Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1480-1488.doi: 10.3724/SP.J.1006.2025.42049

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Rapid transcriptome and AlphaFold-based identification of classical effector proteins of Magnaporthe oryzae and receptors in rice

FENG Wu-Jian1,*,XIAN Xiao-Qing2,ZHANG Xin-Bo1,CAO Dan1,QIANG Cheng-Kui1   

  1. 1 Xuzhou Polytechnic College of Bioengineering / Xuzhou Key laboratory of Modern ArgoBiotechnology; Xuzhou 221006, Jiangsu, China; 2 the Institute of Plant Protection,Chinese Academy of Agricultural Sciences / State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing 1001934, China
  • Received:2024-10-29 Revised:2025-03-26 Accepted:2025-03-26 Online:2025-06-12 Published:2025-04-07
  • Supported by:
    This study was supported by the Modern Agricultural Industry Science and Technology Service Program of Xuzhou City, Jiangsu province (KC23139).

Abstract:

Effector proteins play a crucial role as weapons for plant pathogens to evade host immunity. During the early stages of infection, pathogens secrete various effectors to facilitate invasion. To identify key classical effectors in pathogens and their corresponding plant target genes, we propose establishing a pipeline for the identification of classical effector and target proteins using bioinformatics and structural biology approaches. In this study, 535 effector proteins of Magnaporthe oryzae were identified and classified into five clusters using SignalP, TMHMM, PredGPI, WoLF PSORT, and EffectorP, focusing on M. oryzae-rice interactions. A total of 282 key effector proteins were identified, and a co-expression network was constructed to examine early effector protein–plant interactions using transcriptomic data. AlphaFold3 predictions further suggested that the rice proteins Os06t0633800 and Os03t0114400 may serve as potential targets for the M. oryzae effectors MGG_08817 and MGG_03865, respectively. Complementary validation using luciferase assays confirmed the interaction between MGG_08817 and Os06t0633800, as well as MGG_03865 and Os03t0114400, in Nicotiana benthamiana. The rapid screening and identification of effector proteins and their target proteins are of great significance for the prevention and control of plant diseases. The findings of this study contribute to the identification of key effector proteins and plant target genes, providing a theoretical foundation for further research on plant–pathogen interactions and laying the foundation for the green prevention and control of plant diseases.

Key words: effector, Magnaporthe oryzae, AlphaFold3, structural biology

[1] Ngou B P M, Ding P T, Jones J D G. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell, 2022, 34: 1447–1478.

[2] Yuan M H, Jiang Z Y, Bi G Z, Nomura K, Liu M H, Wang Y P, Cai B Y, Zhou J M, He S Y, Xin X F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592: 105–109.

[3] Shi X T, Xie X, Guo Y W, Zhang J Q, Gong Z W, Zhang K, Mei J, Xia X Y, Xia H X, Ning N, et al. A fungal core effector exploits the OsPUX8B.2-OsCDC48-6 module to suppress plant immunity. Nat Commun, 2024, 15: 2559.

[4] Pan Q L, Zhang Y Y, Yang Y, Qiao Y X, Qian Y R, Wang J M, Wang X J, Kang Z S, Liu J. The Puccinia striiformis effector Pst11215 manipulates mitochondria to suppress host immunity by promoting TaVDIP1-mediated ubiquitination of TaVDAC1. New Phytol, 2024, 244: 1961–1978.

[5] Qi P P, Zhang D, Zhang Y, Zhu W T, Du X Y, Ma X S, Xiao C F, Lin Y, Xie J T, Cheng J S, et al. Ubiquitination and degradation of plant helper NLR by the Ralstonia solanacearum effector RipV2 overcome tomato bacterial wilt resistance. Cell Rep, 2024, 43: 114596.

[6] Liu M X, Wang F F, He B, Hu J X, Dai Y, Chen W Z, Yi M X, Zhang H F, Ye Y H, Cui Z L, et al. Targeting Magnaporthe oryzae effector MoErs1 and host papain-like protease OsRD21 interaction to combat rice blast. Nat Plants, 2024, 10: 618–632.

[7] Han R, Zhu T T, Kong Z W, Zhang X, Wang D L, Liu J F. Understanding and manipulating the recognition of necrosis-inducing secreted protein 1 (NIS1) by BRI1-associated receptor kinase 1 (BAK1). Int J Biol Macromol, 2024, 278: 134821.

[8] Xu N, Luo X M, Wu W, Xing Y Y, Liang Y B, Liu Y Z, Zou H S, Wei H L, Liu J. A plant lectin receptor-like kinase phosphorylates the bacterial effector AvrPtoB to dampen its virulence in Arabidopsis. Mol Plant, 2020, 13: 1499–1512.

[9] Liu Y, Zhang X, Yuan G X, Wang D L, Zheng Y Y, Ma M Q, Guo L W, Bhadauria V, Peng Y L, Liu J F. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors. Proc Natl Acad Sci USA, 2021, 118: e2110751118.

[10] Hadar N, Weintraub G, Gudes E, Dolev S, Birk O S. GeniePool: genomic database with corresponding annotated samples based on a cloud data lake architecture. Database, 2023, 2023:baad043.

[11] Jeon J, Lee G W, Kim K T, Park S Y, Kim S, Kwon S, Huh A, Chung H, Lee D Y, Kim C Y, et al. Transcriptome profiling of the rice blast fungus Magnaporthe oryzae and its host Oryza sativa during infection. Mol Plant Microbe Interact, 2020, 33: 141–144.

[12] Chen S F, Zhou Y Q, Chen Y R, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34: 884–890.

[13] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907–915.

[14] Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923–930.

[15] Teufel F, Almagro J J, Johansen A R, Gíslason M H, Pihl S I, Tsirigos K D, Winther O, Brunak S, Heijne G, Nielsen H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol, 2022, 40: 1023–1025.

[16] Krogh A, Larsson B, von Heijne G, Sonnhammer E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001, 305: 567–580.

[17] Pierleoni A, Martelli P L, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinformatics, 2008, 9: 392.

[18] Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams C J, Nakai K T. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: 585–587.

[19] Sperschneider J, Dodds P N. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol Plant Microbe Interact, 2022, 35: 146–156.

[20] Cantalapiedra C P, Hernández A, Letunic I, Bork P, Huerta J. EggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol, 2021, 38: 5825–5829.

[21] Sepulveda J L. Using R and bioconductor in clinical genomics and transcriptomics. J Mol Diagn, 2020, 22: 3–20.

[22] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N D, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498–2504.

[23] Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596: 583–589.

[24] Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard A J, Bambrick J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493–500.

[25] Chen H M, Zou Y, Shang Y L, Lin H Q, Wang Y J, Cai R, Tang X Y, Zhou J M. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol, 2008, 146: 368–376.

[26] 杨晔孙琦, 邢欣欣, 张海涛, 赵志超. 包穗突变体sui1-5鉴定及OsPSS1互作蛋白筛选. 作物学报, 2023, 49(3): 597-607.

Yang Y, Sun Q, Xing X X, Zhang H T, Zhao Z C. Identification of sheathed panicle mutant sui1-5 and screening of OsPSS1 interaction protein in rice (Oryza sativa L.). Acta Agron Sin, 2023, 49(3): 597-607 (in Chinese with English abstract).

[27] Wang J C, Liu X, Zhang A, Ren Y L, Wu F Q, Wang G, Xu Y, Lei C L, Zhu S S, Pan T, et al. A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res, 2019, 29: 820–831.

[28] Song T Q, Ma Z C, Shen D Y, Li Q, Li W L, Su L M, Ye T Y, Zhang M X, Wang Y C, Dou D L. An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters. PLoS Pathog, 2015, 11: e1005348.

[29] Qin J, Wang K L, Sun L F, Xing H Y, Wang S, Li L, Chen S, Guo H S, Zhang J. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. eLife, 2018, 7: e34902.

[30] Boevink P C, McLellan H, Gilroy E M, Naqvi S, He Q, Yang L N, Wang X D, Turnbull D, Armstrong M R, Tian Z D, et al. Oomycetes seek help from the plant: Phytophthora infestans effectors target host susceptibility factors. Mol Plant, 2016, 9: 636–638.

[31] 曹言勇, 张立立, 李慧敏, 韩胜博, 侯梦薇, 段灿星, 施艳, 张新友. 玉米茎腐病致病菌全基因组分泌蛋白预测与分析. 玉米科学, 2024, 32(4): 110-118.
Cao Y Y, Zhang L L, Li H M, Han H B, Hou M W, Duan C X, Shi Y, Zhang X Y. Genome-wide prediction and analysis of the secreted proteins from the pathogenic fungus causing maize stalk rot. Journal of Maize Sciences, 2024, 32(4): 110-118 (in Chinese with English abstract).

[32] 吴佳椰露, 傅艺炜, 包崇来, 严亚琴. 茄腐镰孢菌分泌蛋白与效应子的预测分析. 植物病理学报, 网络首发[2024-04-26], https://doi.org/10.13926/j.cnki.apps.001646.
Wu J Y L, Fu Y W, Bao C L, Yan Y Q. Genome-wide prediction and analysis of secreted proteins and effectors in Fusarium solani. Phytopathol ResPublished online [2024-04-26], https://doi.org/10.13926/j.cnki.apps.001646 (in Chinese with English abstract).

[33] Yan X, Tang B Z, Ryder L S, MacLean D, Were V M, Eseola A B, Cruz M N, Ma W B, Foster A J, Osés-Ruiz M, et al. The transcriptional landscape of plant infection by the rice blast fungus Magnaporthe oryzae reveals distinct families of temporally co-regulated and structurally conserved effectors. Plant Cell, 2023, 35: 1360–1385.

[34] Zhang Y Q, Yang Z R, Yang Y, Han A P, Rehneke L, Ding L W, Wei Y S, Liu Z M, Meng Y L, Schäfer P, et al. A symbiont fungal effector relocalizes a plastidic oxidoreductase to nuclei to induce resistance to pathogens and salt stress. Curr Biol, 2024, 34: 2957–2971.

[35] Wang X, Yan F, Ma G J, Li A X, Liu L J. The diverse functions of Pseudomonas syringae syringae van Hall effectors in regulating the plant immune response. Phytopathol Res, 2023, 5: 63.

[36] Zhou Y R, Zhao J, Yang L, Bi R Q, Qin Z T, Sun P, Li R J, Zhao M F, Wang Y, Chen G, et al. Doxorubicin inhibits phosphatidylserine decarboxylase and confers broad-spectrum antifungal activity. New Phytol, 2023, 239: 255–270.

[37] Homma F, Huang J, van der Hoorn R A L. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface. Nat Commun, 2023, 14: 6040.

[1] HE Xin-Yao,HAO Yuan-Feng,ZHOU Yi-Lin,HE Zhong-Hu. Progress and Perspective in Wheat Blast Research [J]. Acta Agron Sin, 2017, 43(08): 1105-1114.
[2] Moytri ROYCHOWDHURY, JIA Yo-Lin,Richard D. CARTWRIGHT. Structure, Function, and Co-evolution of Rice Blast Resistance Genes [J]. Acta Agron Sin, 2012, 38(03): 381-393.
[3] ZHAO Kai-Jun, LI Yan-Qiang, WANG Chun-Lian, GAO Ying. Recent Findings in Plant Innate Immunity and Possible Impacts on Crop Disease-resistance Breeding [J]. Acta Agron Sin, 2011, 37(06): 935-942.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .