Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 118-130.doi: 10.3724/SP.J.1006.2026.55034

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic differentiation of peg strength and analysis of major influencing factors in peanut germplasm

Sun Chen-Shuo1(), Zhang Yue1, Tian Ze-Kai1, Yan Li-Ying1, Kang Yan-Ping1, Chen Yu-Ning1, Wang Xin1, Huai Dong-Xin1, Wang Qian-Qian1, Jiang Hui-Fang1, Luo Huai-Yong1, Huang Li1, Liao Bo-Shou1, Wang Zhi-Hui1,2,*(), Lei Yong1,*()   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
    2College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2025-05-27 Accepted:2025-10-30 Online:2026-01-12 Published:2025-11-04
  • Contact: *E-mail: wangzhihui@caas.cn; E-mail: leiyong@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFD1200201);Development for high-quality Seed Industry of Hubei Province(HBZY2023B003);Innovation Team of Hubei Agricultural Science and Technology Innovation Center Project(2024620000001031);China Agriculture Research System of MOF and MARA(CARS-13);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)

Abstract:

Peanut (Arachis hypogaea L.) is an important oil crop in China. Due to its unique biological characteristic of “aerial flowering and subterranean fruiting”, it faces a high pod drop rate during harvesting—especially under mechanized conditions—which significantly reduces production efficiency and leads to yield losses. Variations in peg strength among peanut germplasm are a key determinant of pod drop rate during digging operations. Systematically uncovering the variation patterns in peg strength and identifying its primary influencing factors will provide valuable germplasm and technical support for breeding pod drop-resistant varieties. In this study, peg strength and related traits—including peg thickness, lignin content, and cellulose content—were evaluated across 241 representative peanut germplasm accessions. The results showed that the coefficients of variation for the breaking force at both the stem-peg and pod-peg junctions exceeded 30%, indicating substantial phenotypic diversity. Eleven elite germplasm accessions with superior peg strength were identified. Significant differences in peg strength were observed among botanical types, with Valencia and Multigrain types exhibiting significantly higher values than others, suggesting that genetic background has a notable influence on peg strength. Further correlation analysis, principal component analysis, and multiple linear regression revealed a strong positive correlation between peg strength and cellulose content. To validate this, four accessions with extreme phenotypes were selected, and cellulose and lignin contents were measured at four developmental stages of the peg. Accessions with high peg strength consistently exhibited significantly higher cellulose content across all stages compared to those with low peg strength, confirming that cellulose content is a key factor influencing peg strength. This study clarifies the phenotypic variation in peg strength among peanut germplasm and highlights the critical role of cellulose content, providing a theoretical basis for the genetic improvement of peg strength and the development of peanut varieties suitable for mechanized harvesting.

Key words: peanut, breaking force at stem-peg, breaking force at pod-peg, genetic differentiation, influencing factor

Fig. 1

Schematic diagram of the electric tensile testing machine and measurement of breaking force at stem-peg and pod-peg junctions A: electric tensile testing machine, B: method for determining the breaking force at stem-peg (BFSP); C: method for determining the breaking force at pod-peg (BFPP)."

Fig. 2

Frequency distribution of breaking force at stem-peg (A) and pod-peg (B) junctions in 241 peanut accessions Abbreviations are the same as those given in Fig.1."

Table 1

Variation analysis of peg strength among different botanical types of peanut"

植物学类型
Types of botany
参数
Parameter
茎-柄节点拉断力
BFSP (N)
果-柄节点拉断力
BFPP (N)
珍珠豆型
Var. vulgaris
平均值Average 11.21±2.71 6.44±1.81
最大值Max. 18.19±2.82 14.50±4.00
最小值Min. 5.46±0.74 3.38±1.53
变异系数CV (%) 24.19 28.13
多粒型
Var. fastigiata
平均值Average 12.98±7.01 5.94±1.50
最大值Max. 28.54±2.19 9.12±5.93
最小值Min. 6.89±0.87 4.15±2.45
变异系数CV (%) 53.99 25.23
中间型
Intermediate
平均值Average 8.69±1.79 5.95±1.80
最大值Max. 13.83±3.10 11.79±2.52
最小值Min. 5.98±0.39 2.42±1.20
变异系数CV (%) 20.60 30.25
普通型
Var. hypogaea
平均值Average 7.88±2.46 5.28±1.26
最大值Max. 17.16±3.13 8.25±3.07
最小值Min. 4.17±1.08 3.19±1.99
变异系数CV (%) 31.25 23.88
龙生型
Var. hirsuta
平均值Average 6.29±1.28 3.80±1.00
最大值Max. 8.31±0.44 5.66±3.45
最小值Min. 4.07±0.76 2.50±1.77
变异系数CV (%) 20.42 26.24

