Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 28-43.doi: 10.3724/SP.J.1006.2026.51069
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Jing Xiu-Qing1,2,3,*(
), Cai Yong-Duo1, Deng Ning1, Zhao Xiao-Dong1,2, Zhai Fei-Hong1,2, Zeng Qun4
| [1] | 任贵兴, 叶全宝. 藜麦生产与应用. 北京: 科学出版社, 2013. pp 49-50. |
| Ren G X, Ye Q B. Quinoa Botany, Production and Uses. Beijing: Science Press, 2013. pp 49-50 (in Chinese with English abstract). | |
| [2] |
胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展. 作物学报, 2018, 44: 1579-1591.
doi: 10.3724/SP.J.1006.2018.01579 |
|
Hu Y C, Zhao G, Qin P Y, et al. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.). Acta Agron Sin, 2018, 44: 1579-1591 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01579 |
|
| [3] |
Nowak V, Du J, Ruth Charrondière U. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem, 2016, 193: 47-54.
doi: 10.1016/j.foodchem.2015.02.111 |
| [4] |
胡一波, 杨修仕, 陆平, 等. 中国北部藜麦品质性状的多样性和相关性分析. 作物学报, 2017, 43: 464-470.
doi: 10.3724/SP.J.1006.2017.00464 |
|
Hu Y B, Yang X S, Lu P, et al. Diversity and correlation of quality traits in quinoa germplasms from north China. Acta Agron Sin, 2017, 43: 464-470 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00464 |
|
| [5] |
张体付, 戚维聪, 顾闽峰, 等. 藜麦EST-SSR的开发及通用性分析. 作物学报, 2016, 42: 492-500.
doi: 10.3724/SP.J.1006.2016.00492 |
|
Zhang T F, Qi W C, Gu M F, et al. Exploration and transferability evaluation of EST-SSRs in quinoa. Acta Agron Sin, 2016, 42: 492-500 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00492 |
|
| [6] |
Nandan A, Koirala P, Dutt Tripathi A, et al. Nutritional and functional perspectives of pseudocereals. Food Chem, 2024, 448: 139072.
doi: 10.1016/j.foodchem.2024.139072 |
| [7] |
Kolano B, McCann J, Orzechowska M, et al. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogenet Evol, 2016, 100: 109-123.
doi: 10.1016/j.ympev.2016.04.009 |
| [8] |
Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa. Nature, 2017, 542: 307-312.
doi: 10.1038/nature21370 |
| [9] |
Rey E, Maughan P J, Maumus F, et al. A chromosome-scale assembly of the quinoa genome provides insights into the structure and dynamics of its subgenomes. Commun Biol, 2023, 6: 1263.
doi: 10.1038/s42003-023-05613-4 pmid: 38092895 |
| [10] | Jaggi K E, Krak K, Štorchová H, et al. A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium. Plant Genome, 2025, 18: e70010. |
| [11] | Vidhyasekaran P. G-proteins as molecular switches in signal transduction. In: Vidhyasekaran P (ed.). PAMP Signals in Plant Innate Immunity. Dordrecht: Springer Netherlands, 2013: 163-205. |
| [12] |
Zheng Z L, Yang Z. The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol, 2000, 44: 1-9.
doi: 10.1023/a:1006402628948 pmid: 11094975 |
| [13] |
Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature, 2005, 436: 1176-1180.
doi: 10.1038/nature03883 |
| [14] |
Ren H B, Dang X, Yang Y Q, et al. SPIKE 1 activates ROP GTPase to modulate petal growth and shape. Plant Physiol, 2016, 172: 358-371.
doi: 10.1104/pp.16.00788 |
| [15] |
Yang Z B, Fu Y. ROP/RAC GTPase signaling. Curr Opin Plant Biol, 2007, 10: 490-494.
doi: 10.1016/j.pbi.2007.07.005 |
| [16] | Liu Y T, Dong Q K, Kita D, et al. RopGEF 1 plays a critical role in polar auxin transport in early development. Plant Physiol, 2017, 175: 157-171. |
| [17] |
Li Z X, Liu D. ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABA-mediated stomatal closure in Arabidopsis. FEBS Lett, 2012, 586: 1253-1258.
doi: 10.1016/j.febslet.2012.03.040 |
| [18] |
Gu Y, Li S D, Lord E M, et al. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell, 2006, 18: 366-381.
doi: 10.1105/tpc.105.036434 |
| [19] |
Yu Y X, Song J L, Tian X H, et al. Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. Sci China Life Sci, 2018, 61: 100-112.
doi: 10.1007/s11427-016-9107-3 |
| [20] | Bouatta A M, Anzenberger F, Riederauer L, et al. Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana. PLoS Biol, 2025, 23: e3003139. |
| [21] |
Kim E J, Park S W, Hong W J, et al. Genome-wide analysis of RopGEF gene family to identify genes contributing to pollen tube growth in rice (Oryza sativa). BMC Plant Biol, 2020, 20: 95.
doi: 10.1186/s12870-020-2298-5 |
| [22] |
Huang J Q, Liu H L, Berberich T, et al. Guanine nucleotide exchange factor 7B (RopGEF7B) is involved in floral organ development in Oryza sativa. Rice, 2018, 11: 42.
doi: 10.1186/s12284-018-0235-0 |
| [23] |
Liu H K, Li Y J, Wang S J, et al. Kinase partner protein plays a key role in controlling the speed and shape of pollen tube growth in tomato. Plant Physiol, 2020, 184: 1853-1869.
doi: 10.1104/pp.20.01081 |
| [24] |
Zhang D, Wengier D, Shuai B, et al. The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol, 2008, 148: 1368-1379.
doi: 10.1104/pp.108.124420 pmid: 18799662 |
| [25] |
Wang W, Liu Z, Bao L J, et al. The RopGEF2-ROP7/ROP2 pathway activated by phyB suppresses red light-induced stomatal opening. Plant Physiol, 2017, 174: 717-731.
doi: 10.1104/pp.16.01727 pmid: 28188273 |
| [26] |
Denninger P, Reichelt A, Schmidt V A F, et al. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Curr Biol, 2019, 29: 1854-1865.
doi: S0960-9822(19)30488-9 pmid: 31104938 |
| [27] |
Chen M, Liu H L, Kong J X, et al. RopGEF 7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell, 2011, 23: 2880-2894.
doi: 10.1105/tpc.111.085514 |
| [28] |
Kim E J, Hong W J, Tun W, et al. Interaction of OsRopGEF 3 protein with OsRac3 to regulate root hair elongation and reactive oxygen species formation in rice (Oryza sativa). Front Plant Sci, 2021, 12: 661352.
doi: 10.3389/fpls.2021.661352 |
| [29] |
Riely B K, He H B, Venkateshwaran M, et al. Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs. Plant J, 2011, 65: 230-243.
doi: 10.1111/tpj.2011.65.issue-2 |
| [30] | Li Z X, Takahashi Y, Scavo A, et al. Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci USA, 2018, 115: E4522-E4531. |
| [31] |
Zhao S J, Wu Y X, He Y Q, et al. RopGEF 2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis. Plant J, 2015, 84: 886-899.
doi: 10.1111/tpj.2015.84.issue-5 |
| [32] |
Jing X Q, Li W Q, Zhou M R, et al. Rice carbohydrate-binding malectin-like protein, OsCBM1, contributes to drought-stress tolerance by participating in NADPH oxidase-mediated ROS production. Rice, 2021, 14: 100.
doi: 10.1186/s12284-021-00541-5 |
| [33] |
Yoo J H, Park J H, Cho S H, et al. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol Biol, 2011, 77: 631-641.
doi: 10.1007/s11103-011-9839-0 |
| [34] |
Zhang M Q, Wu X Y, Chen L H, et al. The RopGEF gene family and their potential roles in responses to abiotic stress in Brassica rapa. Int J Mol Sci, 2024, 25: 3541.
doi: 10.3390/ijms25063541 |
| [35] |
Shin D H, Kim T L, Kwon Y K, et al. Characterization of Arabidopsis RopGEF family genes in response to abiotic stresses. Plant Biotechnol Rep, 2009, 3: 183-190.
doi: 10.1007/s11816-009-0090-y |
| [36] | 陈阳, 郭占斌, 武悦, 等. 藜麦CqSAP8基因克隆及其在非生物胁迫下的表达分析. 西北植物学报, 2021, 41: 2014-2020. |
| Chen Y, Guo Z B, Wu Y, et al. Cloning and expression analysis of CqSAP8 in Chenopodium quinoa under abiotic stresses. Acta Bot Boreali-Occident Sin, 2021, 4: 2014-2020 (in Chinese with English abstract). | |
| [37] | Zhang Y, McCormick S. A distinct mechanism regulating a pollen-specific GTPase. Proc Natl Acad Sci USA, 2007, 104: 11830-11835. |
| [38] |
Denninger P. Rho of plants signalling and the activating rop guanine nucleotide exchange factors: specificity in cellular signal transduction in plants. J Exp Bot, 2024, 75: 3685-3699.
doi: 10.1093/jxb/erae196 |
| [39] |
Duan Q H, Kita D, Li C, et al. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA, 2010, 107: 17821-17826.
doi: 10.1073/pnas.1005366107 pmid: 20876100 |
| [40] |
Zhu L, Chu L C, Liang Y, et al. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J, 2018, 95: 474-486.
doi: 10.1111/tpj.2018.95.issue-3 |
| [41] |
Beier M P, Jinno C, Noda N, et al. ABA signaling converts stem cell fate by substantiating a tradeoff between cell polarity, growth and cell cycle progression and abiotic stress responses in the moss Physcomitrium patens. Front Plant Sci, 2023, 14: 1303195.
doi: 10.3389/fpls.2023.1303195 |
| [42] |
Chang F, Gu Y, Ma H, et al. AtPRK 2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol Plant, 2013, 6: 1187-1201.
doi: 10.1093/mp/sss103 pmid: 23024212 |
| [43] | Li Z X, Waadt R, Schroeder J I. Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs. PLoS Biol, 2016, 14: e1002461. |
| [44] | 赵悦, 申加枝, 马媛春, 等. 茶树鸟苷酸交换因子CsRopGEF1和CsRopGEF3基因的克隆及表达特性. 植物资源与环境学报, 2018, 27(4): 1-10. |
| Zhao Y, Shen J Z, Ma Y C, et al. Cloning and expression properties of CsRopGEF1and CsRopGEF3 genes of guanine nucleotideexchange factor in Camellia sinensis. Plant Resour Environ, 2018, 27(4): 1-10 (in Chinese with English abstract). | |
| [45] |
van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 2020, 71: 403-433.
doi: 10.1146/annurev-arplant-050718-100005 pmid: 32167791 |
| [46] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
| [47] | 廖恒毅, 王若霖, 黄进. ROPs: 植物细胞内多种信号通路的分子开关. 中国生物化学与分子生物学报, 2020, 38: 271-283. |
| Lian H Y, Wang R L, Huang J. ROPs: molecular switches of multiple signal pathways in plant cells. Chin J Biochem Mol Biol, 2020, 38: 271-283 (in Chinese with English abstract). | |
| [48] |
Smokvarska M, Francis C, Platre M P, et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr Biol, 2020, 30: 4654-4664.
doi: 10.1016/j.cub.2020.09.013 |
| [49] | 郭亚如, 陈欣, 黄俊骏. ROP蛋白在植物生长发育及逆境响应中的作用研究进展. 河南农业科学, 2021, 50(11): 1-5. |
| Guo Y R, Chen X, Huang J J. Research progress on function of ROP protein in plant growth and development and stress response. J Henan Agric Sci, 2021, 50(11): 1-5 (in Chinese with English abstract). | |
| [50] |
Fukao T, Bailey-Serres J. Plant responses to hypoxia: is survival a balancing act? Trends Plant Sci, 2004, 9: 449-456.
doi: 10.1016/j.tplants.2004.07.005 |
| [1] | ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649. |
| [2] | LI Wan, CHANG Zi-Rui, LU Yao, SHEN Ri-Min, ZHAO Yong-Ping, BAI Xiao-Dong. Identification of RAV family in 25 different plant species and expression analysis of RAV genes in potato [J]. Acta Agronomica Sinica, 2025, 51(11): 2944-2957. |
| [3] | XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156. |
| [4] | GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988. |
| [5] | WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819. |
| [6] | WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813. |
| [7] | JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792. |
| [8] | YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164. |
| [9] | WANG Zi-Ran, LU Yi-Wei, YANG Jing-Yi, WANG Cheng-Long, SONG Ya-Ping, MA Jin-Hu. Effects of exogenous SA on physiological characteristics and stress-resistant gene expression of soybean under Cd stress [J]. Acta Agronomica Sinica, 2024, 50(11): 2883-2895. |
| [10] | WANG Ling, ZHANG Yan-Ping, QI Yan-Ni, WANG Lei, LI Yu-Xiao, TAN Mei-Lian, WANG Wei. Divergent evolutionary pattern of P5CS gene family and drought tolerance verification of LusP5CS1 in linseed [J]. Acta Agronomica Sinica, 2024, 50(10): 2515-2527. |
| [11] | LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411. |
| [12] | WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182. |
| [13] | DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784. |
| [14] | WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881. |
| [15] | WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868. |
|
||