Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (8): 2077-2086.doi: 10.3724/SP.J.1006.2025.51010

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River

JIANG Peng1,2,*(), WU Lei1,2, HUANG Qian-Nan3, LI Chang1, WANG Hua-Dun1,2, HE Yi1,2, ZHANG Peng1,2, ZHANG Xu1,2,4,*()   

  1. 1CIMMYT-JAAS Joint Center for Wheat Diseases / the Research Center of Wheat Scab / Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing) / Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, China
    3Yili Institute of Agricultural Science, Yining 835000, Xinjiang, China
    4Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing 210095, Jiangsu, China
  • Received:2025-01-24 Accepted:2025-04-27 Online:2025-08-12 Published:2025-05-26
  • Supported by:
    National Natural Science Foundation of China(32372186);Zhongshan Biological Breeding Laboratory(ZSBBL-KY2023-02);International Scientific and Technological Cooperation Projects of Jiangsu Province(BZ2024043);China Agriculture Research System of MOF and MARA(CARS-03-57)

Abstract:

Rht-B1 and Rht-D1 are the most widely utilized dwarfing genes in wheat breeding worldwide. In the long-term breeding practices of the middle and lower reaches of the Yangtze River in China, there has been a clear preference for dwarfing genes, with Rht-B1b being the predominant allele. To diversify dwarfing gene types and broaden the genetic base of local wheat varieties, this study aimed to introduce the major dwarfing allele Rht-D1b—commonly used in the Huang-huai wheat region—into the middle and lower reaches of the Yangtze River. Parental lines from both regions were used for hybridization, and progeny carrying different dwarfing genes were selected. Field-based phenotypic evaluations were then conducted to provide theoretical and germplasm support for future breeding efforts. The results showed no significant differences between Rht-D1b and Rht-B1b lines in traits such as spike number per unit area, plant height, spike length, flag leaf length and width, or angles between leaf and stem. However, the lines carrying Rht-D1b exhibited a significantly higher number of spikelets, a favorable trait with potential to enhance yield. On the other hand, Rht-D1b lines showed a markedly higher incidence of Fusarium head blight (FHB) infection compared to Rht-B1b lines. Importantly, the incorporation of FHB resistance genes substantially improved FHB resistance in lines with both dwarfing gene types. This study demonstrates that the introduction of Rht-D1b into wheat breeding programs in the middle and lower reaches of the Yangtze River can effectively increase spikelet number and yield potential. Furthermore, the integration of FHB resistance genes can mitigate associated disease susceptibility. These newly developed lines also have potential as resistant parental materials for use in the Huang-Huai wheat breeding programs.

Key words: wheat, the middle and lower reaches of the Yangtze River, dwarfing genes, winter-spring hybridization, Fusarium head blight

Fig. 1

Molecular marker analysis (A) and distribution (B) of the dwarfing genes Rht-B1 and Rht-D1"

Table S1

Pedigree of the experimental materials and their major dwarfing genes"

序号
No.
组合
Combinations
携带Rht-B1b的数量
Number of the lines
carrying Rht-B1b
携带Rht-D1b的数量
Number of the lines
carrying Rht-D1b
1 瑞华麦521/扬麦23 Ruihuamai 521/Yangmai 23 8 2
2 益科麦5号/扬14-122 Yikemai 5/Yang 14-122 5 5
3 瑞华麦521/扬麦16 Ruihuamai 521/Yangmai 16 4 2
4 瑞华麦521/扬14-163 Ruihuamai 521/Yang 14-163 3 11
5 明麦16/扬辐麦4号 Mingmai 16/Yangfumai 4 4 4
6 明麦16/扬麦158 Mingmai 16/Yangmai 158 1 2
7 周麦16/扬辐麦4号 Zhoumai 16/Yangfumai 4 5 3
8 周麦16/NY64 Zhoumai 16/NY64 2 2
9 周麦16/扬14-163 Zhoumai 16/Yang 14-163 6 6
10 周麦30/扬14-163 Zhoumai 30/Yang 14-163 5 4
11 BHY12/宁麦26 BHY12/Ningmai 26 7 4
12 BHY12/扬14-163 BHY12/Yang 14-163 11 8
13 益科麦5号/扬13-68 Yikemai 5/Yang 13-68 5 1
14 农麦152/宁麦13 Nongmai 152/Ningmai 13 11 3
15 周麦35/扬辐麦4号 Zhoumai 35/Yangfumai 4 4 1
16 周麦35/镇麦168 Zhoumai 35/Zhenmai 168 1 2
17 周麦35/NY51 Zhoumai 35/NY51 8 5

Table 1

Correlation analysis of agronomic traits"

性状
Trait
单位面积穗数
Spike number per unit area
株高
Plant height
穗下节间长度
Length of
internode
below the spike
小穗数
Number of spikelets
穗长
Spike length
旗叶长度
Flag leaf length
旗叶宽度
Flag leaf width
茎叶夹角
Angles
between leaf and stem
单位面积穗数
Spike number per unit area
0.16* 0.09 0.20* -0.39** -0.06 0.07 0.14 0.13
株高
Plant height
-0.01 0.59** 0.51** -0.04 -0.02 0.09 -0.12 0.34**
穗下节间长度
Length of internode below the spike
-0.15 0.41** 0.67** -0.33** 0.04 0.38** 0.06 0.38**
小穗数
Number of spikelets
-0.18* 0.24** -0.12 0.62** 0.42** 0.10 -0.06 0.04
穗长
Spike length
-0.24** -0.04 0.13 0.21** 0.51** 0.10 0.05 0.26**
旗叶长度
Flag leaf length
-0.18* -0.21** 0.34** -0.34** 0.10 0.46** 0.31** 0.26**
旗叶宽度
Flag leaf width
-0.05 -0.27** 0.11 -0.21** 0.01 0.53** 0.61** 0.09
茎叶夹角
Angles between leaf and stem
-0.18* 0.14 0.36** 0.11 0.23** 0.36** 0.20* 0.26**

Table 2

ANOVA of agronomic traits by F-value"

项目
Item
单位面积穗数
Spike number per unit area
株高
Plant height
穗下节间长度
Length of
internode
below the spike
小穗数
Number of spikelets
穗长
Spike length
旗叶长度
Flag leaf length
旗叶宽度
Flag leaf width
茎叶夹角
Angles between leaf and stem
杂交组合
Combinations
5.87** 8.62** 11.77** 19.21** 6.89** 15.09** 14.29** 9.52**
矮秆基因
Dwarfing genes
8.54** 0.24 0 55.51** 1.77 2.53 0.01 0.17
生长季
Growing season
25.66** 1.00 15.00** 34.98** 176.75** 30.66** 95.32** 107.21**
杂交组合×生长季
Combinations × growing season
2.91** 3.04** 1.29 3.11** 1.11 5.31** 2.03* 8.04**
矮秆基因×生长季
Dwarfing genes ×
growing season
0.80 0.05 1.05 10.77** 0.81 6.81** 5.93* 2.40
杂交组合×矮秆基因
Combinations × dwarfing genes
2.35** 11.91** 6.56** 10.00** 4.29** 8.09** 6.30** 8.26**

Fig. 2

Comparison of agronomic traits between wheat lines with Rht-B1b and Rht-D1b * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively."

Table S2

Agronomic traits of the lines with different dwarfing genes"

性状
Trait
生长季
Growing season
矮秆基因Dwarfing genes 范围
Range
平均值
Mean
标准差
SD
变异系数Coefficient of variation (%)
单位面积穗数
Spike number per unit area (×106 hm-2)
2023 Rht-B1b 3.70-9.98 6.09 0.92 15.05
Rht-D1b 3.98-7.40 5.90 0.77 13.05
2024 Rht-B1b 3.28-9.82 5.67 1.03 18.20
Rht-D1b 3.45-7.80 5.29 0.96 18.21
株高
Plant height (cm)
2023 Rht-B1b 56.00-100.50 83.54 6.71 8.03
Rht-D1b 72.00-101.50 83.18 6.38 7.67
2024 Rht-B1b 55.50-98.50 83.83 5.82 6.94
Rht-D1b 72.50-98.00 83.26 5.64 6.78
穗下节间长度
Length of internode below the spike (cm)
2023 Rht-B1b 17.67-35.92 27.50 2.83 10.28
Rht-D1b 21.42-38.67 27.66 3.71 13.40
2024 Rht-B1b 21.83-32.63 28.69 2.12 7.37
Rht-D1b 20.63-37.04 28.46 3.59 12.63
小穗数
Number of spikelets
2023 Rht-B1b 16.17-23.58 18.95 1.98 10.43
Rht-D1b 16.67-25.00 20.91 1.99 9.50
2024 Rht-B1b 15.33-23.83 18.49 1.98 10.73
Rht-D1b 17.08-23.92 19.80 1.52 7.67
穗长
Spike length (cm)
2023 Rht-B1b 7.50-11.84 9.48 0.84 8.82
Rht-D1b 7.17-11.63 9.55 0.80 8.41
2024 Rht-B1b 7.08-10.03 8.49 0.60 7.06
Rht-D1b 7.30-10.12 8.66 0.59 6.84
旗叶长度
Flag leaf length (cm)
2023 Rht-B1b 14.00-29.33 22.02 2.58 11.72
Rht-D1b 13.25-29.88 21.73 3.77 17.34
2024 Rht-B1b 14.61-24.96 20.22 2.06 10.21
Rht-D1b 15.55-27.18 21.10 2.78 13.18
旗叶宽度
Flag leaf width (cm)
2023 Rht-B1b 1.73-2.57 2.26 0.17 7.68
Rht-D1b 1.84-2.67 2.22 0.18 7.97
2024 Rht-B1b 1.65-2.55 2.10 0.14 6.68
Rht-D1b 1.79-2.53 2.12 0.16 7.34
茎叶夹角
Angles between leaf and stem (°)
2023 Rht-B1b 17.50-49.58 32.94 6.47 19.65
Rht-D1b 20.00-53.33 33.26 7.84 23.58
2024 Rht-B1b 21.58-90.00 41.88 17.42 41.59
Rht-D1b 20.42-90.00 39.97 17.27 43.20

Fig. 3

Comparison of the percentage of scabbed spikelets between wheat lines with Rht-B1b and Rht-D1b ** indicates significant difference at the 0.01 probability level."

Fig. 4

Comparison of the percentage of scabbed spikelets among wheat lines with different resistance loci * and ** indicate significant differences at the 0.05 and 0.01 probability levels, respectively."

Table S3

Agronomic characteristics and resistance to Fusarium head blight for some elite lines"

材料
编号
No.
组合
Combinations
矮秆基因Dwarfing genes 单位面积穗数
Spike number per unit area
(×106 hm-2)
株高
Plant height
(cm)
穗下节间长度
Length of
internode below
the spike (cm)
小穗数
Number of spikelets
穗长Spike length (cm) 旗叶长度Flag leaf length
(cm)
Line 1 益科麦5号/扬14-122
Yikemai 5/Yang 14-122
Rht-B1b 6.52 81.75 28.35 18.42 8.21 18.40
Line 2 明麦16/扬辐麦4号
Mingmai 16/Yangfumai 4
Rht-B1b 6.55 82.50 28.63 17.46 8.50 20.17
Line 3 周麦16/扬辐麦4号
Zhoumai 16/Yangfumai 4
Rht-D1b 5.58 84.75 30.08 21.63 9.56 21.59
Line 4 周麦16/扬辐麦4号
Zhoumai 16/Yangfumai 4
Rht-D1b 6.57 87.75 32.19 21.92 9.53 23.07
Line 5 BHY12/宁麦26
BHY12/Ningmai 26
Rht-B1b 7.88 80.00 26.04 17.42 8.13 20.17
Line 6 BHY12/宁麦26
BHY12/Ningmai 26
Rht-B1b 6.14 78.50 26.56 17.67 8.47 21.44
Line 7 BHY12/扬14-163
BHY12/Yang 14-163
Rht-B1b 5.18 86.50 27.69 19.71 9.15 19.91
Line 8 农麦152/宁麦13
Nongmai 152/Ningmai 13
Rht-B1b 6.62 81.75 27.25 16.75 8.06 20.24
Line 9 农麦152/宁麦13
Nongmai 152/Ningmai 13
Rht-B1b 6.05 82.25 28.00 18.46 8.98 21.13
Line 10 周麦35/NY51
Zhoumai 35/NY51
Rht-B1b 6.76 84.25 28.90 17.08 8.69 22.54
材料
编号No.
组合
Combination
矮秆基因Dwarfing genes 旗叶宽度
Flag leaf width (cm)
茎叶夹角Angles between leaf and stem (°) Fhb1 QFhb-5A 赤霉病病小穗率Percentage of scabbed spikelets (%)
Line 1 益科麦5号/扬14-122
Yikemai 5/Yang 14-122
Rht-B1b 2.21 36.83 + + 5.00
Line 2 明麦16/扬辐麦4号
Mingmai 16/Yangfumai 4
Rht-B1b 2.25 37.13 + + 22.00
Line 3 周麦16/扬辐麦4号
Zhoumai 16/Yangfumai 4
Rht-D1b 2.09 27.63 + + 14.00
Line 4 周麦16/扬辐麦4号
Zhoumai 16/Yangfumai 4
Rht-D1b 2.16 54.83 + + 15.00
Line 5 BHY12/宁麦26
BHY12/Ningmai 26
Rht-B1b 2.28 28.46 + + 23.50
Line 6 BHY12/宁麦26
BHY12/Ningmai 26
Rht-B1b 2.28 40.54 + + 17.50
Line 7 BHY12/扬14-163
BHY12/Yang 14-163
Rht-B1b 2.22 34.42 + + 6.50
Line 8 农麦152/宁麦13
Nongmai 152/Ningmai 13
Rht-B1b 2.32 36.46 + + 22.50
Line 9 农麦152/宁麦13
Nongmai 152/Ningmai 13
Rht-B1b 2.31 58.33 + + 13.00
Line 10 周麦35/NY51
Zhoumai 35/NY51
Rht-B1b 2.14 26.58 + + 19.00
[1] Hawkesford M J, Araus J L, Park R, Calderini D, Miralles D, Shen T M, Zhang J, Parry M A J. Prospects of doubling global wheat yields. Food Energy Secur, 2013, 2: 34-48.
[2] 钟明志, 魏淑红, 彭正松, 杨在君. 小麦Rht矮秆基因研究和应用综述. 分子植物育种, 2018, 16: 6670-6677.
Zhong M Z, Wei S H, Peng Z S, Yang Z J. A review of the research and application of wheat Rht dwarfing genes. Mol Plant Breed, 2018, 16: 6670-6677 (in Chinese with English abstract).
[3] 刘和平, 程敦公, 吴娥, 曹新有. 黄淮麦区小麦倒伏的原因及对策浅析. 山东农业科学, 2012, 44(2): 55-56.
Liu H P, Cheng D G, Wu E, Cao X Y. Analysis of the causes and countermeasures of wheat lodging in the Huang-huai wheat region. Shandong Agric Sci, 2012, 44(2): 55-56 (in Chinese).
[4] Zhang Y X, Liu H, Yan G J. Characterization of near-isogenic lines confirmed QTL and revealed candidate genes for plant height and yield-related traits in common wheat. Mol Breed, 2021, 41: 4.
[5] 程顺和. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. pp 24-26.
Cheng S H. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Press, 2012. pp 24-26 (in Chinese).
[6] 刘晓宇, 禹海龙, 裴星旭, 梁秋芳, 岳超, 程西永, 许海霞, 詹克慧. 黄淮南部地区小麦品种矮秆基因的组成及其对茎秆特性的影响. 麦类作物学报, 2024, 44: 985-995.
Liu X Y, Yu H L, Pei X X, Liang Q F, Yue C, Cheng X Y, Xu H X, Zhan K H. Composition of dwarfing genes and their effects on stem characteristics of wheat varieties in the southern area of Huang-huai wheat region. J Triticeae Crops, 2024, 44: 985-995 (in Chinese with English abstract).
[7] 徐晴, 许甫超, 秦丹丹, 彭严春, 朱展望, 董静. 矮秆基因在中国不同麦区小麦品种中的分布及其对赤霉病抗性的影响. 麦类作物学报, 2022, 42: 790-798.
Xu Q, Xu F C, Qin D D, Peng Y C, Zhu Z W, Dong J. Distribution of the wheat dwarfing genes in China and their effects on fusarium head blight resistance. J Triticeae Crops, 2022, 42: 790-798 (in Chinese with English abstract).
[8] 张凯, 兰素缺, 金京京, 张颖君, 彭晓慧, 李杏普, 张业伦. 秋播冬麦区矮秆基因RhtB1bRhtD1bRht8的分布频率及其与产量性状的关系. 麦类作物学报, 2023, 43: 399-408.
Zhang K, Lan S Q, Jin J J, Zhang Y J, Peng X H, Li X P, Zhang Y L. Distribution frequency of dwarf genes RhtB1b, RhtD1b, and Rht8 in autumn-sown winter wheat area and their relationship with yield traits. J Triticeae Crops, 2023, 43: 399-408 (in Chinese with English abstract).
[9] 姜朋, 张鹏, 姚金保, 吴磊, 何漪, 李畅, 马鸿翔, 张旭. 宁麦系列小麦品种的性状特点及相关基因位点分析. 中国农业科学, 2022, 55: 233-247.
doi: 10.3864/j.issn.0578-1752.2022.02.001
Jiang P, Zhang P, Yao J B, Wu L, He Y, Li C, Ma H X, Zhang X. Trait characteristics and analysis of related gene loci of Ningmai series wheat varieties. Sci Agric Sin, 2022, 55: 233-247 (in Chinese with English abstract).
[10] Jiang P, Fan X Y, Zhang G X, Wu L, He Y, Li C, Zhang X. Cost-effective duplex competitive allele specific PCR markers for homologous genes facilitating wheat breeding. BMC Plant Biol, 2023, 23: 119.
doi: 10.1186/s12870-023-04116-y pmid: 36855097
[11] Hill-Ambroz K L, Brown-Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci, 2002, 42: 2088-2091.
[12] Su Z D, Jin S J, Zhang D D, Bai G H. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet, 2018, 131: 2371-2380.
[13] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2020, 69: 249-258.
doi: 10.1111/ppa.13130
[14] 杨正钊, 王梓豪, 胡兆荣, 辛明明, 姚颖垠, 彭惠茹, 尤明山, 宿振起, 郭伟龙. 小麦主栽品种济麦22与良星99的基因组序列多态性比较分析. 作物学报, 2020, 46: 1870-1883.
doi: 10.3724/SP.J.1006.2020.01009
Yang Z Z, Wang Z H, Hu Z R, Xin M M, Yao Y Y, Peng H R, You M S, Su Z Q, Guo W L. Comparative analysis of the genomic sequences between commercial wheat varieties Jimai 22 and Liangxing 99. Acta Agron Sin, 2020, 46: 1870-1883 (in Chinese with English abstract).
[15] 唐建卫, 殷贵鸿, 韩玉林, 黄峰, 王丽娜, 于海飞, 杨光宇, 李新平. 周麦16号主要农艺性状配合力及遗传效应分析. 河南农业科学, 2010, 39(11): 14-18.
doi: 10.3969/j.issn.1004-3268.2010.11.003
Tang J W, Yin G H, Han Y L, Huang F, Wang L N, Yu H F, Yang G Y, Li X P. Analysis of combining ability and genetic effects of main agronomic traits of Zhoumai 16. J Henan Agric Sci, 2010, 39(11): 14-18 (in Chinese).
[16] 姜朋, 张旭, 吴磊, 何漪, 张平平, 马鸿翔, 孔令让. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析. 作物学报, 2021, 47: 869-881.
doi: 10.3724/SP.J.1006.2021.01051
Jiang P, Zhang X, Wu L, He Y, Zhang P P, Ma H X, Kong L R. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158. Acta Agron Sin, 2021, 47: 869-881 (in Chinese with English abstract).
[17] 许豪, 王益林, 于士男, 郝晓鹏, 高铭爽, 郑继周, 唐建卫, 李巧云, 高艳, 董纯豪, 等. 河南省抗赤霉病小麦新品种基因型、丰产性、农艺与品质性状测定. 河南农业大学学报, 2023, 57(2): 186-196.
Xu H, Wang Y L, Yu S N, Hao X P, Gao M S, Zheng J Z, Tang J W, Li Q Y, Gao Y, Dong C H, et al. Determination of genotype, high yield, agronomic and quality traits of new wheat varieties resistant to fusarium head blight in Henan province. J Henan Agric Univ, 2023, 57(2): 186-196 (in Chinese with English abstract).
[18] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 等. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44: 505-511.
doi: 10.3724/SP.J.1006.2018.00505
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, et al. Improvement of resistance of wheat cultivars to fusarium head blight in the Yellow-huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44: 505-511 (in Chinese with English abstract).
[19] 孙苏阳, 王永军, 李海军, 李丽丽, 刘友华, 纪凤高. 小麦冬春轮回选择育种方法研究进展. 中国农学通报, 2013, 29(36): 15-20.
Sun S Y, Wang Y J, Li H J, Li L L, Liu Y H, Ji F G. Research progress of winter-spring recurrent selection wheat breeding method. Chin Agric Sci Bull, 2013, 29(36): 15-20 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2013-3000
[20] Giancaspro A, Giove S L, Zito D, Blanco A, Gadaleta A. Mapping QTLs for Fusarium head blight resistance in an interspecific wheat population. Front Plant Sci, 2016, 7: 1381.
pmid: 27746787
[21] Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019, 51: 1106-1112.
[22] Su Z Q, Bernardo A, Tian B, Chen H, Wang S, Ma H X, Cai S B, Liu D T, Zhang D D, Li T, et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet, 2019, 51: 1099-1105.
[23] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
[1] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[2] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[3] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[4] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[5] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[6] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[7] LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047.
[8] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[9] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[10] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[11] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[12] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[13] LYU Guo-Feng, FAN Jin-Ping, WU Su-Lan, ZHANG Xiao, ZHAO Ren-Hui, LI Man, WANG Ling, GAO De-Rong, BIE Tong-De, LIU Jian. Genetic analysis of key target traits in the early-maturing wheat cultivar Yangmai 37 [J]. Acta Agronomica Sinica, 2025, 51(6): 1538-1547.
[14] WU Mei-Juan, ZHANG Yin-Hui, LI Yuan-Hao, LIU Hai-Xia, HUANG Yi-Lin, LI Tian, LIU Hong-Xia, ZHANG Xue-Yong, HAO Chen-Yang, GUO Jie, HOU Jian. Functional dissection of sucrose synthase gene TaSUS2 regulating grain starch synthesis and quality in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1514-1525.
[15] YANG Si-Jie, DU Qi-Di, CHAI Shou-Xi, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, GUO Hui-Jun, LIU Lu-Xiang. Genetic mapping of mutant genes on flag leaf length and width in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1548-1557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!