Fig. 3

Comparative analysis of breaking force at stem-peg (A) and pod-peg (B) junctions among different botanical types Abbreviations are the same as those given in Fig.1. Asterisks above the box plots indicate significance levels between groups. *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001."

Table 2

Correlation analysis of peg strength-related traits in 241 peanut accessions"

性状
Trait
茎-柄节点拉断力BFSP 果-柄节点拉断力BFPP 荚壳竖纹
数量
VRN
茎-柄节点果柄粗度STSP 果-柄节点果柄粗度STPP 纤维素含量CsC 木质素含量LiC
茎-柄节点拉断力BFSP 1.00
果-柄节点拉断力BFPP 0.52** 1.00
荚壳竖纹数量VRN 0.00 -0.06 1.00
茎-柄节点果柄粗度STSP 0.16* 0.22** 0.08 1.00
果-柄节点果柄粗度STPP -0.05 0.11 0.14* 0.38** 1.00
纤维素含量CsC 0.10 0.09 0.02 0.04 -0.07 1.00
木质素含量LiC 0.10 0.01 -0.10 -0.11 0.04 0 1.00

Fig. 4

Correlation analysis of peg strength-related traits in different botanical types A-E: correlation analysis of peduncle breaking force-related traits of Var. fastigiate, Var. vulgaris, intermediate, Var. hirsute and Var. hypogaea. * indicates significant correlation among accessions at the 0.05 level (P < 0.05); ** indicates significant correlation at the 0.01 level (P < 0.01). Abbreviations are the same as those given in Table 2."

Table 3

Principal component analysis of peg strength in 241 peanut accessions"

指标
Index
主成分Principal component
PC1 PC2 PC3
茎-柄节点拉断力BFSP (N) 0.26 0.50 0.01
果-柄节点拉断力BFPP (N) 0.29 0.42 -0.20
荚壳竖纹数量VRN 0.30 -0.29 0.17
茎-柄节点果柄粗度STSP (mm) 0.36 -0.21 -0.27
果-柄节点果柄粗度STPP (mm) 0.29 -0.39 -0.11
果柄木质素含量LiC (mg g-1) 0.11 0.18 0.23
果柄纤维素含量CsC (mg g-1) 0.12 -0.01 0.88
特征值Eigenvalue 2.09 1.35 1.01
贡献率Contribution (%) 29.78 19.28 14.47
累计贡献率Accumulative contribution (%) 29.78 49.06 63.53

Table 4

Principal component analysis of peg strength in different botanical types"

性状
Trait
多粒型
Var. vulgaris
珍珠豆型
Var. fastigiata
龙生型
Var. hirsuta
普通型
Var. hypogaea
中间型
Intermediate
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
茎-柄节点拉断力BFSP (N) 0.88 0.12 0.70 -0.43 0.08 0.59 -0.23 -0.63 0.40 0.62 -0.32 0.84 -0.13 0.24
果-柄节点拉断力BFPP (N) 0.83 0.34 0.69 -0.42 0.08 0.72 0.25 -0.14 0.67 0.29 -0.41 0.08 0.61 0.24
荚壳竖纹数VRN 0.72 -0.31 0.35 0.55 -0.15 -0.38 0.76 0.01 0.43 -0.14 0.58 -0.54 -0.58 0.27
茎-柄节点果柄粗度STSP (mm) 0.73 -0.04 0.72 0.30 -0.16 0.77 -0.20 0.10 0.60 -0.48 -0.29 -0.57 0.43 0.13
果-柄节点果柄粗度STPP (mm) 0.61 -0.28 0.59 0.54 0.05 0.35 -0.31 0.83 0.57 -0.58 0.18 -0.26 0.51 -0.66
果柄木质素含量LiC (mg g-1) 0.67 -0.10 0.23 -0.58 0.10 0.30 0.70 0.18 0.29 0.47 0.49 0.31 0.54 0.56
果柄纤维素含量CsC (mg g-1) 0.10 0.98 0.01 0.24 0.96 -0.61 -0.47 -0.07 0.25 0.42 0.30 0.70 -0.05 -0.49
特征值Eigenvalue 3.35 1.29 2.02 1.43 1.00 2.19 1.53 1.15 1.62 1.44 1.06 1.98 1.47 1.19
贡献率Contribution (%) 47.84 18.37 28.83 20.39 14.29 31.24 21.82 16.40 23.09 20.56 15.07 28.27 21.03 17.05
累计贡献率Accumulative contribution (%) 47.84 66.21 28.83 49.22 63.51 31.24 53.06 69.46 23.09 43.65 58.72 28.27 49.30 66.36

Table 5

Elite germplasm with high breaking force at both stem-peg and pod-peg junctions"

材料名称
Sample name
材料类型
Sample type
植物学类型
Types of botany
茎-柄节点拉断力
BFSP (N)
果-柄节点拉断力
BFPP (N)
CE242 资源Germplasm 珍珠豆型Var. vulgaris 14.03±1.07 8.93±1.50
CE159 资源Germplasm 珍珠豆型Var. vulgaris 14.38±4.06 9.22±0.91
CE302 资源Germplasm 多粒型Var. fastigiata 15.32±1.64 10.45±1.25
CE248 资源Germplasm 珍珠豆型Var. vulgaris 15.41±2.06 7.02±1.78
HP17 品系Bred strain 多粒型Var. fastigiata 28.54±2.19 9.12±5.93
贺油11 Heyou 11 育成品种Cultivated variety 珍珠豆型Var. vulgaris 18.06±1.44 8.48±2.89
泉花551 Quanhua 551 育成品种Cultivated variety 珍珠豆型Var. vulgaris 15.03±1.29 9.93±0.22
粤油1701 Yueyou 1701 育成品种Cultivated variety 珍珠豆型Var. vulgaris 18.19±2.02 9.96±3.04
湛油75 Zhanyou 75 育成品种Cultivated variety 珍珠豆型Var. vulgaris 15.08±3.49 9.47±0.70
湛油82 Zhanyou 82 育成品种Cultivated variety 珍珠豆型Var. vulgaris 16.05±1.94 9.73±0.91
仲凯花4号 Zhongkaihua 4 育成品种Cultivated variety 珍珠豆型Var. vulgaris 15.08±2.64 14.50±4.01

Fig. 5

Comparative analysis of lignin and cellulose content in materials with significantly different peg strength Breaking force at stem-peg junction, breaking force at pod-peg junction, peg lignin content, and peg cellulose content of the four materials (CE079, CE082, CE248, CE302) are shown in A-D, respectively. Different capital letters within the same developmental stage indicate highly significant differences among accessions at the 0.01 level (P < 0.01); different lowercase letters indicate significant differences at the 0.05 level (P < 0.05). DAF: days after flowering. Abbreviations are the same as those given in Table 2."

[1] 许静, 潘丽娟, 陈娜, 等. 不同花生荚果力学特性研究及优异品系筛选. 中国油料作物学报, 2021, 43: 803-815.
Xu J, Pan L J, Chen N, et al. Pods mechanical property of different peanuts and identification of elite varieties (lines). Chin J Oil Crop Sci, 2021, 43: 803-815 (in Chinese with English abstract).
[2] 宁世祥. 我国典型产区花生收获机械化及影响因素分析. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018.
Ning S X. Mechanization of Peanut Harvesting in Typical Producing Areas of China and Analysis of Its Influencing Factors. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract).
[3] 尚书旗, 王方艳, 刘曙光, 等. 花生收获机械的研究现状与发展趋势. 农业工程学报, 2004, 20(1): 20-25.
Shang S Q, Wang F Y, Liu S G, et al. Research situation and development trend on peanut harvesting machinery. Trans CSAE, 2004, 20(1): 20-25 (in Chinese with English abstract).
[4] 迟晓元, 许静, 潘丽娟, 等. 不同花生种质荚果力学特性研究. 花生学报, 2022, 51(4): 18-28.
Chi X Y, Xu J, Pan L J, et al. Study on pod mechanical properties of different peanut germplasms. J Peanut Sci, 2022, 51(4): 18-28 (in Chinese with English abstract).
[5] 王传堂, 王志伟, 王秀贞, 等. 不同花生基因型机械化收获相关特性的研究. 花生学报, 2019, 48(1): 52-57.
Wang C T, Wang Z W, Wang X Z, et al. Evaluation of different peanut genotypes for mechanized harvest properties. J Peanut Sci, 2019, 48(1): 52-57 (in Chinese with English abstract).
[6] 沈一, 刘永惠, 陈志德. 不同花生品种(系)果柄拉力强度测试和荚果主要性状调查. 江苏农业科学, 2012, 40(10): 82-83.
Shen Y, Liu Y H, Chen Z D. Tensile strength test of different peanut varieties (lines) and investigation of main pod characters. Jiangsu Agric Sci, 2012, 40(10): 82-83 (in Chinese).
[7] 郭丹丹. 花生荚果落荚性和荚果大小相关性状的全基因组关联分析. 华中农业大学硕士学位论文, 湖北武汉, 2022.
Guo D D. Genome-wide Association Analysis of the Traits Related to Pod Drop and Pod Size in Peanut. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[8] 隋荣娟, 潘滢月, 孙居彦. 不同成熟度花生果柄节点力学性能研究. 山东农业工程学院学报, 2019, 36(3): 25-28.
Sui R J, Pan Y Y, Sun J Y. Research on mechanical properties of peg nodes with different maturity of peanuts. J Shandong Agric Eng Univ, 2019, 36(3): 25-28 (in Chinese with English abstract).
[9] 刘龙, 刘道奇, 孙千涛, 等. 花生收获摘果力试验及分析. 农机化研究, 2022, 44(6): 139-144.
Liu L, Liu D Q, Sun Q T, et al. Experiment and analysis of the harvest and picking ability of peanut. J Agric Mech Res, 2022, 44(6): 139-144 (in Chinese with English abstract).
[10] 张甜, 孙雅文, 王铭伦, 等. 不同落果特性花生品种茎枝生长与结构的研究. 花生学报, 2018, 47(2): 59-62.
Zhang T, Sun Y W, Wang M L, et al. The research on structure growth of stems and branches of peanuts with different pod-dropping characteristics. J Peanut Sci, 2018, 47(2): 59-62 (in Chinese with English abstract).
[11] 张晓, 陈玲, 孙雅文, 等. 不同落果特性花生品种荚果性状及果壳强度的研究. 花生学报, 2019, 48(3): 60-64.
Zhang X, Chen L, Sun Y W, et al. The research on pod traits and shell strength of peanut varieties with different fruit drop characteristics. J Peanut Sci, 2019, 48(3): 60-64 (in Chinese with English abstract).
[12] 樊海潮, 顾万荣, 杨德光, 等. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响. 作物学报, 2018, 44: 909-919.
doi: 10.3724/SP.J.1006.2018.00909
Fan H C, Gu W R, Yang D G, et al. Effect of chemical regulators on physical and chemical properties and lodging resistance of spring maize stem in Northeast China. Acta Agron Sin, 2018, 44: 909-919 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00909
[13] 胡昊. 小麦茎秆特性与抗倒伏关系及其调控研究. 河南农业大学硕士学位论文, 河南郑州, 2013.
Hu H. Study on the Relationship between Wheat Stalk Characteristics and Lodging Resistance and Its Regulation. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2013 (in Chinese with English abstract).
[14] 梁煜莹, 张加羽, 姜骁, 等. 花生品质与气候环境的关系研究. 植物遗传资源学报, 2024, 25: 227-244.
Liang Y Y, Zhang J Y, Jiang X, et al. Study on the relationship between peanut quality and climatic environments. J Plant Genet Resour, 2024, 25: 227-244 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20230728001
[15] 张玉松, 何柳, 张云云, 等. 不同生态区气象因子对花生产量相关性状的影响. 中国油料作物学报, 2024, 46: 676-686.
doi: 10.19802/j.issn.1007-9084.2024013
Zhang Y S, He L, Zhang Y Y, et al. Effects of meteorological factors in different ecoregions on yield-related traits of peanut production. Chin J Oil Crop Sci, 2024, 46: 676-686 (in Chinese with English abstract).
[16] 姜骁, 许静, 潘丽娟, 等. 花生产量相关性状与气象因子多环境相关性分析. 作物学报, 2023, 49: 3110-3121.
doi: 10.3724/SP.J.1006.2023.24218
Jiang X, Xu J, Pan L J, et al. Peanut yield-related traits and meteorological factors correlation analysis in multiple environments. Acta Agron Sin, 2023, 49: 3110-3121 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.24218
[17] 徐日荣, 陈湘瑜, 陈昊, 等. 福建主栽花生品种果柄节点强度分析. 中国农机化学报, 2022, 43(5): 22-28.
Xu R R, Chen X Y, Chen H, et al. Analysis of peg strength of main peanut varieties in Fujian province. J Chin Agric Mech, 2022, 43(5): 22-28 (in Chinese with English abstract).
[18] 王鹏, 樊秀彩, 张颖, 等. 600份葡萄种质资源果柄耐拉力鉴定评价. 植物遗传资源学报, 2019, 20: 1197-1212.
doi: 10.13430/j.cnki.jpgr.20181213002
Wang P, Fan X C, Zhang Y, et al. Identification and evaluation of pulling force of fruit stalk for 600 grape germplasm resources. J Plant Genet Resour, 2019, 20: 1197-1212 (in Chinese with English abstract).
[19] 罗茂春, 田翠婷, 李晓娟, 等. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27: 2346-2353.
Luo M C, Tian C T, Li X J, et al. Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice (Oryza sativa L.). Acta Bot Boreali-Occident Sin, 2007, 27: 2346-2353 (in Chinese with English abstract).
[20] 夏星, 汤寓涵, 陶俊, 等. 观赏植物茎秆强度形成及其调控. 植物生理学报, 2018, 54: 347-354.
Xia X, Tang Y H, Tao J, et al. Formation and regulation of ornamental plant stem strength. Plant Physiol J, 2018, 54: 347-354 (in Chinese with English abstract).
[21] 张水金, 郑轶, 朱永生, 等. 水稻脆性突变体研究进展. 福建农业学报, 2011, 26: 895-898.
Zhang S J, Zheng Y, Zhu Y S, et al. Advance in research on brittleness mutant of rice. Fujian J Agric Sci, 2011, 26: 895-898 (in Chinese with English abstract).
[22] 屈丝雨, 任甜, 樊丁宇, 等. 灰枣和冬枣果实质地差异的解剖学观察及相关酶活性研究. 果树学报, 2024, 41: 1811-1820.
Qu S Y, Ren T, Fan D Y, et al. Anatomical observation on the differences in the fruit texture between Huizao and Dongzao jujube and related enzyme activities. J Fruit Sci, 2024, 41: 1811-1820.
[23] Maluin F N, Hussein M Z, Idris A S. An overview of the oil palm industry: challenges and some emerging opportunities for nanotechnology development. Agronomy, 2020, 10: 356.
doi: 10.3390/agronomy10030356
[24] Guan L Y, Huang Q Z, Wang X J, et al. Rapid prediction of mechanical properties based on the chemical components of windmill palm fiber. Materials, 2022, 15: 4989.
doi: 10.3390/ma15144989
[25] 卢明, 洪珊, 剧虹伶, 等. 施钙对‘台农17号’菠萝裂柄的生理影响及效果. 植物生理学报, 2018, 54: 565-573.
Lu M, Hong S, Ju H L, et al. Influence of calcium on peduncle cracking of pineapple (Ananas comosus cv. ‘Tainong 17’) and its physiological mechanism. Plant Physiol J, 2018, 54: 565-573 (in Chinese).
[26] 陈晓光, 史春余, 尹燕枰, 等. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37: 1616-1622.
doi: 10.3724/SP.J.1006.2011.01616
Chen X G, Shi C Y, Yin Y P, et al. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agron Sin, 2011, 37: 1616-1622 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.01616
[1] Jin Xin-Xin, Song Ya-Hui, Su Qiao, Yang Yong-Qing, Wang Jin. Growth and dry matter production characteristics of high-yielding, high-oil, and high oleic acid peanut varieties [J]. Acta Agronomica Sinica, 2026, 52(1): 191-201.
[2] Chi Xiao-Yuan, Liu Qing, Zhang Jun, Zhao Xu-Hong, Li Mei, Yu Tian-Yi, Pan Li-Juan, Xu Jing, Jiang Xiao, Yin Xiang-Zhen, Ma Jun-Qing, Chen Na. Field evaluation of salt-alkaline tolerance and trait correlation analysis in different peanut varieties (lines) [J]. Acta Agronomica Sinica, 2026, 52(1): 85-98.
[3] Wang Fei-Fei, Zhang Sheng-Zhong, Yang Gui-Hua, Miao Hua-Rong, Hu Xiao-Hui, Zhang Ze-Lin, Liu Sha-Sha, Qiao Li-Xian, Shan Shi-Hua, Chen Jing. Comprehensive evaluation of salt tolerance and identification of elite salt-tolerant germplasm in 331 peanut accessions at seedling stage [J]. Acta Agronomica Sinica, 2026, 52(1): 279-294.
[4] WAN Shu-Bo, ZHANG Jia-Lei, GAO Hua-Xin, WANG Cai-Bin. Advances and prospects of high-yield peanut cultivation in China [J]. Acta Agronomica Sinica, 2025, 51(7): 1703-1711.
[5] GUO Teng-Da, CUI Meng-Jie, CHEN Lin-Jie, HAN Suo-Yi, GUO Jing-Kun, WU Chen-Di, FU Liu-Yang, HUANG Bing-Yan, DONG Wen-Zhao, ZHANG Xin-You. Cloning and expression analysis of the phosphatidylinositol transfer protein AhSFH gene in peanuts responsive to Aspergillus flavus infection [J]. Acta Agronomica Sinica, 2025, 51(6): 1489-1500.
[6] LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408.
[7] LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981.
[8] CHI Xiao-Yuan, BI Jing-Nan, ZHAO Jian-Xin, CHEN Na, PAN Li-Juan, JIANG Xiao, YIN Xiang-Zhen, ZHAO Xu-Hong, MA Jun-Qing, XU Jing. Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm [J]. Acta Agronomica Sinica, 2025, 51(4): 943-957.
[9] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-895.
[10] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[11] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[12] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[13] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[14] MA Qun, WANG Zhi-Hao, YAN Lei, LI Yu-Jiao, WANG Jia-Qi, LI Zhao, LIU Wei, AI Xin, MA Qian-Chi, WANG Xiao-Guang, ZHONG Chao, REN Jing-Yao, LIU Xi-Bo, ZHAO Shu-Li, ZHANG He, ZHAO Xin-Hua, JIANG Chun-Ji, WANG Jing, YU Hai-Qiu. Screening and evaluation system for drought resistance in high-oleic acid and common peanut at the germination stage [J]. Acta Agronomica Sinica, 2025, 51(12): 3266-3280.
[15] GUO Jian-Bin, YUAN Xiao-Yan, FU Ming-Lian, CHEN Wei-Gang, LUO Huai-Yong, LIU Nian, HUANG Li, ZHOU Xiao-Jing, JIANG Hui-Fang, LIAO Bo-Shou, LEI Yong. Differences in oil and sucrose content of peanuts in ecological regions at different altitudes and association study of sucrose content [J]. Acta Agronomica Sinica, 2025, 51(11): 3005-3012.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!