40: 111235. [13] He Q, He M, Zhang X L, Zhang X Y, Zhang W L, Dong J H, Li J X, Zhu Y L, Wang Y, Liu L W, et al. RsVQ4-RsWRKY26 module positively regulates thermotolerance by activating RsHSP70-20 transcription in radish (Raphanus sativus L.). Environ Exp Bot, 2023, 214: 105467. [14] Pan J J, Wang H P, Hu Y R, Yu D Q. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. Plant J, 2018, 95: 529–544. [15] Ding H D, Yuan G B, Mo S R, Qian Y, Wu Y, Chen Q, Xu X Y, Wu X X, Ge C L. Genome-wide analysis of the plant-specific VQ motif-containing proteins in tomato (Solanum lycopersicum) and characterization of SlVQ6 in thermotolerance. Plant Physiol Biochem, 2019, 143: 29–39. [16] Ma J L, Li C H, Sun L L, Ma X C, Qiao H, Zhao W C, Yang R, Song S S, Wang S H, Huang H. The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato. J Integr Plant Biol, 2023, 65: 2437–2455. [17] Dong Q L, Zhao S, Duan D Y, Tian Y, Wang Y P, Mao K, Zhou Z S, Ma F W. Structural and functional analyses of genes encoding VQ proteins in apple. Plant Sci, 2018, 272: 208–219. [18] Dong Q L, Duan D Y, Zheng W Q, Huang D, Wang Q, Yang J, Liu C H, Li C, Gong X Q, Li C Y, et al. Overexpression of MdVQ37 reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. Tree Physiol, 2022, 42: 160–174. [19] Dong Q L, Duan D Y, Zheng W Q, Huang D, Wang Q, Li X R, Mao K, Ma F W. MdVQ37 overexpression reduces basal thermotolerance in transgenic apple by affecting transcription factor activity and salicylic acid homeostasis. Hortic Res, 2021, 8: 220. [20] Duan D Y, Zheng W Q, Shi M R, Yi R, Dong Q L, Yang J, Ma F W, Mao K. MdVQ37 negatively regulates apple resistance to Valsa canker via SA-dependent and SA-independent pathways. Mol Plant Pathol, 2025, 26: e70064. [21] 蒙秋伊, 杨玲玲, 尚昆, 李秀诗, 朱加保, 王玉娇, 付瑜华. 薏苡ramosa2基因的克隆及表达分析. 分子植物育种, 2023, 21: 6292–6299. Meng Q Y, Yang L L, Shang K, Li X S, Zhu J B, Wang Y J, Fu Y H. Cloning and expression analysis of ramosa2 gene in Coix lacryma-jobi L. Mol Plant Breed, 2023, 21: 6292–6299 (in Chinese with English abstract). [22] 李祥栋, 陆秀娟, 潘虹, 魏心元, 曾涛, 郭超, 陆平, 周美亮, 高爱农, 石明. 薏苡种仁主要脂质组分分类及特征分子筛选. 中国粮油学报, 2025, 40(4): 41–48. Li X D, Lu X J, Pan H, Wei X Y, Zeng T, Guo C, Lu P, Zhou M L, Gao A N, Shi M. Classification of principal lipid components and distinctive molecules selection in adlay seed (Coix lacryma-jobi L.). J Chin Cereals Oils Assoc, 2025, 40(4): 41–48 (in Chinese with English abstract). [23] 杨云, 周宇, 班秀文 ,周明强, 王健, 杨小雨, 雷静, 杨成龙. 干旱胁迫对薏苡幼苗形态和生理特征的影响. 分子植物育种, 网络首发[2023-07-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20230706.1405.006.html. Yang Y, Zhou Y, Ban X W, Zhou M Q, Wang J, Yang X Y, Lei J, Yang C L. Effects of morphological and physiological characteristics of Coix lacryma-jobi L. seedlings under drought stress. Mol Plant Breed, Published online [2023-07-07]. http://kns.cnki.net/kcms/detail/46.1068.S.20230706.1405.006.html (in Chinese with English abstract). [24] 钟静, 王亮节, 曾国平, 黄纯. 锌胁迫对薏苡种子萌发和幼苗生长的影响. 北方园艺, 2020, (2): 113–118. Zhong J, Wang L J, Zeng G P, Huang C. Effects of zinc stress on seed germination and seedling growth of Job 's tears. North Hortic, 2020, (2): 113–118 (in Chinese with English abstract). [25] 黄玉兰, 向君亮, 蔡森, 曾伟光. 烯效唑影响薏苡幼苗叶片响应低温胁迫的蛋白质组学分析. 中国生物制品学杂志, 2019, 32: 742–749. Huang Y L, Xiang J L, Cai S, Zeng W G. Proteomic analysis of effect of uniconazole on response of Coix seedlings to low temperature stress. Chin J Biol, 2019, 32: 742–749 (in Chinese with English abstract). [26] 席国成, 刘福顺, 刘艳涛, 冯晓洁, 陈健, 王庆雷. 薏苡耐盐性研究. 河北农业科学, 2011, 15(10): 29–31. Xi G C, Liu F S, Liu Y T, Feng X J, Chen J, Wang Q L. Study on salt tolerance of Coix lacroyma-jobi L. J Hebei Agric Sci, 2011, 15(10): 29–31 (in Chinese with English abstract). [27] 田鑫, 钟程, 李性苑, 杨芩. 盐胁迫对薏苡种子萌发及幼苗生长的影响. 作物杂志, 2015, (2): 140–143. Tian X, Zhong C, Li X Y, Yang Q. Effects of salt stress on seed germination and seedling growth of Coix. Crops, 2015, (2): 140–143 (in Chinese with English abstract). [28] Wang Y J, Lu X Y, Fu Y H, Wang H J, Yu C, Chu J S, Jiang B L, Zhu J B. Genome-wide identification and expression analysis of VQ gene family under abiotic stress in Coix lacryma-jobi L. BMC Plant Biol, 2023, 23: 327. [29] Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551–560. [30] 敖茂宏, 宋智琴, 申刚, 蒙秋伊. 干旱胁迫对薏苡叶片生理指标及产量和籽粒品质的影响. 时珍国医国药, 2017, 28(1): 213–214. Ao M H, Song Z Q, Shen G, Meng Q Y. Effects of drought stress on physiological indexes and yield of Coix leaf and grain quality. Lishizhen Med Mater Med Res, 2017, 28(1): 213–214 (in Chinese with English abstract). [31] Huang H, Zhao W C, Li C H, Qiao H, Song S S, Yang R, Sun L L, Ma J L, Ma X C, Wang S H. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. Plant Physiol, 2022, 190: 828–842. [32] Cheng X R, Wang Y J, Xiong R, Gao Y M, Yan H W, Xiang Y. A Moso bamboo gene VQ28 confers salt tolerance to transgenic Arabidopsis plants. Planta, 2020, 251: 99. [33] Zhang L L, Wang K K, Han Y X, Yan L Y, Zheng Y, Bi Z Z, Zhang X, Zhang X H, Min D H. Genome-wide analysis of the VQ motif-containing gene family and expression profiles during phytohormones and abiotic stresses in wheat (Triticum aestivum L.). BMC Genomics, 2022, 23: 292. [34] 王丽蓉, 黄丽霞, 杜萌, 易丹, 王劼, 杨鑫光. 白刺VQ基因家族的鉴定及分析. 西北农业学报, 2025, 34: 498–507. Wang L R, Huang L X, Du M, Yi D, Wang J, Yang X G. Identification and analysis of VQ gene family in Nitraria tangutorum bobr. Acta Agric Boreali-Occident Sin, 2025, 34: 498–507 (in Chinese with English abstract). [35] 郑逢盛, 王海华, 邬清韬, 申权, 田建红, 彭喜旭, 唐新科. 苦荞VQ基因家族的全基因组鉴定及其在叶斑病原与激素处理下的表达谱分析. 中国农业科学, 2021, 54: 4048–4060. Zheng F S, Wang H H, Wu Q T, Shen Q, Tian J H, Peng X X, Tang X K. Genome-wide identification of VQ gene family in Fagopyrum tataricum and its expression profiles in response to leaf spot pathogens. Sci Agric Sin, 2021, 54: 4048–4060 (in Chinese with English abstract). [36] Hu Y R, Chen L G, Wang H P, Zhang L P, Wang F, Yu D Q. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J, 2013, 74: 730–745. [37] Cheng X R, Yao H, Cheng Z M, Tian B B, Gao C, Gao W, Yan S N, Cao J J, Pan X, Lu J, et al. The wheat gene TaVQ14 confers salt and drought tolerance in transgenic Arabidopsis thaliana plants. Front Plant Sci, 2022, 13: 870586. [38] Zhang L L, Zheng Y, Xiong X X, Li H, Zhang X, Song Y L, Zhang X H, Min D H. The wheat VQ motif-containing protein TaVQ4-D positively regulates drought tolerance in transgenic plants. J Exp Bot, 2023, 74: 5591–5605. [39] Zhang K, Liu F, Wang Z X, Zhuo C J, Hu K N, Li X X, Wen J, Yi B, Shen J X, Ma C Z, et al. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. Plant Physiol, 2022, 190: 2757–2774. [40] Wang H P, Hu Y R, Pan J J, Yu D Q. Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea. Sci Rep, 2015, 5: 14185 |
| [1] | MENG Ran, LI Zhao-Jia, FENG Wei, CHEN Yue, LIU Lu-Ping, YANG Chun-Yan, LU Xue-Lin, WANG Xiu-Ping. Comprehensive evaluation of salt tolerance at different growth stages of soybean and screening of salt-tolerant germplasm [J]. Acta Agronomica Sinica, 2025, 51(8): 1991-2008. |
| [2] | PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913. |
| [3] | WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887. |
| [4] | JIANG You, MA Xue-Rong, ZHANG Bo, LI Chen-Jian. Evaluation of salt tolerance and screening of salt-tolerant germplasm of Sorghum sudanese during seed germination period [J]. Acta Agronomica Sinica, 2025, 51(3): 835-844. |
| [5] | ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346. |
| [6] | MENG Fan-Hua, LIU Min, SHEN Ao, LIU Wei. Preliminary investigation of the SiLTP1: a lipid transfer protein gene involved in the salt tolerance of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 58-67. |
| [7] | LIU Xin-Yue, GUO Xiao-Yang, WANG Xin-Ru, XIN Da-Wei, GUAN Rong-Xia, QIU Li-Juan. Establishment of screening method for salt tolerance at germination stage and identification of salt-tolerant germplasms in soybean [J]. Acta Agronomica Sinica, 2024, 50(8): 2122-2130. |
| [8] | GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988. |
| [9] | LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157. |
| [10] | ZHANG Bao-Hua, LIU Jia-Jing, TIAN Xiao, TIAN Xu-Zhao, DONG Kuo, WU Yu-Jie, XIAO Kai, LI Xiao-Juan. Cloning, expression, and functional analysis of wheat (Triticum aestivum L.) TaSPX1 gene in low nitrogen stress tolerance [J]. Acta Agronomica Sinica, 2024, 50(3): 576-589. |
| [11] | XIA Xiu-Zhong, ZHANG Zong-Qiong, NONG Bao-Xuan, FENG Rui, GUO Hui, CHEN Can, LIANG Shu-Hui, ZHUANG Jie, LIAO Zu-Yu, SONG Guo-Xian, YANG Xing-Hai, LI Dan-Ting. QTL mapping for salt tolerance traits throughout the entire growth period of deep-water rice [J]. Acta Agronomica Sinica, 2024, 50(10): 2493-2502. |
| [12] | SHI Yu-Xin, LIU Xin-Yue, SUN Jian-Qiang, LI Xiao-Fei, GUO Xiao-Yang, ZHOU Ya, QIU Li-Juan. Knockout of GmBADH1 gene using CRISPR/Cas9 technique to reduce salt tolerance in soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 100-109. |
| [13] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
| [14] | XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384. |
| [15] | WANG Hui-Wei, ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You. Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1882-1894. |
|
||