Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (3): 823-834.doi: 10.3724/SP.J.1006.2025.44115

• RESEARCH NOTES • Previous Articles     Next Articles

Physiological mechanisms of 6-BA regulation to enhance drought tolerance in ramie

GUAN Sheng(), LIAO Ao, WANG Li-Qi, LI Qian, LU Jian-Ning, RONG Jing, CUI Guo-Xian, YANG Rui-Fang, SHE Wei()   

  1. College of Agriculture, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2024-07-18 Accepted:2024-11-01 Online:2025-03-12 Published:2024-11-18
  • Contact: *E-mail: clregina@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(Hemp)(CARS-16-E11);National Key Research and Development Program of China(2018YFD0201106);National Natural Science Foundation of China(31471543)

Abstract:

In this experiment, Xiang Ramie 7 was used to investigate the physiological mechanisms by which 6-Benzyladenine (6-BA) enhances drought tolerance in ramie. The results indicated that the accumulation of proline (PRO), soluble sugar (SS), and soluble protein (SP) in ramie leaves increased with the duration of treatment across different concentrations of 6-BA. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) exhibited an initial rise followed by a decline, peaking at 24 days of drought stress. In contrast, malondialdehyde (MDA) content and leaf relative conductivity gradually decreased compared to W0, while relative water content continuously declined. A comprehensive analysis of the physiological and biochemical indices revealed that the drought tolerance of ramie treated with different concentrations of 6-BA followed the order: W2 (100 mg L-1) > W3 (150 mg L-1) > W1 (50 mg L-1) > W4 (200 mg L-1). Therefore, it was concluded that the optimal mitigation effect under drought stress was achieved with 100 mg L-1 of 6-BA treatment.

Key words: 6-BA, ramie, physiological characteristics, drought

Table 1

Effect of different concentrations of 6-BA treatments on plant height of Xiang Ramie 7 under drought stress"

处理
Treatment
株高Plant height (cm)
12 d 24 d 36 d
CK 78.06±1.14 a 84.30±1.09 a 91.30±2.04 a
W0 62.60±1.14 c 64.32±1.00 d 66.14±1.14 d
W1 65.01±1.17 b 67.13±1.25 c 74.48±1.91 c
W2 67.14±1.28 b 71.34±1.37 b 77.56±1.89 b
W3 66.08±1.35 bc 68.73±1.14 c 75.44±1.18 bc
W4 64.61±1.08 b 68.26±1.24 c 73.80±1.68 c

Table 2

Effects of different concentrations of 6-BA treatments on stem thickness of Xiang Ramie 7 under drought stress"

处理
Treatment
茎粗Stem diameter (mm)
12 d 24 d 36 d
CK 7.96±0.26 a 8.60±0.23 a 9.06±0.15a
W0 7.33±0.24 b 7.44±0.05 c 7.52±0.08 d
W1 7.48±0.14 b 7.67±0.08 bc 7.78±0.28 cd
W2 7.54±0.11 b 7.81±0.18 b 8.18±0.13 b
W3 7.50±0.07 b 7.76±0.18 b 7.90±0.24 bc
W4 7.47±0.14 b 7.52±0.35 bc 7.84±0.33 b

Table 3

Effect of different concentrations of 6-BA treatments on leaf area of Xiang Ramie 7 under drought stress"

处理
Treatment
叶面积Leaf area (cm2)
12 d 24 d 36 d
CK 110.24±6.59 a 133.32±8.00 a 157.69±11.72 a
W0 89.72±3.40 d 105.29±4.13 d 116.94±4.57 d
W1 97.78±4.71 bc 113.58±5.14 c 130.09±4.13 c
W2 101.69±5.75 b 123.45±3.61 b 142.21±4.83 b
W3 95.78±4.16 bc 116.41±3.64 c 133.76±5.07 c
W4 92.78±3.01 cd 114.82±3.49 c 129.92±4.53 c

Table 4

Effects of different concentrations of 6-BA treatments on the biomass of Xiang Ramie 7 under drought stress (g)"

处理
Treatment
地上鲜重
Aboveground fresh weight
地下鲜重
Underground fresh weight
地上干重
Aboveground dry weight
地下干重
Underground dry weight
CK 97.10±3.75 a 62.68±2.32 a 30.33±1.70 a 17.59±1.25 a
W0 68.79±1.92 d 40.30±4.51 c 18.04±1.77 d 12.75±0.45 c
W1 73.90±1.79 bcd 46.03±1.60 b 22.30±1.31 c 14.38±1.64 bc
W2 78.77±2.32 b 47.86±2.39 b 25.77±1.24 b 16.02±1.67 ab
W3 77.01±2.94 bc 46.71±2.01 b 23.49±0.54 bc 14.60±0.53 bc
W4 71.93±3.37 cd 42.92±3.58 c 21.56±1.69 c 13.64±1.00 c

Fig. 1

Effect of different concentrations of 6-BA treatment on malondialdehyde content of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 2

Effect of different concentrations of 6-BA treatments on the relative conductivity of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 3

Effect of different concentrations of 6-BA treatments on the relative water content of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 4

Effect of different concentrations of 6-BA treatment on soluble sugar content of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 5

Effect of different concentrations of 6-BA treatment on soluble protein content of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 6

Effect of different concentrations of 6-BA treatment on the proline content of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 7

Effect of different concentrations of 6-BA treatment on SOD activity of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 8

Effect of different concentrations of 6-BA treatment on POD activity of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 9

Effects of different concentrations of 6-BA treatment on CAT activity of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Fig. 10

Effect of different concentrations of 6-BA treatment on APX activity of leaves of Xiang Ramie 7 under drought stress Different lowercase letters for the same period indicate significant differences at the 0.05 level. Treatments are the same as those given in Table 1."

Table 5

Contribution of variance loading matrix"

指标
Index
特征值
Eiges values
方差贡献率
Proportion of variance (%)
累计方差贡献率
Cumulative variance (%)
PC1 6.198 61.997 61.997
PC2 2.398 23.982 85.959

Table 6

Rotated load matrix after principal component analysis"

指标
Index
第一主成分
First principal component
第二主成分
Second principal component
丙二醛Malondialdehyde -0.128 0.939
相对电导率Leaf relative water content 0.043 0.936
相对含水量Leaf relative conductivity -0.204 0.860
可溶性糖Soluble sugar 0.691 -0.516
可溶性蛋白Soluble protein 0.770 -0.505
脯氨酸Proline 0.692 -0.588
超氧化物歧化酶Superoxide dismutase 0.950 -0.056
过氧化物酶Peroxidase 0.952 -0.152
过氧化氢酶Catalase 0.916 -0.006
抗坏血酸过氧化物酶Ascorbate peroxidase 0.972 -0.062

Table 7

Composite Score Ranking"

处理
Index
F1 F2 综合得分
Composite score
综合得分排名
Composite score ranking
CK 0.489 2.034 0.920 6
W0 2.060 0.149 1.527 5
W1 3.398 0.261 2.523 3
W2 4.187 0.317 3.108 1
W3 3.485 0.534 2.661 2
W4 2.933 0.178 2.164 4
[1] 白玉超, 李雪玲, 黄敏升, 孙敬钊, 张小龙, 曹诣, 崔国贤. 50年来中国苎麻种植情况与前景展望. 作物研究, 2014, 28: 547-550.
Bai Y C, Li X L, Huang M S, Sun J Z, Zhang X L, Cao Y, Cui G X. Cultivation of ramie in China over the past 50 years and prospects. Crop Res, 2014, 28: 547-550 (in Chinese with English abstract).
[2] 王继龙, 刘婕仪, 刘皖慧, 王昕慧, 崔丹丹, 苏小惠, 李林林, 佘玮, 杨瑞芳, 崔国贤. 苎麻响应水分胁迫研究进展. 中国麻业科学, 2020, 42(4): 178-186.
Wang J L, Liu J Y, Liu W H, Wang X H, Cui D D, Su X H, Li L L, She W, Yang R F, Cui G X. Progress of ramie in response to water stress. Plant Fiber Sci China, 2020, 42(4): 178-186 (in Chinese with English abstract).
[3] 曾业, 朱爱国. 中国苎麻产业发展迎来“新风口”. (2024-09-02) [2024-09-05]. https://www.thecover.cn/.
Zeng Y, Zhu A G. Chief Scientist of National Hemp Industry Technology System: the Development of Ramie Industry in China Ushered in a ‘New Wind Mouth’. (2024-09-02) [2024-09-05]. Cover News. https://www.thecover.cn/.
[4] 蒋敏, 熊海鹰, 张曦. 湖南苎麻产业质量情况分. 中国纤检, 2012, (5): 28-31.
Jiang M, Xiong H Y, Zhang X. Analysis of the quality of ramie industry in Hunan. China Fiber Inspect, 2012, (5): 28-31 (in Chinese with English abstract).
[5] 杨洁, 唐昀, 申香英, 唐文峰, 肖群锋. 我国苎麻产业现状与振兴发展. 中国麻业科学, 2022, 44(4): 253-256.
Yang J, Tang Y, Shen X Y, Tang W F, Xiao Q F. Current situation and revitalization of ramie industry in China. Plant Fiber Sci China, 2022, 44(4): 253-256 (in Chinese with English abstract).
[6] Yu C Q, Huang X, Chen H, Huang G R, Ni S Q, Wright J S, Hall J, Ciais P, Zhang J, Xiao Y C, Sun Z L, Wang X H, Yu L. Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes. Earths Future, 2018, 6: 689-703.
[7] Mukarram M, Choudhary S, Kurjak D, Petek A, Khan M M A. Drought: Sensing, signalling, effects and tolerance in higher plants. Physiol Plant, 2021, 172: 1291-1300.
doi: 10.1111/ppl.13423 pmid: 33847385
[8] 王春乙, 娄秀荣, 王建林. 中国农业气象灾害对作物产量的影响. 自然灾害学报, 2007, (5): 37-43.
Wang C Y, Lou X R, Wang J L. Impacts of agrometeorological disasters on crop yields in China. J Nat Disast, 2007, (5): 37-43 (in Chinese with English abstract).
[9] 郝立生, 马宁, 何丽烨. 2022年长江中下游夏季异常干旱高温事件之环流异常特征. 干旱气象, 2022, 40: 721-732.
doi: 10.11755/j.issn.1006-7639(2022)-05-0721
Hao L S, Ma N, He L Y. Characteristics of circulation anomalies during the summer anomalous drought and high temperature event in the middle and lower reaches of the Yangtze River in 2022. J Arid Meteorol, 2022, 40: 721-732 (in Chinese with English abstract).
[10] Hu J, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W. 6-Benzyladenine increasing subsequent waterlogging-induced waterlogging tolerance of summer maize by increasing hormone signal transduction. Annals New York Acad Sci, 2021, 1509: 89-112.
[11] 杨喆, 唐才宝, 钱婧雅, 周伟江, 陈光辉, 王悦. 外源6-BA和BR对干旱胁迫下水稻分蘖期光合色素含量及抗氧化系统的影响. 分子植物育种, 2021, 19: 2733-2739.
Yang Z, Tang C B, Qian J Y, Zhou W J, Chen G H, Wang Y. Effects of exogenous 6-BA and BR on photosynthetic pigment content and antioxidant system at tillering stage of rice under drought stress. Mol Plant Breed, 2021, 19: 2733-2739 (in Chinese with English abstract).
[12] 李彩龙, 李毛毛, 高彦龙, 张仲兴, 张德, 王双成, 缐旭林, 王延秀. 外源6-BA对干旱胁迫下苹果砧木M26的生理效应. 甘肃农业大学学报, 2022, 57(5): 126-137.
Li C L, Li M M, Gao Y L, Zhang Z X, Zhang D, Wang S C, Beng X L, Wang Y X. Physiological effects of exogenous 6-BA on apple rootstock M26 under drought stress. J Gansu Agric Univ, 2022, 57(5): 126-137 (in Chinese with English abstract).
[13] 王军, 陈帆, 温明霞, 李小龙, 饶兴义, 夏志林, 许本波. 6-BA处理对烤烟耐旱性的影响. 作物研究, 2017, 31(2): 142-145.
Wang J, Chen F, Wen M X, Li X L, Rao X Y, Xia Z L, Xu B B. Effect of 6-BA treatment on drought tolerance of roasted tobacco. Crop Res, 2017, 31(2): 142-145 (in Chinese with English abstract).
[14] 耿兵婕, 叶苗苗, 陈研, 王孟昌, 马尚宇, 黄正来, 张文静, 樊永惠. 外源6-BA和KH2PO4对花后受渍小麦根系抗氧化酶和无氧呼吸酶活性的影响. 浙江农业学报, 2023, 35: 2275-2285.
doi: 10.3969/j.issn.1004-1524.20221487
Geng B J, Ye M M, Chen Y, Wang M C, Ma S Y, Huang Z L, Zhang W J, Fan Y H. Effects of exogenous 6-BA and KH2PO4 on antioxidant enzymes and anaerobic respiratory enzymes activities in post-flowering impregnated wheat roots. Acta Agric Zhejiangensis, 2023, 35: 2275-2285 (in Chinese with English abstract).
[15] 刘凯歌, 龚繁荣, 宋云鹏, 张丽丽. 外源6-BA对高温胁迫下甜椒幼苗叶绿素荧光参数和抗氧化酶活性的影响. 上海农业学报, 2020, 36(2): 19-25.
Liu K G, Gong F R, Song Y P, Zhang L L. Effects of exogenous 6-BA on chlorophyll fluorescence parameters and antioxidant enzyme activities of sweet pepper seedlings under high temperature stress. Acta Agric Shanghai, 2020, 36(2): 19-25 (in Chinese with English abstract).
[16] 杨晓春, 朱宗文, 张爱冬, 吴雪霞, 查丁石. 外源6-BA对镉胁迫下茄子幼苗生长、光合特性和内源激素含量的影响. 上海农业学报, 2017, 33(5): 17-24.
Yang X C, Zhu Z W, Zhang A D, Wu X X, Cha D S. Effects of exogenous 6-BA on growth, photosynthetic characteristics and endogenous hormone contents of aubergine seedlings under cadmium stress. Acta Agric Shanghai, 2017, 33(5): 17-24 (in Chinese with English abstract).
[17] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000.
Zou Q. Experimental Guide to Plant Physiology. Beijing: China Agriculture Press, 2000 (in Chinese).
[18] Zou J N, Jin X J, Zhang Y X, Ren C Y, Zhang M C, Wang M X. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica, 2019, 57: 512-520.
doi: 10.32615/ps.2019.066
[19] 杨媛. 不同时期干旱对苎麻生理生化及产量品质的影响. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Yang Y. Effects of Different Periods of Drought on the Physiology, Biochemistry and Yield Quality of Ramie. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[20] 李林宇. 外源6-BA和褪黑素对干旱胁迫下越橘生理特性影响的研究. 吉林农业大学硕士学位论文, 吉林长春, 2023.
Li L Y. Effects of Exogenous 6-BA and Melatonin on Physiological Characteristics of Lingonberry under Drought Stress. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2023 (in Chinese with English abstract).
[21] 王金强, 李思平, 刘庆, 李欢. 喷施生长调节剂缓解甘薯干旱胁迫的机理. 中国农业科学, 2020, 53: 500-512.
doi: 10.3864/j.issn.0578-1752.2020.03.004
Wang J Q, Li S P, Liu Q, Li H. Mechanism of spraying growth regulators to alleviate drought stress in sweetpotato. Sci Agric Sin, 2020, 53: 500-512 (in Chinese with English abstract).
[22] 王洋, 于森淼, 王旌扬, 宋海龙, 雷耀东, 张海燕, 刘波. 干旱胁迫和复水对萱草的生理特性的影响. 中国农学通报, 2023, 39(19): 58-64.
doi: 10.11924/j.issn.1000-6850.casb2022-0394
Wang Y, Yu S M, Wang J Y, Song H L, Lei Y D, Zhang H Y, Liu B. Effects of drought stress and rehydration on physiological characteristics of daylily. Chin Agric Sci Bull, 2023, 39(19): 58-64 (in Chinese with English abstract).
[23] 刘文瑜, 杨发荣, 黄杰, 魏玉明, 李健荣. 干旱胁迫对藜麦幼苗生长和叶绿素荧光特性的影响. 干旱地区农业研究, 2019, 37(4): 172-177.
Liu W Y, Yang F R, Huang J, Wei Y M, Li J R. Effects of drought stress on growth and chlorophyll fluorescence characteristics of quinoa seedlings. Agric Res Arid Areas, 2019, 37(4): 172-177 (in Chinese with English abstract).
[24] Yin D M, Chen S M, Chen F D, Guan Z Y, Fang W M. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot, 2009, 67: 87-93.
[25] Biankas S. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front Plant Sci, 2014, 5: 685.
doi: 10.3389/fpls.2014.00685 pmid: 25538719
[26] Wang N, Chen H, Wang L. Physiological acclimation of Dicranostigma henanensis to soil drought stress and rewatering. Acta Soc Bot Polon, 2021, 90: 907.
[27] 胡哲森, 许长钦, 傅瑞树. 锥栗幼苗对水分胁迫的生理响应及6-BA的作用. 福建林学院学报, 2000, (3): 199-202.
Hu Z S, Xu C Q, Fu R S. Physiological response of chestnut seedlings to water stress and the role of 6-BA. J Forest Environ, 2000, (3): 199-202 (in Chinese with English abstract).
[28] 王明月, 陈明, 唐雪东, 刘炳含, 周思佳, 陈国双. 外源一氧化氮对中度干旱胁迫下越橘幼苗生理生化特性的影响. 山东农业科学, 2023, 55(7): 49-56.
Wang M Y, Chen M, Tang X D, Liu B H, Zhou S J, Chen G S. Effects of exogenous nitric oxide on physiological and biochemical characteristics of lingonberry seedlings under moderate drought stress. Shandong Agric Sci, 2023, 55(7): 49-56 (in Chinese with English abstract).
[29] 郑桂萍, 李金峰, 钱永德, 吕艳东, 刘丽华, 王伯伦. 农作物综合抗旱性指标的评价分析. 中国农学通报, 2005, 21(10): 109-121.
Zheng G P, Li J F, Qian Y D, Lyu Y D, Liu L H, Wang B L. Evaluation and analysis of comprehensive drought resistance indexes of crops. Chin Agric Sci Bull, 2005, 21(10): 109-121 (in Chinese with English abstract).
[30] 徐封丰. 外源6-苄基嘌呤、水杨酸对高温干旱复合胁迫下半夏植株抗逆性的影响. 西南大学硕士学位论文, 重庆, 2016.
Xu F F. Effects of Exogenous 6-benzylpurine and Salicylic Acid on the Resistance of Hemlockia Plants under High Temperature and Drought Compound Stress. MS Thesis of Southwest University, Chongqing, China, 2016 (in Chinese with English abstract).
[31] Zhang S H, Xu X F, Sun Y M, Zhang J L, Li C Z. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. J Integr Agric, 2018, 17: 336-347.
doi: 10.1016/S2095-3119(17)61758-1
[32] Li W T, Ning P, Wang F, Cheng X M, Huang X X. Effects of exogenous abscisic acid (ABA) on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress. J Appl Ecol, 2020, 31: 1543-1550.
[33] 温琦, 赵文博, 张幽静, 梁塔娜, 张艳欣, 李丽丽, 黄凤兰. 植物干旱胁迫响应的研究进展. 江苏农业科学, 2020, 48(12): 11-15.
Wen Q, Zhao W B, Zhang Y J, Liang T N, Zhang Y X, Li L L, Huang F L. Research progress on plant drought stress response. Jiangsu Agric Sci, 2020, 48(12): 11-15 (in Chinese with English abstract).
[34] 单长卷, 郝文芳, 张慧成. 土壤干早对冬小麦幼苗生理特性的影响. 河北农业大学学报, 2006, 29(4): 6-10.
San C C, Hao W F, Zhang H C. Effects of soil dryness and early age on the physiological characteristics of winter wheat seedlings. J Hebei Agric Univ, 2006, 29(4): 6-10 (in Chinese with English abstract).
[35] 李丽杰, 顾万荣, 孟瑶, 王悦力, 穆君怡, 李晶, 魏湜. 干旱胁迫下亚精胺对玉米幼苗抗旱性影响的生理生化机制. 应用生态学报, 2018, 29: 554-564.
doi: 10.13287/j.1001-9332.201802.021
Li L J, Gu W R, Meng Y, Wang Y L, Mu J Y, Li J, Wei T. Physiological and biochemical mechanisms of the effect of spermidine on drought tolerance of maize seedlings under drought stress. Chin J Appl Ecol, 2018, 29: 554-564 (in Chinese with English abstract).
[36] 赵九洲, 汤庚国, 童丽丽. 水分亏缺下SA和6-BA对大花蕙兰的生理调控效应. 南京林业大学学报(自然科学版), 2004, 28(3): 27-30.
doi: 10.3969/j.jssn.1000-2006.2004.03.007
Zhao J Z, Tang G G, Tong L L. Physiological regulation effects of SA and 6-BA on Cymbidium macrorrhizum under water deficit. J Nanjing For Univ (Nat Sci Edn), 2004, 28(3): 27-30 (in Chinese with English abstract).
[37] 梁颖, 胡雪琴, 王三根, 张宪陶. 6-BA对水分胁迫下水稻幼苗生理特性的影响. 耕作与栽培, 2002, (4): 28-29.
Liang Y, Hu X Q, Wang S G, Zhang X T. Effect of 6-BA on the physiological characteristics of rice seedlings under water stress. Tillage Cult, 2002, (4): 28-29 (in Chinese with English abstract).
[1] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[2] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[3] ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649.
[4] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[5] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[6] LIU Bo, CHI Ming, CAO Meng-Qi, TANG Da, YANG Heng-Zhao, ZHANG Wei-Hua, XUE Cong. Impact of potato StuPPO9 gene overexpression on drought resistance in Nicotiana benthamiana [J]. Acta Agronomica Sinica, 2024, 50(9): 2237-2247.
[7] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[8] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[9] LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761.
[10] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[11] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[12] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[13] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[14] RONG Yu-Xuan, HUI Liu-Yang, WANG Pei-Qi, SUN Si-Min, ZHANG Xian-Long, YUAN Dao-Jun, YANG Xi-Yan. Identification of the CLE gene family in Gossypium hirsutum and functional analysis of the drought resistance of GhCLE13 [J]. Acta Agronomica Sinica, 2024, 50(12): 2925-2939.
[15] WANG Ying-Heng, CUI Li-Li, CAI Qiu-Hua, LIN Qiang, WU Fang-Xi, CHEN Fei-He, XIE Hong-Guang, ZHU Yong-Sheng, CHEN Li-Ping, XIE Hua-An, ZHANG Jian-Fu. Metabolome and transcriptome analysis reveal molecular response to drought stress in indica rice Fuxiangzhan [J]. Acta Agronomica Sinica, 2024, 50(12): 2998-3012.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!