Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 28-43.doi: 10.3724/SP.J.1006.2026.51069

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and expression pattern analysis of RopGEF family genes in Chenopodium quinoa

Jing Xiu-Qing1,2,3,*(), Cai Yong-Duo1, Deng Ning1, Zhao Xiao-Dong1,2, Zhai Fei-Hong1,2, Zeng Qun4   

  1. 1College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
    2Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
    3College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
    4School of Basic Medical, Shanxi University of Chinese Medicine, Jinzhong 030619, Shanxi, China
  • Received:2025-07-22 Accepted:2025-10-30 Online:2026-01-12 Published:2025-11-10
  • Contact: *E-mail: xiuqingjing@tynu.edu.cn
  • Supported by:
    Fundamental Research Programs of Shanxi Province(202203021212186);Graduate Education and Innovation Projects of Taiyuan Normal University(SYYJSYC-2431);College Student Innovation and Entrepreneurship Training Program of Taiyuan Normal University(CXCY25104)

Abstract:

In plants, RopGEF-mediated ROP signaling plays a crucial role in cellular signaling pathways. In this study, seven RopGEF family members were identified in Chenopodium quinoa through bioinformatics analysis and were found to be distributed across six chromosomes. Based on phylogenetic relationships and structural characteristics, 90 RopGEFs from six crop species, including Arabidopsis thaliana and rice, were classified into four subfamilies. Evolutionary analysis revealed that CqRopGEF5 is closely related to AtRopGEF1 and OsRopGEF1. Structural analysis indicated that the exon-intron organization, protein motif composition, and secondary and three-dimensional structures of CqRopGEFs are highly conserved. qRT-PCR analysis showed that most CqRopGEFs were highly expressed during seed germination, with expression levels in seedling roots being higher than in stems and leaves. Their expression was significantly induced by exogenous abscisic acid (ABA) and abiotic stresses. For instance, the expression of CqRopGEF2, CqRopGEF3, CqRopGEF4, and CqRopGEF7 initially increased and then decreased under ABA treatment, while CqRopGEF7 was strongly downregulated under both cold and heat stress. In conclusion, the CqRopGEF gene family exhibits conserved evolutionary structure and may play important roles in quinoa growth and development, ABA signaling, and responses to abiotic stress.

Key words: Chenopodium quinoa, RopGEFs, phylogenetic analysis, gene expression, abiotic stresses

Table 1

Primer sequences for qRT-PCR"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
CqActin-F CCCCTGCTATGTATGTTGCAATTC
CqActin-R AGTGGTCTGTTAGGTCACGACCAG
CqRopGEF1-F GTCAGAACCGGATAGGAATGACA
CqRopGEF1-R TTCTAAGATTGCTTGGCCGACG
CqRopGEF2-F GTCAAGTGCTGAGCGTAGAA
CqRopGEF2-R AGAGTAGGCGAAACAGAGGA
CqRopGEF3-F TGATTCAGGGCTTGATGAATTAG
CqRopGEF3-R CTGCAGTACATACACCTTTCCC
CqRopGEF4-F AAGATCACTCGAGCAATCCCAA
CqRopGEF4-R CTTATATGTGGGTTGCCTATGG
CqRopGEF5-F TCTCCCGATCCAAAAACGCA
CqRopGEF5-R ATCTAGGGCTTCCTCCAGCA
CqRopGEF6-F CTGCTCGACATTGACAAGAGAC
CqRopGEF6-R AACAAGTGCTTTCTCTCTCGC
CqRopGEF7-F GAGAAGTCCAACAGCTCGACA
CqRopGEF7-R AGGGAAGTTAAAACTGTTGAGGA

Fig. 1

Chromosome distribution of RopGEF family genes in Chenopodium quinoa"

Table 2

Identification of RopGEF family genes in Chenopodium quinoa"

命名
Name
基因ID
Gene ID
染色体定位
Genomic location
方向
Orientation
DNA
(bp)
mRNA
(bp)
CDS
(bp)
蛋白质
Protein (aa)
CqRopGEF1 AUR62022562 Chromosome 1A: 2964588-2967787 正向Forward 3200 2059 1344 447
CqRopGEF2 AUR62022802 Chromosome 2A: 55459754-55456379 反向Reverse 3377 2493 1806 601
CqRopGEF3 AUR62004356 Chromosome 2B: 72815241-72818458 正向Forward 3218 2102 1347 448
CqRopGEF4 AUR62017402 Chromosome 5B: 11732273-11725942 反向Reverse 8837 2220 1668 555
CqRopGEF5 AUR62012977 Chromosome 7B: 2293460-2296982 正向Forward 3525 2278 1716 571
CqRopGEF6 AUR62016478 Chromosome 7B: 11948979-11952944 正向Forward 3949 1657 1344 447
CqRopGEF7 AUR62011650 Chromosome 9A: 47835328-47832045 正向Forward 3288 2087 1656 551

Table 3

Physicochemical properties of RopGEF family proteins in Chenopodium quinoa"

名称
Name
蛋白质分子量
MV (Da)
等电点
pI
电荷
Charge
不稳定指数
II
脂肪指数
AI
总平均亲水性
GRAVY
主要氨基酸含量
Major amino acids content (%)
CqRopGEF1 50733.64 5.64 -5.0 44.12 69.46 -0.532 Ser (9.8), Leu (9.4), Glu (7.8)
CqRopGEF2 67003.52 8.91 15.5 51.88 82.10 -0.468 Ser (12.0), Leu (10.1), Lys (7.0)
CqRopGEF3 50820.74 5.65 -5.0 47.32 68.86 -0.549 Ser (9.8), Leu (9.4), Glu (8.0)
CqRopGEF4 61739.50 5.42 -8.5 50.76 75.59 -0.447 Ser (13.2), Leu (8.1), Glu (7.6)
CqRopGEF5 63181.72 5.43 -7.0 53.29 79.98 -0.343 Ser (11.0), Leu (10.7), Ala (8.2)
CqRopGEF6 49940.71 5.82 -2.5 44.40 83.18 -0.568 Leu (10.3), Ser (8.7), Lys (8.1)
CqRopGEF7 61880.51 6.72 2.5 46.90 85.35 -0.543 Leu (10.0), Ser (9.1), Lys (8.3)

Fig. 2

Phylogenetic analysis of RopGEF family members from Arabidopsis, rice, and Chenopodium quinoa"

Fig. 3

Motif composition of CqRopGEF family proteins"

Fig. 4

Exon-intron structure of CqRopGEF family genes"

Fig. 5

Predicted secondary structure of CqRopGEF family proteins"

Table 4

Proportion of secondary structure of CqRopGEF family proteins (%)"

蛋白名称
Protein name
α-螺旋
Alpha helix
延伸链
Extended strand
β-折叠
Beta turn
无规则卷曲
Random coil
CqRopGEF1 48.55 9.40 6.26 35.79
CqRopGEF2 39.60 11.81 5.16 43.43
CqRopGEF3 49.33 9.38 6.47 34.82
CqRopGEF4 39.46 13.51 5.77 41.26
CqRopGEF5 45.01 11.73 5.78 37.48
CqRopGEF6 50.56 10.29 5.82 33.33
CqRopGEF7 48.46 12.89 6.53 32.12

Fig. 6

3D structural model of CqRopGEF family proteins"

Fig. 7

Tissue-specific expression patterns of CqRopGEFs The X-axis represents different genes derived from various tissues, while the Y-axis shows the relative expression levels of each gene, where the expression level of the corresponding gene in the seedling-stage leaf control group serves as the reference. Error bars represent the standard deviations (SD) of three independent biological replicates, indicating variability in the data. Lowercase letters above columns indicate statistically significant differences among groups (P < 0.05)."

Table S1

Tissue-specific relative expression levels of CqRopGEFs"

藜麦的不同组织
Different tissues of Chenopodium quinoa
CqRopGEF1 CqRopGEF2 CqRopGEF3 CqRopGEF4 CqRopGEF5 CqRopGEF6 CqRopGEF7
萌发期的种子
Seeds at the
germination stage
4.878203 2.278607 2.754176 16.890020 2.797100 11.876840 19.897840
3.766052 3.312942 4.805450 15.268320 3.482195 9.355844 16.520080
6.100269 3.838499 6.404784 18.461560 3.013842 5.053957 23.091410
幼苗期的根
Roots at the
seedling stage
6.807494 1.331894 0.460650 21.580820 3.284094 4.173666 6.313694
3.532024 1.830430 2.551489 20.974230 4.843827 5.355065 6.104382
5.169742 1.199528 0.971060 22.187410 5.968582 6.533347 5.893400
幼苗期的茎
Stems at the
seedling stage
4.733415 1.770585 1.180153 4.127276 0.713631 0.588344 0.717597
6.430234 1.379614 1.270806 5.117608 2.263214 0.303270 0.691531
1.542182 0.988338 0.902921 4.178092 0.824355 0.451662 0.728712
幼苗期的叶
Leaves at the
seedling stage
0.518102 1.125639 1.652672 1.051103 1.411523 1.807061 1.370787
0.936619 0.608740 0.535888 0.935297 0.857690 1.133261 0.897113
1.573340 1.642738 1.129119 1.017196 0.826002 0.488311 0.813173

Fig. 8

Expression profiles of SiRopGEFs in responding to phytohormone ABA The X-axis represents treatments with a concentration of 100 μmol L-1 abscisic acid (ABA); The Y-axis shows the relative expression levels of genes under each treatment, with the gene expression level at 0 h serving as the control for comparison. Error bars indicate the standard deviations from three independent biological replicates, reflecting experimental variability. Lowercase letters above columns denote statistically significant differences among treatments (P < 0.05)."

Table S2

Relative expression level of CqRopGEFs in responding to phytohormone ABA"

脱落酸诱导时间
ABA induction time (h)
CqRopGEF1 CqRopGEF2 CqRopGEF3 CqRopGEF4 CqRopGEF5 CqRopGEF6 CqRopGEF7
0 0.383349 0.560141 0.854405 0.606571 0.728405 0.728405 1.062129
1.506241 1.269373 1.345321 1.828694 1.029036 1.029036 0.721514
1.731853 1.406414 0.869982 0.901525 1.334125 1.334125 1.304915
0.5 0.983333 1.102365 1.681996 2.789007 1.298839 9.554574 2.288396
1.524082 1.747551 1.203658 2.703967 1.087367 11.379720 1.333165
2.197235 1.325759 2.439122 1.717055 1.389695 10.233450 0.362952
1.0 3.337438 2.589671 5.702759 3.252600 2.760910 9.061889 4.074006
3.772568 1.520832 4.813831 2.026537 3.317331 10.027570 2.866530
3.308728 1.739145 2.253050 1.514832 2.865699 10.617900 3.495186
3.0 1.137558 3.965328 2.342961 3.991537 0.879867 8.917276 2.692579
1.323412 5.386514 2.337639 5.240955 1.371273 10.102700 4.462155
1.509266 4.675921 2.198124 5.679425 1.445019 9.509880 4.253782
6.0 2.052419 3.843384 2.081516 4.373684 0.209642 18.590750 2.624539
2.699639 3.878513 2.878217 4.111525 0.139735 15.317400 4.317009
4.581864 3.860945 1.946418 3.849441 0.254140 11.211030 1.693145
9.0 2.842707 2.123543 1.361779 2.529633 2.378183 7.451357 1.053495
5.334447 2.349829 2.334819 4.288677 2.990309 9.269848 2.691308
6.244401 1.185006 2.165277 3.323484 2.684246 7.931538 1.479827
12.0 1.089972 1.704662 0.582268 1.517851 0.522919 5.989391 2.404398
1.123806 1.002880 0.458469 1.095538 0.452549 6.101458 0.909693
1.463621 1.428291 0.968643 1.940164 0.657857 5.563212 2.143747

Fig. 9

Expression profiles of CqRopGEFs in response to abiotic stresses The X-axis represents treatments, and the Y-axis shows the relative expression levels of genes under each treatment, with the gene expression level at 0 h serving as the control for comparison. Error bars represent standard deviations from three independent biological replicates, indicating data variability. Lowercase letters above columns indicate statistically significant differences among treatments (P < 0.05)."

Table S3

Relative expression level of CqRopGEFs in responding to abiotic stresses"

非生物胁迫类型
Abiotic stress types
诱导时间
Induction time (h)
CqRopGEF1 CqRopGEF2 CqRopGEF3 CqRopGEF4 CqRopGEF5 CqRopGEF6 CqRopGEF7
盐胁迫
NaCl stress
0 0.383349 0.560141 0.854405 0.606571 0.728405 0.728405 1.062129
1.506241 1.269373 1.345321 1.828694 1.029036 1.029036 0.721514
1.731853 1.406414 0.869982 0.901525 1.334125 1.334125 1.304915
0.5 0.772326 1.159405 1.773793 1.854496 0.691270 7.582796 1.691677
2.333372 1.381033 1.693753 1.954086 0.719767 10.713740 1.489551
0.906278 2.128215 2.517919 1.878350 0.807654 12.751710 1.440584
1.0 4.021173 1.505571 1.616389 4.601057 0.637286 1.205228 1.654745
3.552205 1.141802 0.760429 1.714344 0.204097 0.749852 0.648161
3.153475 1.869340 1.330379 3.146229 0.274938 0.863148 0.816919
3.0 1.730386 1.712858 2.823156 1.944915 1.290353 1.278683 0.441802
1.743547 0.958481 1.360395 0.609258 0.556973 0.900653 0.231205
1.531246 1.217893 1.133152 1.566374 1.034183 2.563201 0.544648
6.0 7.491243 4.959007 11.984900 14.824110 1.460042 14.339160 1.742513
8.709589 6.226643 11.173230 15.912830 1.610668 20.513880 2.250919
6.730411 5.592825 12.796570 15.055710 1.536903 20.236210 1.996716
9.0 1.550042 2.273255 0.611888 0.814029 0.874245 7.804387 1.216835
1.286587 2.985491 0.669221 0.808121 1.009184 5.403626 0.735552
1.763603 3.697727 0.740158 0.855448 0.901323 2.963197 1.151440
12.0 0.659497 1.284734 1.313399 0.988045 1.204775 8.536256 1.024598
3.250984 2.389733 1.484973 1.884897 1.850079 12.979700 1.120172
1.017229 0.672581 0.837188 0.465141 0.841363 6.292692 0.358020
冷胁迫
Cold stress
0 0.383349 0.560141 0.854405 0.606571 0.728405 0.728405 1.062129
1.506241 1.269373 1.345321 1.828694 1.029036 1.029036 0.721514
1.731853 1.406414 0.869982 0.901525 1.334125 1.334125 1.304915
0.5 3.067984 0.073947 1.240688 0.905638 0.506053 3.463253 0.041140
2.764997 0.095788 1.552569 0.869109 0.680372 10.269000 0.048050
1.630744 0.025687 2.114081 0.600380 0.674204 4.344438 0.047003
1.0 6.912400 2.331709 2.603918 1.268249 1.842374 9.603889 0.064722
3.522932 4.848282 1.906822 0.534672 1.078122 4.360394 0.037754
1.921253 2.452198 0.514955 0.786965 1.011729 5.216602 0.027871
3.0 4.384372 1.205219 0.984415 1.079580 1.133988 7.848745 0.045085
4.254747 1.864312 1.894010 1.485352 1.642780 9.145513 0.052989
4.014151 2.783633 1.027342 0.985608 1.142598 12.440090 0.072667
6.0 2.086202 1.709914 1.716748 2.497598 1.202176 3.998536 0.074053
1.942518 1.154572 1.937527 2.730446 0.733247 4.476529 0.086771
1.385889 0.834515 1.365975 0.948892 0.348817 3.680676 0.047853
9.0 0.711963 0.238596 0.367345 1.016697 0.872451 1.058060 0.026753
1.105034 0.868088 0.321311 0.587120 1.104628 2.405538 0.033237
1.466575 1.280835 1.849609 1.070318 1.585804 5.327724 0.074461
12.0 5.369742 1.663197 2.324701 2.033130 0.741304 6.911496 0.062350
5.109689 0.758459 2.143919 2.832090 0.686679 5.455784 0.045538
4.807878 1.727933 3.264301 2.993412 0.647229 5.499532 0.046762
热胁迫
Heat stress
0 0.383349 0.560141 0.854405 0.606571 0.728405 0.728405 1.062129
1.506241 1.269373 1.345321 1.828694 1.029036 1.029036 0.721514
1.731853 1.406414 0.869982 0.901525 1.334125 1.334125 1.304915
0.5 5.698402 0.342630 2.938812 1.912740 3.123081 0.395001 0.030419
6.523212 0.543866 4.800879 3.507437 3.619378 1.669364 0.089216
7.348022 0.435744 1.879438 2.008440 2.626784 0.813130 0.051139
1.0 11.545170 0.967400 0.065129 0.952527 3.284985 0.017801 0.001726
12.091210 0.729950 0.278504 1.931629 2.470521 0.042110 0.002321
12.637250 0.965469 0.173085 2.069349 4.086476 0.058591 0.004358
3.0 3.355991 0.049800 0.829518 3.078433 1.326899 0.576277 0.016437
8.287571 0.134510 3.354101 4.393673 1.842339 1.273716 0.029428
5.315243 0.866220 2.655746 5.708913 1.601412 0.721393 0.018568
6.0 0.043172 0.310586 0.386811 1.060621 2.231053 0.284953 0.006082
0.417197 1.199896 1.531503 2.426767 2.021476 0.704766 0.011086
0.364518 0.590544 1.353164 2.264082 1.811899 0.528078 0.007894
9.0 1.266708 0.243170 0.605378 3.033535 1.584369 0.668059 0.011319
3.190623 0.649720 1.499023 4.901491 1.326435 0.359377 0.018200
0.773340 0.517530 2.008419 3.327380 1.068478 0.485347 0.011061
12.0 0.300956 0.103220 0.158249 1.211129 0.470379 0.254347 0.002693
0.541412 0.579653 1.105782 1.806751 0.616462 0.383229 0.004141
0.320881 0.163824 0.260170 1.228762 0.557374 0.220774 0.003609
[1] 任贵兴, 叶全宝. 藜麦生产与应用. 北京: 科学出版社, 2013. pp 49-50.
Ren G X, Ye Q B. Quinoa Botany, Production and Uses. Beijing: Science Press, 2013. pp 49-50 (in Chinese with English abstract).
[2] 胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展. 作物学报, 2018, 44: 1579-1591.
doi: 10.3724/SP.J.1006.2018.01579
Hu Y C, Zhao G, Qin P Y, et al. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.). Acta Agron Sin, 2018, 44: 1579-1591 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01579
[3] Nowak V, Du J, Ruth Charrondière U. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem, 2016, 193: 47-54.
doi: 10.1016/j.foodchem.2015.02.111
[4] 胡一波, 杨修仕, 陆平, 等. 中国北部藜麦品质性状的多样性和相关性分析. 作物学报, 2017, 43: 464-470.
doi: 10.3724/SP.J.1006.2017.00464
Hu Y B, Yang X S, Lu P, et al. Diversity and correlation of quality traits in quinoa germplasms from north China. Acta Agron Sin, 2017, 43: 464-470 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00464
[5] 张体付, 戚维聪, 顾闽峰, 等. 藜麦EST-SSR的开发及通用性分析. 作物学报, 2016, 42: 492-500.
doi: 10.3724/SP.J.1006.2016.00492
Zhang T F, Qi W C, Gu M F, et al. Exploration and transferability evaluation of EST-SSRs in quinoa. Acta Agron Sin, 2016, 42: 492-500 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00492
[6] Nandan A, Koirala P, Dutt Tripathi A, et al. Nutritional and functional perspectives of pseudocereals. Food Chem, 2024, 448: 139072.
doi: 10.1016/j.foodchem.2024.139072
[7] Kolano B, McCann J, Orzechowska M, et al. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol Phylogenet Evol, 2016, 100: 109-123.
doi: 10.1016/j.ympev.2016.04.009
[8] Jarvis D E, Ho Y S, Lightfoot D J, et al. The genome of Chenopodium quinoa. Nature, 2017, 542: 307-312.
doi: 10.1038/nature21370
[9] Rey E, Maughan P J, Maumus F, et al. A chromosome-scale assembly of the quinoa genome provides insights into the structure and dynamics of its subgenomes. Commun Biol, 2023, 6: 1263.
doi: 10.1038/s42003-023-05613-4 pmid: 38092895
[10] Jaggi K E, Krak K, Štorchová H, et al. A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium. Plant Genome, 2025, 18: e70010.
[11] Vidhyasekaran P. G-proteins as molecular switches in signal transduction. In: Vidhyasekaran P (ed.). PAMP Signals in Plant Innate Immunity. Dordrecht: Springer Netherlands, 2013: 163-205.
[12] Zheng Z L, Yang Z. The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol, 2000, 44: 1-9.
doi: 10.1023/a:1006402628948 pmid: 11094975
[13] Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature, 2005, 436: 1176-1180.
doi: 10.1038/nature03883
[14] Ren H B, Dang X, Yang Y Q, et al. SPIKE 1 activates ROP GTPase to modulate petal growth and shape. Plant Physiol, 2016, 172: 358-371.
doi: 10.1104/pp.16.00788
[15] Yang Z B, Fu Y. ROP/RAC GTPase signaling. Curr Opin Plant Biol, 2007, 10: 490-494.
doi: 10.1016/j.pbi.2007.07.005
[16] Liu Y T, Dong Q K, Kita D, et al. RopGEF 1 plays a critical role in polar auxin transport in early development. Plant Physiol, 2017, 175: 157-171.
[17] Li Z X, Liu D. ROPGEF1 and ROPGEF4 are functional regulators of ROP11 GTPase in ABA-mediated stomatal closure in Arabidopsis. FEBS Lett, 2012, 586: 1253-1258.
doi: 10.1016/j.febslet.2012.03.040
[18] Gu Y, Li S D, Lord E M, et al. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell, 2006, 18: 366-381.
doi: 10.1105/tpc.105.036434
[19] Yu Y X, Song J L, Tian X H, et al. Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. Sci China Life Sci, 2018, 61: 100-112.
doi: 10.1007/s11427-016-9107-3
[20] Bouatta A M, Anzenberger F, Riederauer L, et al. Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana. PLoS Biol, 2025, 23: e3003139.
[21] Kim E J, Park S W, Hong W J, et al. Genome-wide analysis of RopGEF gene family to identify genes contributing to pollen tube growth in rice (Oryza sativa). BMC Plant Biol, 2020, 20: 95.
doi: 10.1186/s12870-020-2298-5
[22] Huang J Q, Liu H L, Berberich T, et al. Guanine nucleotide exchange factor 7B (RopGEF7B) is involved in floral organ development in Oryza sativa. Rice, 2018, 11: 42.
doi: 10.1186/s12284-018-0235-0
[23] Liu H K, Li Y J, Wang S J, et al. Kinase partner protein plays a key role in controlling the speed and shape of pollen tube growth in tomato. Plant Physiol, 2020, 184: 1853-1869.
doi: 10.1104/pp.20.01081
[24] Zhang D, Wengier D, Shuai B, et al. The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol, 2008, 148: 1368-1379.
doi: 10.1104/pp.108.124420 pmid: 18799662
[25] Wang W, Liu Z, Bao L J, et al. The RopGEF2-ROP7/ROP2 pathway activated by phyB suppresses red light-induced stomatal opening. Plant Physiol, 2017, 174: 717-731.
doi: 10.1104/pp.16.01727 pmid: 28188273
[26] Denninger P, Reichelt A, Schmidt V A F, et al. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Curr Biol, 2019, 29: 1854-1865.
doi: S0960-9822(19)30488-9 pmid: 31104938
[27] Chen M, Liu H L, Kong J X, et al. RopGEF 7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell, 2011, 23: 2880-2894.
doi: 10.1105/tpc.111.085514
[28] Kim E J, Hong W J, Tun W, et al. Interaction of OsRopGEF 3 protein with OsRac3 to regulate root hair elongation and reactive oxygen species formation in rice (Oryza sativa). Front Plant Sci, 2021, 12: 661352.
doi: 10.3389/fpls.2021.661352
[29] Riely B K, He H B, Venkateshwaran M, et al. Identification of legume RopGEF gene families and characterization of a Medicago truncatula RopGEF mediating polar growth of root hairs. Plant J, 2011, 65: 230-243.
doi: 10.1111/tpj.2011.65.issue-2
[30] Li Z X, Takahashi Y, Scavo A, et al. Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci USA, 2018, 115: E4522-E4531.
[31] Zhao S J, Wu Y X, He Y Q, et al. RopGEF 2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis. Plant J, 2015, 84: 886-899.
doi: 10.1111/tpj.2015.84.issue-5
[32] Jing X Q, Li W Q, Zhou M R, et al. Rice carbohydrate-binding malectin-like protein, OsCBM1, contributes to drought-stress tolerance by participating in NADPH oxidase-mediated ROS production. Rice, 2021, 14: 100.
doi: 10.1186/s12284-021-00541-5
[33] Yoo J H, Park J H, Cho S H, et al. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol Biol, 2011, 77: 631-641.
doi: 10.1007/s11103-011-9839-0
[34] Zhang M Q, Wu X Y, Chen L H, et al. The RopGEF gene family and their potential roles in responses to abiotic stress in Brassica rapa. Int J Mol Sci, 2024, 25: 3541.
doi: 10.3390/ijms25063541
[35] Shin D H, Kim T L, Kwon Y K, et al. Characterization of Arabidopsis RopGEF family genes in response to abiotic stresses. Plant Biotechnol Rep, 2009, 3: 183-190.
doi: 10.1007/s11816-009-0090-y
[36] 陈阳, 郭占斌, 武悦, 等. 藜麦CqSAP8基因克隆及其在非生物胁迫下的表达分析. 西北植物学报, 2021, 41: 2014-2020.
Chen Y, Guo Z B, Wu Y, et al. Cloning and expression analysis of CqSAP8 in Chenopodium quinoa under abiotic stresses. Acta Bot Boreali-Occident Sin, 2021, 4: 2014-2020 (in Chinese with English abstract).
[37] Zhang Y, McCormick S. A distinct mechanism regulating a pollen-specific GTPase. Proc Natl Acad Sci USA, 2007, 104: 11830-11835.
[38] Denninger P. Rho of plants signalling and the activating rop guanine nucleotide exchange factors: specificity in cellular signal transduction in plants. J Exp Bot, 2024, 75: 3685-3699.
doi: 10.1093/jxb/erae196
[39] Duan Q H, Kita D, Li C, et al. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci USA, 2010, 107: 17821-17826.
doi: 10.1073/pnas.1005366107 pmid: 20876100
[40] Zhu L, Chu L C, Liang Y, et al. The Arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J, 2018, 95: 474-486.
doi: 10.1111/tpj.2018.95.issue-3
[41] Beier M P, Jinno C, Noda N, et al. ABA signaling converts stem cell fate by substantiating a tradeoff between cell polarity, growth and cell cycle progression and abiotic stress responses in the moss Physcomitrium patens. Front Plant Sci, 2023, 14: 1303195.
doi: 10.3389/fpls.2023.1303195
[42] Chang F, Gu Y, Ma H, et al. AtPRK 2 promotes ROP1 activation via RopGEFs in the control of polarized pollen tube growth. Mol Plant, 2013, 6: 1187-1201.
doi: 10.1093/mp/sss103 pmid: 23024212
[43] Li Z X, Waadt R, Schroeder J I. Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs. PLoS Biol, 2016, 14: e1002461.
[44] 赵悦, 申加枝, 马媛春, 等. 茶树鸟苷酸交换因子CsRopGEF1CsRopGEF3基因的克隆及表达特性. 植物资源与环境学报, 2018, 27(4): 1-10.
Zhao Y, Shen J Z, Ma Y C, et al. Cloning and expression properties of CsRopGEF1and CsRopGEF3 genes of guanine nucleotideexchange factor in Camellia sinensis. Plant Resour Environ, 2018, 27(4): 1-10 (in Chinese with English abstract).
[45] van Zelm E, Zhang Y X, Testerink C. Salt tolerance mechanisms of plants. Annu Rev Plant Biol, 2020, 71: 403-433.
doi: 10.1146/annurev-arplant-050718-100005 pmid: 32167791
[46] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[47] 廖恒毅, 王若霖, 黄进. ROPs: 植物细胞内多种信号通路的分子开关. 中国生物化学与分子生物学报, 2020, 38: 271-283.
Lian H Y, Wang R L, Huang J. ROPs: molecular switches of multiple signal pathways in plant cells. Chin J Biochem Mol Biol, 2020, 38: 271-283 (in Chinese with English abstract).
[48] Smokvarska M, Francis C, Platre M P, et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr Biol, 2020, 30: 4654-4664.
doi: 10.1016/j.cub.2020.09.013
[49] 郭亚如, 陈欣, 黄俊骏. ROP蛋白在植物生长发育及逆境响应中的作用研究进展. 河南农业科学, 2021, 50(11): 1-5.
Guo Y R, Chen X, Huang J J. Research progress on function of ROP protein in plant growth and development and stress response. J Henan Agric Sci, 2021, 50(11): 1-5 (in Chinese with English abstract).
[50] Fukao T, Bailey-Serres J. Plant responses to hypoxia: is survival a balancing act? Trends Plant Sci, 2004, 9: 449-456.
doi: 10.1016/j.tplants.2004.07.005
[1] ZHANG Heng, FENG Ya-Lan, TIAN Wen-Zhong, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of TaSnRK gene family and expression analysis under localized root zone drought in wheat [J]. Acta Agronomica Sinica, 2025, 51(3): 632-649.
[2] LI Wan, CHANG Zi-Rui, LU Yao, SHEN Ri-Min, ZHAO Yong-Ping, BAI Xiao-Dong. Identification of RAV family in 25 different plant species and expression analysis of RAV genes in potato [J]. Acta Agronomica Sinica, 2025, 51(11): 2944-2957.
[3] XIAO Ming-Kun, YAN Wei, SONG Ji-Ming, ZHANG Lin-Hui, LIU Qian, DUAN Chun-Fang, LI Yue-Xian, JIANG Tai-Ling, SHEN Shao-Bin, ZHOU Ying-Chun, SHEN Zheng-Song, XIONG Xian-Kun, LUO Xin, BAI Li-Na, LIU Guang-Hua. Comparative transcriptome profiling of leaf in curled-leaf cassava and its mutant [J]. Acta Agronomica Sinica, 2024, 50(8): 2143-2156.
[4] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[5] WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819.
[6] WANG Tian-Ning, FENG Ya-Lan, JU Ji-Hao, WU Yi, ZHANG Jun, MA Chao. Whole genome identification and analysis of GRFs transcription factor family in wheat and its ancestral species [J]. Acta Agronomica Sinica, 2024, 50(4): 897-813.
[7] JU Ji-Hao, MA Chao, WANG Tian-Ning, WU Yi, DONG Zhong, FANG Mei-E, CHEN Yu-Shu, ZHANG Jun, FU Guo-Zhan. Genome wide identification and expression analysis of TaPOD family in wheat [J]. Acta Agronomica Sinica, 2024, 50(3): 779-792.
[8] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
[9] WANG Zi-Ran, LU Yi-Wei, YANG Jing-Yi, WANG Cheng-Long, SONG Ya-Ping, MA Jin-Hu. Effects of exogenous SA on physiological characteristics and stress-resistant gene expression of soybean under Cd stress [J]. Acta Agronomica Sinica, 2024, 50(11): 2883-2895.
[10] WANG Ling, ZHANG Yan-Ping, QI Yan-Ni, WANG Lei, LI Yu-Xiao, TAN Mei-Lian, WANG Wei. Divergent evolutionary pattern of P5CS gene family and drought tolerance verification of LusP5CS1 in linseed [J]. Acta Agronomica Sinica, 2024, 50(10): 2515-2527.
[11] LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411.
[12] WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182.
[13] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[14] WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881.
[15] WANG Zhen, ZHANG Xiao-Li, LIU Miao, YAO Meng-Nan, MENG Xiao-Jing, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Transcriptional differential expression analysis between BnMAPK1-overexpression and Zhongyou 821 rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(3): 856-868.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!