Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (2): 503-515.doi: 10.3724/SP.J.1006.2025.42019

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen levels on quality and fine grinding powder characteristics of northern japonica rice

YAN Bing-Chun(), WAN Xue, ZHONG Min, LIU Yu-Qi, ZHAO Yan-Ze, JIANG Hong-Fang, LIU Ya, LIU Hui-Ling, MA Qin-Chun, GAO Ji-Ping(), ZHANG Wen-Zhong()   

  1. Rice Research Institute, Shenyang Agricultural University / Northern Japonica Rice Breeding and Cultivation Technology National and Local Joint Engineering Laboratory / Northeast Key Laboratory of Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Shenyang 110866, Liaoning, China
  • Received:2024-04-18 Accepted:2024-09-18 Online:2025-02-12 Published:2024-10-10
  • Contact: E-mail: jipinggao@syau.edu.cn; E-mail: zwzhong1@syau.edu.cn
  • Supported by:
    National Key Research and Development Program(2023YFD2301603);National Natural Science Foundation of China(31501250);Liaoning Revitalization Talents Program(XLYC2002073);Liaoning Revitalization Talents Program(XLYC2007169)

Abstract:

The objective of this study was to investigate the effects of nitrogen application on the eating quality, nutritional quality, and milling characteristics of japonica rice. Four rice varieties were analyzed: Shennong 9816, Akita-Komachi, Beijing 3, and Yanjing 476. Four nitrogen levels were applied: 0 kg hm-2 (N0), 50 kg hm-2 (N1), 100 kg hm-2 (N2), and 200 kg hm-2 (N3), to assess their impact on rice quality and the grain morphology of finely milled rice. The results showed that the eating quality of Akita-Komachi was superior to that of Yanjing 476, Beijing 3, and Shennong 9816, and this superiority remained consistent across different nitrogen levels. As nitrogen levels increased, the eating quality (cooking taste value, appearance, viscosity, gel consistency), as well as the distribution of amylopectin A chain and B1 chain content, significantly decreased across all japonica rice varieties. Meanwhile, hardness, amylose content, and protein content significantly increased. Peak viscosity, holding viscosity, and final viscosity decreased with increasing nitrogen levels, although nitrogen had less impact on breakdown, setback, and pasting temperature. Furthermore, the surface texture of the fine milled rice powder transitioned from smooth to rough with increasing nitrogen levels, accompanied by larger particle size, more particles, and the appearance of cracks and voids. Correlation analysis revealed a significant negative correlation between nitrogen levels and cooking quality traits (viscosity, appearance, cooking taste value) as well as RVA (Rapid visco analyzer) profile values (peak viscosity, holding viscosity, final viscosity). In contrast, nitrogen levels were positively correlated with hardness and the surface particle size of the fine milled powder. Surface particle size was negatively correlated with cooking quality traits (cooking taste value, appearance) and RVA profile values (viscosity, peak viscosity, holding viscosity, and final viscosity), but positively correlated with hardness. In conclusion, rice varieties with higher food taste values demonstrated a weaker response to nitrogen, particularly in terms of fine milling powder surface characteristics.

Key words: eating quality, starch content, protein component, fine grinding powder, surface particle size, nitrogen

Fig. 1

Effects of different nitrogen levels on cooking quality of rice N0, N1, N2, and N3 refer to nitrogen application levels of 0, 50, 100, 200 kg hm-2, respectively. A, B, C, and D are the cooking taste value related characters of Shennong 9816, Akita-Komachi, Bejing 3, and Yanjing 476 under different nitrogen levels, including appearance, hardness, viscosity, amylose, gel consistency, and cooking taste value. Different lowercase letters within the same variety indicate significant differences between nitrogen levels at the 0.05 probability level."

Table 1

RVA spectral characteristic values of starch in the tested rice varieties at different nitrogen levels"

Table 2

Difference of chain length distribution ratio of amylopectin under different nitrogen levels"

处理
Treatment
品种
Cultivar
A 链含量
A chain content (%)
B1 链含量
B1 chain content (%)
N0 沈农9816 Shennong 9816 24.86±0.36 c 40.42±0.42 c
秋田小町Akita-Komachi 27.65±0.15 a 47.08±0.38 a
北粳3号Beijing 3 25.46±0.23 b 42.44±0.24 b
盐粳476 Yanjing 476 26.97±0.34 a 46.56±0.19 a
N1 沈农9816 Shennong 9816 23.56±0.42 d 37.42±0.47 c
秋田小町Akita-Komachi 26.51±0.15 a 43.56±0.19 a
北粳3号Beijing 3 24.48±0.14 c 41.44±0.07 b
盐粳476 Yanjing 476 25.35±0.67 b 43.08±0.38 a
N2 沈农9816 Shennong 9816 22.47±0.22 c 36.63±0.12 c
秋田小町Akita-Komachi 25.66±0.42 a 42.74±0.11 a
北粳3号Beijing 3 23.39±0.14 c 40.87±0.54 b
盐粳476 Yanjing 476 24.41±0.63 b 42.03±0.23 a
N3 沈农9816 Shennong 9816 21.35±0.13 d 34.70±1.44 c
秋田小町Akita-Komachi 25.24±0.50 a 42.51±0.08 a
北粳3号Beijing 3 22.19±0.02 c 37.32±0.43 b
盐粳476 Yanjing 476 24.15±0.74 b 41.46±0.11 ab
方差分析
ANOVA
氮素水平Nitrogen level (N) ** **
品种Cultivar (C) ** **
氮素水平×品种 N×C ns ns

Table 3

Differences in protein component contents in grains of the tested rice varieties at different nitrogen levels (%)"

处理
Treatment
品种
Cultivar
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
N0 沈农9816 Shennong 9816 0.42±0.02 a 0.51±0.01 b 0.61±0.01 a 3.03±0.07 b
秋田小町Akita-Komachi 0.26±0.19 c 0.52±0.08 b 0.63±0.01 a 3.04±0.08 b
北粳3号Beijing 3 0.36±0.01 b 0.57±0.01 a 0.56±0.03 b 3.17±0.19 a
盐粳476 Yanjing 476 0.33±0.05 b 0.54±0.02 b 0.62±0.02 a 3.04±0.08 b
N1 沈农9816 Shennong 9816 0.50±0.03 a 0.68±0.03 a 0.82±0.01 a 3.85±0.05 b
秋田小町Akita-Komachi 0.29±0.05 b 0.53±0.01 b 0.66±0.01 c 3.31±0.10 c
北粳3号Beijing 3 0.47±0.01 a 0.68±0.04 a 0.72±0.03 b 3.94±0.17 a
盐粳476 Yanjing 476 0.37±0.01 b 0.60±0.01a b 0.65±0.04 c 3.71±0.05 b
N2 沈农9816 Shennong 9816 0.59±0.03 a 0.69±0.01 ab 1.06±0.03 a 4.37±0.10 b
秋田小町Akita-Komachi 0.30±0.02 b 0.64±0.02 b 0.78±0.05 b 3.89±0.12 c
北粳3号Beijing 3 0.51±0.02 a 0.71±0.05 a 1.07±0.21 a 4.83±0.08 a
盐粳476 Yanjing 476 0.38±0.01 b 0.68±0.05 ab 0.67±0.01 c 4.41±0.17 b
N3 沈农9816 Shennong 9816 0.62±0.02 a 0.77±0.03 a 1.14±0.05 a 4.89±0.10 b
秋田小町 Akita-Komachi 0.36±0.03 c 0.68±0.02 b 0.89±0.12 b 4.32±0.09 c
北粳3号Beijing 3 0.68±0.06 a 0.82±0.01 a 1.27±0.14 a 5.12±0.08 a
盐粳476 Yanjing 476 0.45±0.01 b 0.71±0.02 b 0.78±0.06 c 4.76±0.07 b
方差分析
ANOVA
氮素水平 Nitrogen level (N) ** ** ** **
品种Cultivar (C) ** ** ** **
氮素水平×品种N×C ns ns ** **

Fig. 2

Morphological characteristics of Shennong 9816 rice flour under different nitrogen levels A-D is SEM at N0, N1, N2 and N3 nitrogen levels with a magnification of 500 times, respectively; E-H is SEM at N0, N1, N2, and N3 nitrogen levels with a magnification of 2000 times, respectively; I-L is SEM at N0, N1, N2, and N3 nitrogen levels with a magnification of 5000 times, respectively."

Fig. 3

Morphological characteristics of Akita-Komachi rice flour under different nitrogen levels Treatments are the same as those given in Fig. 2."

Fig. 4

Morphological characteristics of Beijing 3 rice flour under different nitrogen levels Treatments are the same as those given in Fig. 2."

Fig. 5

Morphological characteristics of Yanjing 476 rice flour under different nitrogen levels Treatments are the same as those given in Fig. 2."

Fig. 6

Particle size distribution of rice flour surface of the tested varieties under different nitrogen levels N0, N1, N2, and N3 refer to nitrogen application levels of 0, 50, 100, and 200 kg hm-2, respectively. A-D represents the surface particle size distribution of rice flour from Shennong 9816, Akita-Komachi, Beijing 3, and Yanjing 476, respectively."

Fig. 7

Correlation analysis of nitrogen level with rice quality traits and surface particle size of rice flour The date used in the analysis are from Figs. 1, 2, and 6. * and ** denotes significant correlation coefficients at the P < 0.05 and P < 0.01 probability levels, respectively. Rice quality traits includes nitrogen level, cooking taste value, appearance, hardness, viscosity, peak viscosity, holding strength, final viscosity, and diameter."

[1] 顾铭洪. 水稻高产育种中一些问题的讨论. 作物学报, 2010, 36: 1431-1439.
doi: 10.3724/SP.J.1006.2010.01431
Gu M H. Discussion on the aspects of high-yielding breeding in rice. Acta Agron Sin, 2010, 36: 1431-1439 (in Chinese with English abstract).
[2] 徐海, 孙健, 徐铨, 潘国君, 周广春, 张忠旭, 孙玥, 徐正进, 陈温福. 北方粳稻优化穗部性状和籼型血缘改良品质研究进展. 科学通报, 2022, 67: 135-142.
Xu H, Sun J, Xu Q, Pan G J, Zhou G C, Zhang Z X, Sun Y, Xu Z J, Chen W F. Research progress on optimizing panicle characters and quality improvement of indica pedigree in northern japonica rice. Chin Sci Bull, 2022, 67: 135-142 (in Chinese with English abstract).
[3] 唐亮, 陈温福. 东北粳稻发展趋势及展望. 中国稻米, 2021, 27(5): 1-4.
doi: 10.3969/j.issn.1006-8082.2021.05.001
Tang L, Chen W F. Development trend and prospect of Geng rice in Northeast China. China Rice, 2021, 27(5): 1-4 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2021.05.001
[4] 邓祝云, 曲乐庆, 巫永睿, 张劲松, 王台. 作物品质研究现状与展望. 中国科学: 生命科学, 2021, 51: 1405-1414.
Deng Z Y, Qu L Q, Wu Y R, Zhang J S, Wang T. Current progress, and prospect of crop quality research. Sci Sin Vitae, 2021, 51: 1405-1414 (in Chinese with English abstract).
[5] 李宏, 周少川, 黄道强, 赖穗春, 王志东, 周德贵, 王重荣. 水稻优质食味的认知及育种实践. 广东农业科学, 2014, 41: 15-18.
Li H, Zhou S C, Huang D Q, Lai S C, Wang Z D, Zhou D G, Wang C R. Cognition and breeding practice for good eating quality of rice. Guangdong Agric Sci, 2014, 41: 15-18 (in Chinese with English abstract).
[6] 盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响. 中国水稻科学, 2007, 21: 396-402.
Sheng J, Tao H J, Chen L G. Response of seed-setting and grain quality of rice to temperature at different time during grain filling period. Chin J Rice Sci, 2007, 21: 396-402 (in Chinese with English abstract).
[7] 王秋菊. 黑龙江地区土壤肥力和积温对水稻产量、品质影响研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2012.
Wang Q J. Effects of Soil Fertility and Accumulated Temperature on Rice Yield and Quality in Heilongjiang Province. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2012 (in Chinese with English abstract).
[8] 朱大伟. 三种关键栽培措施对软米粳稻产量与品质的影响. 扬州大学博士学位论文, 江苏扬州, 2018.
Zhu D W.Effects of Three Key Cultivation Measures on Yield and Quality of Soft Rice Japonica Rice. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2018 (in Chinese with English abstract).
[9] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei H Y, Gao H, Hu Y J, Cui P Y, Huo Z Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J Integr Agric, 2017, 16: 1018-1027.
[10] 从夕汉, 施伏芝, 阮新民, 罗玉祥, 马廷臣, 罗志祥. 氮肥水平对不同基因型水稻氮素利用率、产量和品质的影响. 应用生态学报, 2017, 28: 1219-1226.
doi: 10.13287/j.1001-9332.201704.010
Cong X H, Shi F Z, Ruan X M, Luo Y X, Ma T C, Luo Z X. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties. Chin J Appl Ecol, 2017, 28: 1219-1226 (in Chinese with English abstract).
[11] 雍明玲, 叶苗, 张雨, 陶钰, 倪川, 康钰莹, 张祖建. 不同食味水稻品种稻米淀粉结构与理化特性及其对氮素响应的差异. 中国水稻科学, 2024, 38: 57-71.
doi: 10.16819/j.1001-7216.2024.230209
Yong M L, Ye M, Zhang Y, Tao Y, Ni C, Kang Y Y, Zhang Z J. Rice starch structure and physicochemical properties of good taste japonica rice varieties and their regulations by nitrogen. Chin J Rice Sci, 2024, 38: 57-71 (in Chinese with English abstract).
[12] 陆丹丹, 雍明玲, 陶钰, 叶苗, 张祖建. 优良食味水稻品种籽粒蛋白质积累特征及其对氮素水平的响应. 中国水稻科学, 2022, 36: 520-530.
doi: 10.16819/j.1001-7216.2022.220311
Lu D D, Yong M L, Tao Y, Ye M, Zhang Z J. Characteristics of grain protein accumulation and its response to nitrogen level in good taste rice varieties. Chin J Rice Sci, 2022, 36: 520-530 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.220311
[13] 宁慧峰. 氮素对稻米品质的影响及其理化基础研究. 南京农业大学博士学位论文, 江苏南京, 2011.
Ning H F. Effect of Nitrogen on Rice Quality and Its Physical and Chemical Basis. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).
[14] 李敏, 张洪程, 李国业, 马群, 杨雄, 魏海燕. 生育类型与施氮水平对粳稻淀粉RVA谱特性的影响. 作物学报, 2012, 38: 293-300.
doi: 10.3724/SP.J.1006.2012.00293
Li M, Zhang H C, Li G Y, Ma Q, Yang X, Wei H Y. Effects of growth-period type and nitrogen application level on the RVA profile characteristics for japonica rice genotypes. Acta Agron Sin, 2012, 38: 293-300 (in Chinese with English abstract).
[15] 陆丹丹. 优良食味水稻品种籽粒蛋白质合成与累积特征及其对氮素和光照条件的响应. 扬州大学硕士学位论文, 江苏扬州, 2022.
Lu D D. Characteristics of Protein Synthesis and Accumulation in Grains of Excellent Tasty Rice Varieties and Its Response to Nitrogen and Light Conditions. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).
[16] 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质. 中国水稻科学, 2023, 37: 628-641.
doi: 10.16819/j.1001-7216.2023.230403
Wu Y H, Li Y H, Wang L, Qin Y H, Li S S, Hao X S, Zhang Q L, Cui Y Z, Xiao F. Improvement of yield and quality of rice by combining returning of green manure (Astragalus smicus L.) and rice straw with reduced application of nitrogen fertilizer in southern Shaanxi province. Chin J Rice Sci, 2023, 37: 628-641 (in Chinese with English abstract).
[17] 钱春荣, 冯延江, 杨静, 刘海英, 金正勋. 水稻籽粒蛋白质含量选择对杂种早代蒸煮食味品质的影响. 中国水稻科学, 2007, 21: 323-326.
Qian C R, Feng Y J, Yang J, Liu H Y, Jin Z X. Effects of protein content selection on cooking and eating properties of rice in early-generation of crosses. Chin J Rice Sci, 2007, 21: 323-326 (in Chinese with English abstract).
[18] 邱琛. 碾米工艺对米粉品质的影响. 上海交通大学硕士学位论文, 上海, 2019.
Qiu C. Effect of Rice Milling Technology on the Quality of Rice Flour. MS Thesis of Shanghai Jiao Tong University, Shanghai, China, 2019 (in Chinese with English abstract).
[19] 张超, 吴焱, 魏海燕, 刘国栋, 张洪程. 半糯性粳稻的淀粉精细结构及其米粉/饭功能特性研究. 中国粮油学报, 2021, 36: 1-7.
Zhang C, Wu Y, Wei H Y, Liu G D, Zhang H C. Starch fine structure and functionality of semi-waxy japonica rice flour/cooked rice. J Chin Cereals Oils Assoc, 2021, 36: 1-7 (in Chinese with English abstract).
[20] 中国国家标准化管理委员会. 优质稻谷. GB/T 17891-2017, 2017.
Standardization Administration of the People’s Republic of China. Hig h Quality of Rice Grain. GB/T 17891-2017, 2017 (in Chinese).
[21] Syahariza Z A, Li E P, Hasjim J. Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydr Polym, 2010, 82: 14-20.
[22] Wu A C, Li E P, Gilbert R G. Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydr Polym, 2014, 114: 36-42.
[23] 杨静, 罗秋香, 钱春荣, 刘海英, 金正勋. 氮素对稻米蛋白质组分含量及蒸煮食味品质的影响. 东北农业大学学报, 2006, 37: 145-150.
Yang J, Luo Q X, Qian C R, Liu H Y, Jin Z X. Effect of nitrogen on the protein fractions content and cooking and eating quality of rice grain. J Northeast Agric Univ, 2006, 37: 145-150 (in Chinese with English abstract).
[24] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响. 作物学报, 2024, 50: 478-492.
doi: 10.3724/SP.J.1006.2024.32011
Wu H, Zhang Y, Wang C, Gu H Z, Zhou T Y, Zhang W Y, Gu J F, Liu L J, Yang J C, Zhang H. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River. Acta Agron Sin, 2024, 50: 478-492 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.32011
[25] 武云霞, 郭长春, 孙永健, 刘芳艳, 杨志远, 孙园园, 王明田, 马均. 水氮互作下直播稻结实期冠层小气候与米质的关系. 中国水稻科学, 2021, 35: 269-278.
doi: 10.16819/j.1001-7216.2021.0314
Wu Y X, Guo C C, Sun Y J, Liu F Y, Yang Z Y, Sun Y Y, Wang M T, Ma J. Relationship between canopy microclimate at grain filling stage and rice quality of directly seeded rice under water and nitrogen interaction. Chin J Rice Sci, 2021, 35: 269-278 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2021.0314
[26] 张军倩, 董玉兵, 焦颖, 王冰雪, 王琛源, 宋梦馨, 熊正琴. 氮肥调控对紫云英-水稻轮作系统结瘤固氮特征及生产力的影响. 植物营养与肥料学报, 2024, 30: 1-11.
Zhang J Q, Dong Y B, Jiao Y, Wang B X, Wang C Y, Song M X, Xiong Z Q. Nitrogen management regulates nitrogen fixation efficiency of milk vetch and rice productivity under milk vetch-rice rotation system. J Plant Nutr Fert, 2024, 30: 1-11 (in Chinese with English abstract).
[27] 钟旭华, 梁开明, 潘俊峰, 傅友强, 胡香玉, 黄农荣, 刘彦卓, 胡锐, 李妹娟, 王昕钰, 叶群欢, 尹媛红. 华南双季稻低碳高产栽培技术研究进展. 华南农业大学学报, 2023, 44: 867-874.
Zhong X H, Liang K M, Pan J F, Fu Y Q, Hu X Y, Huang N R, Liu Y Z, Hu R, Li M J, Wang X Y, Ye Q H, Yin Y H. Research progress on low-carbon and high-yield cultivation technology for double-cropping rice in South China. J South China Agric Univ, 2023, 44: 867-874 (in Chinese with English abstract).
[28] 陈悦琪. 施氮量和移栽方式对不同粳稻品种产量及稻米品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2023.
Chen Y Q. Effects of Nitrogen Application Rate and Transplanting Methods on Yield and Rice Quality of Different Japonica Rice Varieties. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[29] Xiong Q Q, Sun C H, Shi H, Cai S, Xie H W, Liu F P, Zhu J Y. Analysis of related metabolites affecting taste values in rice under different nitrogen fertilizer amounts and planting densities. Foods, 2022, 11: 1508.
[30] Ma Z H, Zhu Z Y, Song W W, Luo D, Cheng H T, Wang X J, Lyu W Y. Effects of nitrogen fertilizer on the endosperm composition and eating quality of rice varieties with different protein components. Agronomy, 2024, 14: 469.
[31] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38: 657-663.
Sui J M, Li X, Yan S, Yan C J, Zhang R, Tang S Z, Lu J F, Chen Z X, Gu M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Sci Agric Sin, 2005, 38: 657-663 (in Chinese with English abstract).
[32] Zhu Y, Xu D, Ma Z T, Chen X Y, Zhang M Y, Zhang C, Liu G D, Wei H Y, Zhang H C. Differences in eating quality attributes between japonica rice from the northeast region and semiglutinous japonica rice from the Yangtze River Delta of China. Foods, 2021, 10: 2770.
[33] Shi S J, Wang E T, Li C X, Cai M L, Cheng B, Cao C G, Jiang Y. Use of protein content, amylose content, and RVA parameters to evaluate the taste quality of rice. Front Nutr, 2022, 8: 758547.
[34] 卢毅, 路兴花, 张青峰, 余建国, 肖雄雄, 庞林江, 成纪予. 稻米直链淀粉与米饭物性及食味品质的关联特征研究. 食品科技, 2018, 43(10): 219-223.
Lu Y, Lu X H, Zhang Q F, Yu J G, Xiao X X, Pang L J, Cheng J Y. Correlation of rice amylose with physical properties and taste quality of rice. Food Sci Technol, 2018, 43(10): 219-223 (in Chinese with English abstract).
[35] 杨标, 雍明玲, 赵步洪, 陈前, 叶苗, 张祖建. 氮肥减施对粳稻稻米淀粉结构与食味品质的效应. 扬州大学学报(农业与生命科学版), 2022, 43(5): 37-46.
Yang B, Yong M L, Zhao B H, Chen Q, Ye M, Zhang Z J. Effects of reducing fertilization on the starch structure and the eating quality of japonica rice grain. J Yangzhou Univ (Agric Life Sci Edn), 2022, 43(5): 37-46 (in Chinese with English abstract).
[36] Yin X T, Chen X Y, Hu J L, Zhu L, Zhang H, Hong Y. Effects of distribution, structure and interactions of starch, protein and cell walls on textural formation of cooked rice: a review. Int J Biol Macromol, 2023, 253: 127403.
[37] Shi S J, Ma Y Y, Zhao D, Li L N, Cao C G, Jiang Y. The differences in metabolites, starch structure, and physicochemical properties of rice were related to the decrease in taste quality under high nitrogen fertilizer application. Int J Biol Macromol, 2023, 253: 126546.
[38] 朱大伟, 李敏, 郭保卫, 张洪程. 氮肥水平对优质粳稻蒸煮食味品质与质构特性的影响. 贵州农业科学, 2018, 46(3): 62-66.
Zhu D W, Li M, Guo B W, Zhang H C. Effects of nitrogen fertilizer application level on eating and textural characteristics of high quality japonica rice. Guizhou Agric Sci, 2018, 46(3): 62-66 (in Chinese with English abstract).
[39] Xiong R Y, Tan X M, Yang T T, Pan X H, Zeng Y J, Huang S, Shang Q Y, Zhang J, Zeng Y H. Relation of cooked rice texture to starch structure and physicochemical properties under different nitrogen managements. Carbohydr Polym, 2022, 295: 119882.
[40] Zhan Q, Ye X T, Zhang Y, Kong X L, Bao J S, Corke H, Sui Z Q. Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocoll, 2020, 101: 105504.
[41] Luo Z, Wang Z Z. The role of starch granule-associated proteins in enhancing the strength of indica rice starch gels. Food Hydrocoll, 2022, 131: 107826.
[42] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响. 作物学报, 2021, 47: 1540-1550.
doi: 10.3724/SP.J.1006.2021.02069
Chen Y, Liu K, Zhang H L, Li S Y, Zhang Y J, Wei J L, Zhang H, Gu J F, Liu L J, Yang J C. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars. Acta Agron Sin, 2021, 47: 1540-1550 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02069
[43] Zhu D W, Zheng X, Yu J, Chen M X, Li M, Shao Y F. Effects of starch molecular structure and physicochemical properties on eating quality of indica rice with similar apparent amylose and protein contents. Foods, 2023, 12: 3535.
[44] Kakar K, Nitta Y, Asagi N, Komatsuzaki M, Shiotsu F, Kokubo T, Xuan T D. Morphological analysis on comparison of organic and chemical fertilizers on grain quality of rice at different planting densities. Plant Prod Sci, 2019, 22: 510-518.
[45] 朱大伟, 郑欣, 余静, 牟仁祥, 陈铭学, 邵雅芳, 章林平. 中国高食味北方粳稻与南方半糯粳稻品种理化特性及食味品质的差异分析. 中国农业科学, 2024, 57: 469-483.
doi: 10.3864/j.issn.0578-1752.2024.03.004
Zhu D W, Zheng X, Yu J, Mou R X, Chen M X, Shao Y F, Zhang L P. Differences in physicochemical characteristics and eating quality between high taste northern japonica rice and southern semi-glutinous japonica rice varieties in China. Sci Agric Sin, 2024, 57: 469-483 (in Chinese with English abstract).
[46] 杨春娇, 肖富彤, 李俏, 赵天怡, 张智慧, 除多, 张玉红, 潘志芬. 3个青稞品种不同粒度面粉和面条的品质差异. 应用与环境生物学报, 网络首发[2024-04-15], https://doi.org/10.19675/j.cnki.1006-687x.2024.01042.
Yang C J, Xiao F T, Li Q, Zhao T Y, Zhang Z H, Chu D, Zhang Y H, Pan Z F. The differences of flour and noodles quality with different particle sizes for three highland barley varieties. J Appl Environ Biol, Published online [2024-04-15], https://doi.org/10. 19675/j.cnki.1006-687x.2024.01042 (in Chinese with English abstract).
[47] 冯世德, 孙太凡. 玉米粉对小麦面团和馒头质构特性的影响. 食品科学, 2013, 34: 101-104.
Feng S D, Sun T F. Effect of corn flour on textural properties of wheat dough and Chinese steamed bread. Food Sci, 2013, 34: 101-104 (in Chinese with English abstract).
[1] LIU Ya-Long, WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SHANG Yong-Pan, YANG Xue-Hui, YIN Bo, ZHANG Dong-Ling, WANG Feng. Effects of nitrogen reduction on maize yield and N2O emission under green manure returning in Hexi oasis irrigation area [J]. Acta Agronomica Sinica, 2025, 51(3): 771-784.
[2] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[3] LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712.
[4] QIN Meng-Qian, HUANG Wei, CHEN Min, NING Ning, HE De-Zhi, HU Bing, XIA Qi-Xin, JIANG Bo, CHENG Tai, CHANG Hai-Bin, WANG Jing, ZHAO Jie, WANG Bo, KUAI Jie, XU Zheng-Hua, ZHOU Guang-Sheng. Effect of nitrogen fertilizer management on yield and resistance of late-seeded rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 432-446.
[5] LIANG Miao, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Effect of soil conditioner and slow-release nitrogen fertilizer on dry matter accumulation and yield of wheat [J]. Acta Agronomica Sinica, 2025, 51(2): 470-484.
[6] QIN Jin-Hua, HONG Wei-Yuan, FENG Xiang-Qian, LI Zi-Qiu, ZHOU Zi-Yu, WANG Ai-Dong, LI Rui-Jie, WANG Dan-Ying, ZHANG Yun-Bo, CHEN Song. Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management [J]. Acta Agronomica Sinica, 2025, 51(2): 485-502.
[7] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
[8] WANG Yuan, XU Jia-Yin, DONG Er-Wei, WANG Jin-Song, LIU Qiu-Xia, HUANG Xiao-Lei, JIAO Xiao-Yan. Effects of manure replacement of chemical fertilizer nitrogen on yield, nitrogen accumulation, and quality of foxtail millet [J]. Acta Agronomica Sinica, 2025, 51(1): 149-160.
[9] HAO Qi, CHEN Tian-Lu, WANG Fu-Gui, WANG Zhen, BAI Lan-Fang, WANG Yong-Qiang, WANG Zhi-Gang. Estimation of canopy nitrogen concentration in maize based on UAV multi- spectral data and spatial nitrogen heterogeneity [J]. Acta Agronomica Sinica, 2025, 51(1): 189-206.
[10] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[11] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[12] YAN Fei-Long, ZHANG Zhen, ZHAO Jun-Ye, SHI Yu, YU Zhen-Wen. Effect of nitrogen application on water consumption characteristics and grain yield of winter wheat under wide width sowing [J]. Acta Agronomica Sinica, 2024, 50(8): 2014-2024.
[13] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[14] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[15] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .