Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2307-2317.doi: 10.3724/SP.J.1006.2025.54001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of potato germplasm for resistance to Meloidogyne incognita and analysis of related physiological responses

ZHU Jin-Cheng1(), YANG Qiu-Hua1, CHENG Li-Xiang1, LI Wen-Li2, SHI Ming-Ming3, LI Hui-Xia3,*(), ZHANG Feng1,*()   

  1. 1College of Agriculture, Gansu Agricultural University / Gansu Provincial Key Laboratory of Arid Land Crop Science, Lanzhou 730070, Gansu, China
    2College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-12-31 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-10
  • Contact: *E-mail: zhangf@gsau.edu.cn; E-mail: lihx@gsau.edu.cn
  • Supported by:
    Gansu Province Higher Education Industry Support Program(2023CYZC-44);Gansu Province University Science and Research Innovation Platform(2024CXPT-01)

Abstract:

This study aimed to identify potato germplasm with resistance to Meloidogyne incognita and to analyze their physiological defense responses, thereby providing a theoretical basis for breeding nematode-resistant potato varieties and enriching pest-resistant germplasm resources. Molecular identification of nematodes was performed using the universal primer pair D2A/D3B and the M. incognita-specific primer pair Inc-K14-F/Inc-K14-R. A total of 54 wild potato introgression lines and 31 cultivated varieties were inoculated with M. incognita, and the numbers of egg masses and root galls were recorded 35 days after inoculation. The egg index (EI), gall index (GI), and disease index (DI) were calculated to evaluate resistance. Following preliminary screening, non-inoculated resistant and susceptible materials were used as controls, and the contents of lignin, jasmonic acid (JA), and salicylic acid (SA) in roots were measured at 3, 7, and 35 days post-inoculation to analyze the physiological responses of resistant potato root systems to M. incognita. The results revealed significant variation in egg mass and root gall numbers, EI, and GI among the 85 potato genotypes. Based on DI values, materials were categorized into four resistance levels: highly resistant (1 < DI ≤ 2), moderately susceptible (4 < DI ≤ 5), susceptible (5 < DI ≤ 6), and highly susceptible (DI > 6). The wild introgression line 232-8 was identified as highly resistant (DI = 1.01); lines 232-9 (DI = 4.02), 315-53 (DI = 4.09), and 390-10 (DI = 4.33) were moderately susceptible; while lines 364-3 (DI = 5.17), 19-2 (DI = 5.28), 53-1 (DI = 5.88), and 317-8 (DI = 5.88) were susceptible. The remaining 77 genotypes were highly susceptible, with DI values ranging from 6.13 to 74.26; Tianshu 12 showed the highest DI (74.26). Following M. incognita inoculation, line 232-8 exhibited significantly higher root contents of lignin, JA, and SA compared with Tianshu 12. Lignin content peaked at 35 days post-inoculation (476.18 mg g-1), while JA and SA contents peaked at 7 days (10.80 ng g-1 and 1623.15 ng g-1, respectively). These results suggest that wild potato introgression line 232-8 is resistant to M. incognita, and the significant induction of lignin, JA, and SA following nematode invasion may contribute to its physiological resistance mechanisms.

Key words: potato, Meloidogyne incognita, introgression lines, resistance screening, physiological resistance

Table 1

Materials used in the study"

序号
Code
材料编号
Material
亲本组合
Parent combination
序号
Code
材料编号
Material
亲本组合
Parent combination
1 140-5 POR00HG5-1×A9085-7 5 179-3 82-4×POROIPG22-1
2 364-7 82-4×PM×03LB16-16 6 315-53 82-4×PORO6PG48-1
3 232-9 PA99N82-4×Artic sd1g 7 232-11 PA99N82-4×Artic sd1g
4 271-6 POR00HG5-1×A9045-7 8 315-56 82-4×PORO6PG48-1
9 232-1 PA99N82-4×Artic sd1g 44 232-8 PA99N82-4×Artic sd1g
10 271-14 POR00HG5-1×A9045-7 45 53-1 PA99N82-4×PA99N12-1
11 271-12 POR00HG5-1×A9045-7 46 390-58 PA99N82-4×Gem russet
12 315-25 82-4×PORO6PG48-1 47 140-3 POR00HG5-1×A9085-7
13 271-7 POR00HG5-1×A9045-7 48 315-28 82-4×PORO6PG48-1
14 315-12 82-4×PORO6PG48-1 49 374-3 82-4×ABA07H
15 374-2 82-4×ABA07H 50 315-6 82-4×PORO6PG48-1
16 140-7 POR00HG5-1×A9085-7 51 179-2 82-4×POROIPG22-1
17 332-18 PA92N5-2×Dto33 52 140-8 POR00HG5-1×A9085-7
18 315-32 82-4×PORO6PG48-1 53 315-44 82-4×PORO6PG48-1
19 271-15 POR00HG5-1×A9045-7 54 315-49 82-4×PORO6PG48-1
20 19-2 PA98N5-2×ABA039 55 1428-1-31 Ranger burbank×0730-180
21 374-3 82-4×ABA07H 56 1428-1-35 Ranger burbank×0730-180
22 19-15 PA98N5-2×ABA039 57 1416-5 大西洋×0730-185 Atlantic×0730-185
23 315-15 82-4×PORO6PG48-1 58 1423-1-8 Burbank×0730-185
24 19-28 PA98N5-2×ABA039 59 1402-1 大西洋×0730-185
Atlantic×0730-185
25 271-8 POR00HG5-1×A9045-7 60 1423-1-20 Burbank×0730-185
26 364-6 82-4×PM×03LB16-16 61 1423-1-9 Burbank×0730-185
27 390-10 PA99N82-4×Gem Russet 62 14231-22 Burbank×0730-185
28 315-51 82-4×PORO6PG48-1 63 1412-1 大西洋×0730-185 Atlantic×0730-185
29 19-20 PA98N5-2×ABA039 64 1428-1-26 Ranger burbank×陇薯7号
Ranger burbank×Longshu 7
30 140-2 POR00HG5-1×A9085-7 65 1425-1-13 Ivory Burbank×陇薯7号
Ivory Burbank×Longshu 7
31 374-8 82-4×ABA07H 66 1422-1-22 Ranger burbank×0730-185
32 364-3 82-4×PM×03LB16-16 67 青薯9号 Qingshu 9 3875213×APHRODITE
33 140-6 POR00HG5-1×A9085-7 68 陇薯15号 Longshu 15 青薯9号×L0202-2
Qingshu 9×L0202-2
34 19-37 PA98N5-2×ABA039 69 天薯10号 Tianshu 10 庄薯3号×郑薯1号
Zhuangshu 3×Zhengshu 1
35 271-13 POR00HG5-1×A9045-7 70 布尔班克 Burbank
36 315-20 82-4×PORO6PG48-1 71 天薯14号 Tianshu 14 陇薯7号×青薯9号
Longshu 7×Qingshu 9
37 313-1 PA99N82-4×Norkotah 72 陇薯10号 Longshu 10 83-33-1×119-8
38 232-2 PA99N82-4×Artic sd1g 73 天薯12号 Tianshu 12 97-8-98×90-10-58-1
39 364-1 82-4×PM×03LB16-16 74 甘农薯9号 Gannongshu 9 大西洋×陇薯7号
Atlantic×Longshu 7
40 315-40 82-4×PORO6PG48-1 75 大西洋 Atlantic B5141-6×Wauseon
41 271-3 POR00HG5-1×A9045-7 76 陇薯14号 Longshu 14 L9712-2×L0202-2
42 374-1 82-4×ABA07H 77 天薯11号 Tianshu 11 天薯7号×庄薯3号
Tianshu 7×Zhuangshu 3
43 317-8 82-4×MY121 78 甘农薯7号Gannongshu 7 大西洋×陇薯7号
Atlantic×Longshu 7
79 定薯4号 Dingshu 4 定薯1号×陇薯5号
Dingshu 1×Longshu 5
83 庄薯3号 Zhuangshu 3 87-46-1×青85-5-1
87-46-1×Qing 85-5-5
80 新大坪
Xindaping
84 定薯6号 Dingshu 6 定薯1号×大西洋
Dingshu 1×Atlantic
81 陇红1号 Longhong 1 991719×991478 85 甘农薯18号
Gannongshu 18
Carminelle×H0940
82 庄薯5号 Zhuangshu 5 庄薯3号×新大坪
Zhuangshu 3×Xindaping

Fig. 1

Molecular identification of M. incognita M: DL2000 Marker; the lanes 1 to 6 were amplified with the M. incognita specific primer Inc-K14-F/Inc-K14-R, and the lanes 8 to 13 were amplified with the nematode general primer D2A/D3B."

Fig. 2

Phenotypic responses of potato germplasm to M. incognita infection The red color is the M. incognita egg mass stained with sodium hypochlorite-acid fuchsia. A: Tianshu 12; B: 364-3; C: 232-9; D: 232-8."

Table 2

Root responses of 85 potato germplasms after inoculation with M. incognita"

材料名称
Material name
卵块数量
Number of egg masses
根结数量
Number of root knots
卵粒指数
Egg index
根结指数
Gall index
根鲜重
Fresh root weight
140-5 306.67±15.57 de 72.33±4.04 de 42.06±7.82 de 9.92±1.19 de 7.29±0.10 cd
364-7 225.33±28.57 fg 48.67±13.20 ef 30.45±4.64 ef 6.58±2.44 ef 7.40±0.30 cd
232-9 26.33±12.42 ig 17.33±5.51 f 3.35±1.06 i 2.21±2.49 f 7.85±0.18 bc
271-6 195.67±35.13 fg 48.33±5.03 ef 25.71±3.29 fg 6.35±1.54 ef 7.61±0.26 bc
179-3 272.33±6.66 ef 69.00±2.64 de 36.80±7.42 def 9.32±1.76 de 7.40±0.10 cd
315-53 24.00±2.16 hi 19.66±4.04 f 3.17±1.68 hi 2.59±0.35 f 7.58±0.19 bc
232-11 217.33±17.21 fg 33.67±3.21 f 28.94±3.67 f 4.50±0.23 f 7.51±0.01 cd
315-56 239.00±15.10 f 95.33±3.06 cd 32.34±4.33 ef 12.90±2.42 cd 7.39±0.22 cd
232-1 218.33±18.45 fg 63.67±3.21 f 29.38±6.71 f 8.98±0.69 e 7.43±0.42 cd
271-14 180.33±10.60 g 53.33±7.64 ef 23.54±4.43 fg 6.96±0.81 ef 7.66±0.29 bc
271-12 216.33±9.50 fg 56.33±6.51 ef 27.52±3.42 fg 6.12±2.39 ef 7.86±0.41 bc
315-25 282.33±27.61 ef 77.33±8.50 de 38.78±4.16 de 9.78±0.40 de 7.28±0.09 bc
271-7 268.33±14.84 ef 82.33±10.02 de 35.35±7.33 ef 12.51±1.68 de 7.59±0.09 bc
315-12 145.00±17.78 gh 44.33±2.89 ef 18.78±2.81 gh 6.69±1.04 ef 7.72±0.28 bc
374-2 41.00±8.36 hi 29.00±1.73 f 5.33±1.22 hi 3.77±0.64 f 7.69±0.25 bc
140-7 239.00±27.78 f 52.33±14.50 ef 32.78±5.01 ef 6.79±1.17 ef 7.29±0.20 cd
332-18 189.00±5.29 fg 70.00±3.00 de 24.20±6.59 fg 8.66±1.09 de 7.81±0.10 bc
315-32 287.67±54.65 ef 53.33±4.16 ef 38.15±7.55 de 6.65±1.49 ef 7.54±0.41 bc
271-15 262.67±13.32 ef 75.00±20.07 de 35.59±7.71 ef 10.53±2.08 de 7.38±0.23 cd
19-2 37.67±9.02 h 10.67±6.11 f 5.08±1.07 gh 1.44±0.30 f 7.41±0.35 cd
374-5 186.33±10.41 fg 43.67±10.97 ef 25.35±4.47 fg 5.81±1.30 ef 7.35±0.28 cd
19-15 203.33±11.93 fg 74.00±4.58 de 27.37±4.72 fg 9.77±2.91 de 7.43±0.23 cd
315-15 286.00±29.51 ef 81.33±2.08 de 38.86±3.72 de 8.17±2.36 de 7.36±0.16 cd
19-28 223.00±29.61 fg 57.67±8.62 ef 29.69±4.64 f 7.46±1.13 ef 7.51±0.11 cd
271-8 170.67±16.04 gh 45.00±4.00 ef 23.25±2.63 fg 5.05±0.86 ef 7.34±0.28 cd
364-6 146.33±24.66 gh 42.67±11.02 ef 19.41±3.25 gh 4.22±1.33 ef 7.54±0.07 bc
390-10 30.67±7.90 hi 15.33±6.51 ef 3.87±5.76 hi 1.94±0.22 f 7.92±0.10 b
315-51 274.00±38.70 ef 89.33±0.58 de 36.39±6.66 ef 12.69±2.24 de 7.53±0.23 bcd
19-20 312.67±66.01 de 114.67±26.76 cd 42.31±6.16 de 13.14±2.94 cd 7.39±0.10 cd
140-2 274.00±26.00 ef 74.00±12.77 de 35.31±4.45 ef 9.04±1.65 de 7.76±0.14 bc
374-8 268.00±9.54 ef 151.00±34.04 b 37.07±5.73 def 15.19±1.56 ab 7.23±0.15 cd
364-3 34.00±6.68 hi 19.67±2.39 ef 4.47±1.73 gh 2.59±0.17 ef 7.60±0.10 bc
140-6 101.33±18.15 hi 26.67±4.16 f 12.99±2.01 h 6.53±0.87 f 7.80±0.10 bc
19-37 156.33±17.10 gh 63.00±29.82 e 21.21±3.80 g 9.10±1.56 e 7.37±0.21 cd
271-13 176.67±29.53 g 37.67±5.13 ef 24.78±4.85 fg 6.48±0.37 ef 7.13±0.06 d
315-20 380.67±57.62 cd 135.67±18.72 bc 49.96±7.35 cd 20.06±0.83 bc 7.62±0.31 bc
313-1 390.00±41.73 cd 94.33±39.83 cd 50.39±7.68 cd 9.56±1.60 de 7.74±0.14 bc
232-2 289.67±26.01 ef 72.00±23.52 de 36.99±6.61 def 12.66±2.07 de 7.83±0.06 bc
364-1 253.00±29.05 ef 55.00±12.12 ef 34.80±6.31 ef 7.51±0.67 ef 7.27±0.16 cd
315-40 204.67±14.01 fg 73.33±7.37 de 27.00±5.92 fg 9.69±1.18 de 7.58±0.26 bc
271-3 196.00±42.93 fg 55.00±12.12 ef 26.67±5.94 fg 6.46±1.67 ef 7.35±0.25 cd
374-1 219.67±57.07 fg 66.33±20.60 de 29.57±6.42 f 8.32±3.60 de 7.43±0.23 cd
317-8 36.67±5.13 h 19.00±2.21 f 5.22±4.79 gh 2.71±0.48 f 7.02±0.08 d
232-8 1.00±0.00 j 7.33±1.53 f 0.14±0.00 i 1.16±0.19 f 7.35±0.14 cd
53-1 32.00±2.65 i 25.00±7.00 f 4.27±1.67 hi 3.33±0.33 f 7.50±0.10 cd
390-58 194.33±20.03 fg 22.67±2.08 f 26.15±3.48 fg 3.62±0.89 f 7.43±0.21 cd
140-3 187.67±8.08 fg 51.00±14.18 ef 25.43±3.58 fg 8.60±0.91 ef 7.38±0.07 cd
315-28 349.33±26.10 d 69.00±2.65 de 47.40±7.59 cd 6.88±0.50 de 7.37±0.23 cd
374-3 180.00±28.02 g 40.00±5.00 ef 23.56±3.51 fg 6.75±0.58 ef 7.64±0.25 bc
315-6 213.33±12.01 fg 56.33±6.81 ef 25.64±3.53 fg 7.57±1.49 ef 8.32±0.21 ab
179-2 42.67±22.03 hi 17.33±15.04 ef 5.68±1.43 h 2.31±0.44 ef 7.51±0.53 cd
140-8 302.33±20.50 de 92.00±2.00 d 41.36±5.04 d 11.95±2.85 cd 7.31±0.53 cd
315-44 232.33±51.54 fg 125.67±29.96 bc 33.19±5.09 ef 33.93±2.85 bc 7.00±0.89 d
315-49 187.33±38.28 fg 132.00±20.07 bc 24.78±3.82 fg 16.02±2.50 bc 7.56±0.65 bc
1428-1-31 400.33±31.92 cd 86.67±13.65 de 55.22±6.72 c 9.58±2.40 de 7.25±0.15 cd
1416-5 294.00±17.09 e 104.33±18.93 cd 38.68±6.42 de 13.97±5.93 cd 7.60±0.17 bc
1428-1-35 477.00±19.08 b 109.67±27.06 cd 64.46±8.14 b 14.2±5.85 cd 7.40±0.36 cd
1423-1-8 358.67±29.40 cd 90.67±27.32 de 48.47±5.85 c 10.57±4.24 d 7.40±0.26 cd
1402-1 198.00±38.35 fg 66.33±19.69 de 26.76±5.41 fg 8.06±4.78 de 7.40±0.17 cd
1423-1-20 88.00±23.90 hi 42.00±16.09 ef 11.34±1.79 h 3.96±1.98 ef 7.76±0.20 bc
1423-1-9 410.67±23.86 c 111.00±28.48 cd 53.75±7.20 c 13.95±3.65 cd 7.64±0.14 bc
1422-1-22 333.33±40.87 ef 82.33±24.09 de 45.17±7.56 e 10.19±4.34 de 7.38±0.04 c
1412-1 270.33±29.67 ef 75.33±14.21 de 35.15±5.15 ef 8.91±3.94 de 7.69±0.11 bc
1428-1-26 319.33±22.19de 98.33±17.01cd 42.13±5.69de 13.47±4.73cd 7.58±0.10bc
1425-1-13 260.33±24.58 ef 79.67±15.63 de 33.99±5.64 ef 9.33±1.73 de 7.66±0.15 bc
1422-1-22 213.67±28.43 ef 71.00±11.00 de 27.82±4.40 e 8.54±3.90 de 7.68±0.25 c
甘农薯18号Gannongshu 18 188.67±15.02 fg 74.00±23.58 de 24.40±3.60 fg 10.05±2.26 de 7.73±0.16 bc
布尔班克Burbank 226.00±11.53 fg 73.67±7.37 de 29.35±3.41 fg 8.84±0.66 de 7.70±0.25 bc
天薯14号Tianshu 14 496.33±25.01 ab 141.00±43.09 bc 63.71±8.58 ab 15.50±1.14 bc 7.79±0.25 bc
陇薯10号Longshu 10 516.00±42.04 ab 181.33±22.68 a 68.89±9.94 a 23.54±2.34 a 7.49±0.26 cd
天薯12号Tianshu 12 540.00±34.39 a 171.67±14.01 b 70.77±10.46 a 20.90±2.93 b 7.63±0.19 bc
甘农薯9号Gannongshu 9 507.33±19.60 ab 165.67±22.12 ab 65.89±8.15 ab 20.74±3.67 ab 7.70±0.18 bc
大西洋Atlantic 287.00±28.05 ef 75.67±9.29 de 38.06±7.50 de 9.52±1.32 de 7.54±0.04 bc
陇薯14号Longshu 14 387.67±24.82 cd 102.67±13.61 cd 52.53±9.94 cd 13.74±2.75 cd 7.38±0.10 cd
天薯11号Tianshu 11 451.00±16.52 bc 164.00±17.78 ab 58.65±9.56 bc 20.26±1.06 ab 7.69±0.18 bc
甘农薯7号Gannongshu 7 272.33±40.67 ef 85.00±18.00 de 37.10±7.24 ef 11.05±1.83 de 7.34±0.15 cd
定薯4号Dingshu 4 359.33±36.07 cd 114.00±16.64 cd 20.34±4.38 cd 14.46±1.42 cd 7.82±0.13 bc
新大坪Xindaping 323.67±28.73 de 121.33±17.56 c 38.53±5.45 de 16.26±1.02 c 7.46±0.29 cd
陇红1号Longhong 1 385.00±32.51 cd 104.00±14.93 cd 43.70±5.27 c 12.16±5.19 cd 8.55±0.22 a
庄薯5号Zhuangshu 5 319.33±32.87 de 101.00±25.87 cd 37.13±4.20 de 12.64±6.34 cd 8.60±0.36 a
青薯9号Qingshu 9 156.00±50.00 gh 77.67±19.66 de 20.34±4.22 g 12.12±5.67 de 7.67±0.15 bc
庄薯3号Zhuangshu 3 296.67±35.50 de 96.00±19.00 cd 38.53±5.14 ef 12.47±1.17 de 7.70±0.10 bc
陇薯15号Longshu 15 326.00±40.73 de 114.33±20.26 cd 43.70±6.85 de 15.32±1.67 cd 7.46±0.29 cd
定薯6号Dingshu 6 294.00±38.16 e 85.33±9.09 de 39.25±6.74 de 11.39±2.04 de 7.49±0.16 cd
天薯10号Tianshu 10 376.67±38.53 cd 118.67±14.84 cd 49.50±6.90 cd 15.58±2.70 cd 7.61±0.30 bc

Fig. 3

Disease index of potato materials against M. incognita"

Fig. 4

Lignin and hormone contents of potato roots S: Tianshu 12; R: 232-8. Different lowercase letters indicate significant differences (P < 0.05) in root lignin and hormone contents between the two materials and across different time points after M. incognita inoculation."

[1] Manrique L A. Constraints for potato production in the tropics. J Plant Nutr, 1993, 16: 2075-2120.
[2] Berg R H, Fester T, Taylor C G. Development of the root-knot nematode feeding cell. Cell Biology of Plant Nematode Parasitism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. pp 115-152.
[3] Stucky T, Dahlin P. Fluopyram: optimal application time point and planting hole treatment to control Meloidogyne incognita. Agronomy, 2022, 12: 1576.
[4] Williamson V M, Hussey R S. Nematode pathogenesis and resistance in plants. Plant Cell, 1996, 8: 1735-1745.
doi: 10.1105/tpc.8.10.1735 pmid: 8914324
[5] Khanam S, Bauters L, Singh R R, Verbeek R, Haeck A, Sultan S M D, Demeestere K, Kyndt T, Gheysen G. Mechanisms of resistance in the rice cultivar Manikpukha to the rice stem nematode Ditylenchus angustus. Mol Plant Pathol, 2018, 19: 1391-1402.
[6] Bonello P, Blodgett J T. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol Mol Plant Pathol, 2003, 63: 249-261.
[7] Naoumkina M A, Zhao Q, Gallego-Giraldo L, Dai X B, Zhao P X, Dixon R A. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol, 2010, 11: 829-846.
doi: 10.1111/j.1364-3703.2010.00648.x pmid: 21029326
[8] Grant M R, Jones J D G. Hormone (dis)harmony moulds plant health and disease. Science, 2009, 324: 750-752.
doi: 10.1126/science.1173771 pmid: 19423816
[9] Pieterse C M J, Leon-Reyes A, Van der Ent S, Van Wees S C M. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5: 308-316.
doi: 10.1038/nchembio.164 pmid: 19377457
[10] Foroud N A, Ouellet T, Laroche A, Oosterveen B, Jordan M C, Ellis B E, Eudes F. Differential transcriptome analyses of three wheat genotypes reveal different host response pathways associated with Fusarium head blight and trichothecene resistance. Plant Pathol, 2012, 61: 296-314.
[11] Züst T, Agrawal A A. Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annu Rev Plant Biol, 2017, 68: 513-534.
doi: 10.1146/annurev-arplant-042916-040856 pmid: 28142282
[12] 武超, 刘贤文, 张炜, 王琼, 郭华春. 马铃薯不同品种(系)和稻、薯轮作模式对根结线虫病的防治效果. 作物学报, 2020, 46: 1456-1463.
doi: 10.3724/SP.J.1006.2020.94191
Wu C, Liu X W, Zhang W, Wang Q, Guo H C. Control effects of different potato varieties (lines) and rice-potato rotation system on root-knot nematode. Acta Agron Sin, 2020, 46: 1456-1463 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.94191
[13] van der Vossen E, Sikkema A, te Lintel Hekkert B, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J, 2003, 36: 867-882.
doi: 10.1046/j.1365-313x.2003.01934.x pmid: 14675451
[14] 王江岭, 张建成, 顾建锋. 单条线虫DNA提取方法. 植物检疫, 2011, 25(2): 32-35.
Wang J L, Zhang J C, Gu J F. Method of extract DNA from a single nematode. Plant Quar, 2011, 25(2): 32-35 (in Chinese with English abstract).
[15] Randig O, Bongiovanni M, Carneiro R M D G, Castagnone- Sereno P. Genetic diversity of root-knot nematodes from Brazil and development of SCAR markers specific for the coffee-damaging species. Genome, 2002, 45: 862-870.
doi: 10.1139/g02-054 pmid: 12416618
[16] 中华人民共和国农业行业标准, 中华人民共和国农业农村部. 马铃薯抗南方根结线虫病鉴定技术规程: NY/T 3623—2020. 北京: 中国农业出版社, 2020.
Agricultural Industry Standards of the People’s Republic of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Technical Regulations for Identification of Potato Resistance to Southern Root-knot Nematode Disease:NY/T 3623—2020. Beijing: China Agriculture Press, 2020 (in Chinese).
[17] Bybd D W, Kirkpatrick T, Barker K R. An improved technique for clearing and staining plant tissues for detection of nematodes. J Nematol, 1983, 15: 142-143.
pmid: 19295781
[18] Powell N T. Disease complexes in tobacco involving Meloidogyne incognita and certain soil-borne fungi. Phytopathology, 1971, 61: 1332.
[19] Janssen G J W, Van Norel A, Verkerk-Bakker B, Janssen R. Intra-and interspecific variation of root-knot nematodes, Meloidogyne spp., with regard to resistance in wild tuber-bearing Solanum species. Fundam Appl Nematol, 1997, 20: 449-458.
[20] Holbein J, Grundler F M W, Siddique S. Plant basal resistance to nematodes: an update. J Exp Bot, 2016, 67: 2049-2061.
doi: 10.1093/jxb/erw005 pmid: 26842982
[21] Zhao J L, Mejias J, Quentin M, Chen Y P, de Almeida-Engler J, Mao Z C, Sun Q H, Liu Q, Xie B Y, Abad P, et al. The root-knot nematode effector MiPDI1 targets a stress-associated protein (SAP) to establish disease in Solanaceae and Arabidopsis. New Phytol, 2020, 228: 1417-1430.
[22] Fairfax K C, Vermeire J J, Harrison L M, Bungiro R D, Grant W, Husain S Z, Cappello M. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum. Int J Parasitol, 2009, 39: 1561-1571.
doi: 10.1016/j.ijpara.2009.06.005 pmid: 19591834
[23] Boiteux L S, Charchar J M. Genetic resistance to root-knot nematode (Meloidogyne javanica) in eggplant (Solanum melongena). Plant Breed, 1996, 115: 198-200.
[24] Iberkleid I, Vieira P, de Almeida Engler J, Firester K, Spiegel Y, Horowitz S B. Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLoS One, 2013, 8: e64586.
[25] Jagdale S, Rao U, Giri A P. Effectors of root-knot nematodes: an arsenal for successful parasitism. Front Plant Sci, 2021, 12: 800030.
[26] Zhang J, Zhou J M. Plant immunity triggered by microbial molecular signatures. Mol Plant, 2010, 3: 783-793.
doi: 10.1093/mp/ssq035 pmid: 20713980
[27] Nguyen Q M, Iswanto A B B, Son G H, Kim S H. Recent advances in effector-triggered immunity in plants: new pieces in the puzzle create a different paradigm. Int J Mol Sci, 2021, 22: 4709.
[28] Prior A, Jones J T, Blok V C, Beauchamp J, McDermott L, Cooper A, Kennedy M W. A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern. Biochem J, 2001, 356: 387-394.
doi: 10.1042/0264-6021:3560387 pmid: 11368765
[29] Liu L J, Sonbol F M, Huot B, Gu Y N, Withers J, Mwimba M, Yao J, He S Y, Dong X N. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat Commun, 2016, 7: 13099.
doi: 10.1038/ncomms13099 pmid: 27725643
[30] Iberkleid I, Sela N, Brown Miyara S. Meloidogyne javanica fatty acid- and retinol-binding protein (Mj-FAR-1) regulates expression of lipid-, cell wall-, stress- and phenylpropanoid-related genes during nematode infection of tomato. BMC Genomics, 2015, 16: 272.
doi: 10.1186/s12864-015-1426-3 pmid: 25886179
[31] Abad P, Favery B, Rosso M N, Castagnone-Sereno P. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol, 2003, 4: 217-224.
doi: 10.1046/j.1364-3703.2003.00170.x pmid: 20569382
[32] Macharia T N, Bellieny-Rabelo D, Moleleki L N. Transcriptome profiling of potato (Solanum tuberosum L.) responses to root-knot nematode (Meloidogyne javanica) infestation during a compatible interaction. Microorganisms, 2020, 8: 1443.
[1] ZHUO Feng-Qi, TANG Zhen-San, LEI Yu-Jun, CHENG Li-Xiang, ZHAO Tian-Tian, LYU Tai, YANG Chen, ZHANG Feng. Screening of low glycemic potato varieties (lines) based on cooking methods and regeneration temperature [J]. Acta Agronomica Sinica, 2025, 51(9): 2538-2546.
[2] YIN Li-Na, ZHANG Rui, CHEN Guo-Huan, BAI Lei, LI Jun, GUO Hua-Chun, YANG Fang. Comparison of wound healing capacity of tubers of different potato varieties [J]. Acta Agronomica Sinica, 2025, 51(9): 2399-2411.
[3] ZHANG Hai-Yan, XIE Bei-Tao, DONG Shun-Xu, ZHANG Li-Ming, DUAN Wen-Xue. Effects of different types and ratios of water-soluble fertilizers on the yield and quality of table-use sweet potato [Ipomoea batatas (L.) Lam.] under drip irrigation [J]. Acta Agronomica Sinica, 2025, 51(9): 2485-2500.
[4] JIA Xiao-Xia, QI En-Fang, WEN Guo-Hong, MA Sheng, HUANG Wei, LYU He-Ping, LI Jian-Wu, QU Ya-Ying, DING Ning. Establishment of regeneration system and creation of glufosinate-resistant germplasm for early-mid maturing potato ‘Longshu 20’ [J]. Acta Agronomica Sinica, 2025, 51(9): 2285-2294.
[5] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[6] YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746.
[7] SHAO Shun-Wei, CHEN Zhuo, LAN Zhen-Dong, CAI Xing-Kui, ZOU Hua-Fen, LI Chen-Xi, TANG Jing-Hua, ZHU Xi, ZHANG Yu, DONG Jian-Ke, JIN Hui, SONG Bo-Tao. QTL mapping of tuber eye depth based on BSA-seq technique [J]. Acta Agronomica Sinica, 2025, 51(7): 1725-1735.
[8] YANG Shuang, BAI Lei, GUO Hua-Chun, MIAO Ya-Sheng, LI Jun. Morphological characteristics, types, and developmental process of potato leaf trichomes [J]. Acta Agronomica Sinica, 2025, 51(6): 1582-1598.
[9] XU Jie, XIA Lu-Lu, TANG Zhen-San, LI Wen-Li, ZHAO Tian-Tian, CHENG Li-Xiang, ZHANG Feng. Odor quality analysis of potato tuber after steaming and baking [J]. Acta Agronomica Sinica, 2025, 51(5): 1409-1420.
[10] ZHAO Xi-Juan, ZHANG Fan, LIU Sheng-Xuan, QIN Jun, CHEN Hui-Lan, LIN Yuan, LUO Hong-Bing, LIU Yi, SONG Bo-Tao, HU Xin-Xi, WANG En-Shuang. Optimization of extraction methods for four endogenous hormones in potatoes and analysis of their content during the process of releasing dormancy in tubers [J]. Acta Agronomica Sinica, 2025, 51(4): 1050-1060.
[11] YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754.
[12] SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727.
[13] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[14] WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311.
[15] SONG Qian-Na, SONG Hui-Yang, LI Jing-Hao, DUAN Yong-Hong, MEI Chao, FENG Rui-Yun. Response of transcription factor StFBH3 under abiotic stress in potato [J]. Acta Agronomica Sinica, 2025, 51(1): 247-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .