Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 44-55.doi: 10.3724/SP.J.1006.2026.53046
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
Wang Ting**(
), Duan Wu-Li**(
), Wang Rui, Liu Hai-Lan*(
)
| [1] |
Weretilnyk E A, Bednarek S, McCue K F, et al. Comparative biochemical and immunological studies of the Glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 1989, 178: 342-352.
doi: 10.1007/BF00391862 pmid: 24212901 |
| [2] |
Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44: 357-384.
doi: 10.1146/arplant.1993.44.issue-1 |
| [3] |
Sakamoto A, Murata N. The role of Glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ, 2002, 25: 163-171.
doi: 10.1046/j.0016-8025.2001.00790.x |
| [4] |
Brown A D, Simpson J R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol, 1972, 72: 589-591.
pmid: 4404634 |
| [5] | 侯晓敏, 闫锋, 董扬, 等. 外源甜菜碱对干旱胁迫下谷子萌发及幼苗生理特性的影响. 作物杂志, 2025(2): 228-233. |
| Hou X M, Yan F, Dong Y, et al. Effects of exogenous betaine on germination and seedling physiological characteristics of foxtail millet under drought stress. Crops, 2025(2): 228-233 (in Chinese with English abstract). | |
| [6] | Yuwansiri R, Park E J, Jeknić Z, et al. Enhancing cold tolerance in plants by genetic engineering of glycinebetaine synthesis. In: Li P H, Palva E T, eds. Plant Cold Hardiness. Boston, MA: Springer US, 2002. pp 259-275. |
| [7] |
Chen W P, Li P H, Chen T H H. Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ, 2000, 23: 609-618.
doi: 10.1046/j.1365-3040.2000.00570.x |
| [8] |
Park E J, Jeknic Z, Chen T H H. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol, 2006, 47: 706-714.
doi: 10.1093/pcp/pcj041 |
| [9] |
Nomura M, Muramoto Y, Yasuda S, et al. The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley. Euphytica, 1995, 83: 247-250.
doi: 10.1007/BF01678137 |
| [10] |
Zulfiqar F, Ashraf M, Siddique K H M. Role of Glycine betaine in the thermotolerance of plants. Agronomy, 2022, 12: 276.
doi: 10.3390/agronomy12020276 |
| [11] |
Rath H, Sappa P K, Hoffmann T, et al. Impact of high salinity and the compatible solute Glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol, 2020, 22: 3266-3286.
doi: 10.1111/emi.v22.8 |
| [12] |
Russell B L, Rathinasabapathi B, Hanson A D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol, 1998, 116: 859-865.
pmid: 9489025 |
| [13] |
Rathinasabapathi B, Burnet M, Russell B L, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of Glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA, 1997, 94: 3454-3458.
pmid: 9096415 |
| [14] | 朱天艺, 龚一富, 刘增美, 等. 北美海蓬子胆碱单加氧酶基因CMO的克隆及表达研究. 宁波大学学报(理工版), 2016, 29(4): 7-12. |
| Zhu T Y, Gong Y F, Liu Z M, et al. Cloning and expression analysis of choline monooxygenase gene (CMO) in Salicornia bigelovii Torr. J Ningbo Univ (Nat Sci Eng Edn), 2016, 29(4): 7-12 (in Chinese with English abstract). | |
| [15] |
曹红利, 岳川, 郝心愿, 等. 茶树胆碱单加氧酶CsCMO的克隆及甜菜碱合成关键基因的表达分析. 中国农业科学, 2013, 46: 3087-3096.
doi: 10.3864/j.issn.0578-1752.2013.15.002 |
| Cao H L, Yue C, Hao X Y, et al. Cloning of choline monooxygenase gene (CMO) and expression analysis of the key Glycine betaine biosynthesis-related genes in tea plant (Camellia sinensis). Sci Agric Sin, 2013, 46: 3087-3096 (in Chinese with English abstract). | |
| [16] | 张慧军, 董合忠, 石跃进, 等. 山菠菜胆碱单加氧酶基因对棉花的遗传转化和耐盐性表达. 作物学报, 2007, 33: 1073-1078. |
| Zhang H J, Dong H Z, Shi Y J, et al. Transformation of cotton (Gossypium hirsutum L.) with AhCMO gene and the expression of salinity tolerance. Acta Agron Sin, 2007, 33: 1073-1078 (in Chinese with English abstract). | |
| [17] | 李慧, 丛郁, 常有宏, 等. 杜梨胆碱单加氧酶基因克隆及胁迫表达. 西北植物学报, 2012, 32: 1093-1098. |
| Li H, Cong Y, Chang Y H, et al. Cloning and expression analysis of a choline monooxygenase gene in Pyrus betulaefolia bunge under abiotic stress. Acta Bot Boreali-Occident Sin, 2012, 32: 1093-1098 (in Chinese with English abstract). | |
| [18] | Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402. |
| [19] |
Eddy S R. Profile hidden Markov models. Bioinformatics, 1998, 14: 755-763.
doi: 10.1093/bioinformatics/14.9.755 pmid: 9918945 |
| [20] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
| [21] |
Yang Z H. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586-1591.
doi: 10.1093/molbev/msm088 pmid: 17483113 |
| [22] | 兰海, 向勇, 李芦江, 等. 玉米新品种川单99的选育与推广. 玉米科学, 2023, 31(2): 25-29. |
| Lan H, Xiang Y, Li L J, et al. Breeding and promotion of maize new variety Chuandan 99. J Maize Sci, 2023, 31(2): 25-29 (in Chinese with English abstract). | |
| [23] |
Jiang Y R, Zhu S J, Yuan J J, et al. A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): structure, phylogeny, and expression pattern. Genes Genom, 2016, 38: 1013-1020.
doi: 10.1007/s13258-016-0445-z |
| [24] |
Xu Z J, Sun M L, Jiang X F, et al. Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Front Plant Sci, 2018, 9: 1469.
doi: 10.3389/fpls.2018.01469 pmid: 30369936 |
| [25] | Moosavi-Nejhad M, Estaji A, Karimi H R, et al. Glycine betaine induced changes on morphological traits and osmolyte compounds in cucumber under salinity stress. Acta Hortic, 2021: 413-418. |
| [26] |
Rajashekar C B, Zhou H, Marcum K B, et al. Glycine betaine accumulation and induction of cold tolerance in strawberry (Fragaria X ananassa Duch.) plants. Plant Sci, 1999, 148: 175-183.
doi: 10.1016/S0168-9452(99)00136-3 |
| [27] | Castiglioni P, Bell E, Lund A, et al. Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. Plant Direct, 2018, 2: e00040. |
| [28] |
Kumari A, Kapoor R, Bhatla S C. Nitric oxide and light co-regulate Glycine betaine homeostasis in sunflower seedling cotyledons by modulating betaine aldehyde dehydrogenase transcript levels and activity. Plant Signal Behav, 2019, 14: 1666656.
doi: 10.1080/15592324.2019.1666656 |
| [29] | Fan W J, Zhang M, Zhang H X, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One, 2012, 7: e37344. |
| [30] | Abbas S R, Ahmad S D, Sabir S M, et al. Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, Glycine-betaine and proline contents. J Soil Sci Plant Nutr, 2014, 14: 233-243. |
| [31] |
Khan M I R, Asgher M, Khan N A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem, 2014, 80: 67-74.
doi: 10.1016/j.plaphy.2014.03.026 |
| [32] |
Mickelbart M V, Chapman P, Collier-Christian L. Endogenous levels and exogenous application of glycinebetaine to grapevines. Sci Hortic, 2006, 111: 7-16.
doi: 10.1016/j.scienta.2006.07.031 |
| [33] |
Shirasawa K, Takabe T, Takabe T, et al. Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot, 2006, 98: 565-571.
doi: 10.1093/aob/mcl126 |
| [34] |
Bray L, Chriqui D, Gloux K, et al. Betaines and free amino acids in salt stressed vitroplants and winter resting buds of Populus trichocarpa × deltoides. Physiol Plant, 1991, 83: 136-143.
doi: 10.1111/ppl.1991.83.issue-1 |
| [35] |
Hibino T, Waditee R, Araki E, et al. Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem, 2002, 277: 41352-41360.
doi: 10.1074/jbc.M205965200 pmid: 12192001 |
| [36] |
Khan M S, Yu X, Kikuchi A, et al. Genetic engineering of Glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol, 2009, 26: 125-134.
doi: 10.5511/plantbiotechnology.26.125 |
| [37] |
Hanada K, Zou C, Lehti-Shiu M D, et al. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol, 2008, 148: 993-1003.
doi: 10.1104/pp.108.122457 pmid: 18715958 |
| [38] |
Freeling M, Thomas B C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res, 2006, 16: 805-814.
pmid: 16818725 |
| [39] | 刘丹, 李爱华, 刘岱松, 等. 甜菜碱在提高烟草抗逆性中的作用. 安徽农业科学, 2020, 48(7): 11-13. |
| Liu D, Li A H, Liu D S, et al. The role of Glycine betaine in improving tobacco stress resistance. J Anhui Agric Sci, 2020, 48(7): 11-13 (in Chinese with English abstract). | |
| [40] |
Zhang J, Tan W, Yang X H, et al. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of Glycine betaine in tobacco. Plant Cell Rep, 2008, 27: 1113-1124.
doi: 10.1007/s00299-008-0549-2 |
| [41] |
Nuccio M L, Russell B L, Nolte K D, et al. The endogenous choline supply limits Glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J, 1998, 16: 487-496.
doi: 10.1046/j.1365-313x.1998.00316.x pmid: 9881168 |
| [1] | Su Ai-Guo, Xiao Sen-Lin, Yi Hong-Mei, Duan Sai-Ru, Wang Shuai-Shuai, Zhang Ru-Yang, Xing Jin-Feng, Li Chun-Hui, Sun Xuan, Xu Rui-Bin, Xu Tian-Jun, Li Zhi-Yong, Zhang Yong, Wang Rong-Huan, Song Wei, Zhao Jiu-Ran. Research progress and breeding application of resistance genetics to ear rot in maize [J]. Acta Agronomica Sinica, 2026, 52(1): 1-13. |
| [2] | Dong Li-Hua, Dong Cheng-Yan, Li Zheng-Nan, Yu Jing, Ye Liang, Liu Fang, Tan Jing. Screening and identification of candidate resistance genes to gibberella ear rot caused by Fusarium graminearum in maize [J]. Acta Agronomica Sinica, 2026, 52(1): 131-147. |
| [3] | Chen Xuan-Yi, Zhang Jian-Wei, Zhang Xiang-Qian, Ge Guo-Long, Lu Zhan-Yuan, Guo Xing-Xing, Ma Zi-Hui, Li Xin-Yi, Chen Li-Yu. Study on the impact of different soybean-maize strip intercropping patterns on the spatio-temporal dynamics of water and heat in maize strips and on maize yield and economic returns [J]. Acta Agronomica Sinica, 2026, 52(1): 178-190. |
| [4] | Zhang Qing-Yi, Xiao Yi-Tao, Li Qiu-Xia, Zhang Yu-Shi, Zhang Ming-Cai, Li Zhao-Hu. Differences in ABA synthesis and physiological and biochemical responses of seedlings of different maize varieties under osmotic stress [J]. Acta Agronomica Sinica, 2026, 52(1): 221-232. |
| [5] | YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526. |
| [6] | JIANG Huan-Qi, DUAN Ao, GUO Chao, HUANG Xiao-Meng, AI De-Jun, LIU Xiao-Xue, TAN Jing-Yi, PENG Cheng-Lin, LI Man-Fei, DU He-Wei. Effects of waterlogging stress on root metabolism of maize seedlings [J]. Acta Agronomica Sinica, 2025, 51(9): 2295-2306. |
| [7] | GAO Yuan, WANG Yu-Qi, JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu, HE Lin. Identification and functional analysis of low temperature responsive genes ZmNTL1 and ZmNTL5 in maize [J]. Acta Agronomica Sinica, 2025, 51(9): 2318-2329. |
| [8] | ZHU Wei-Jia, WANG Rui, XUE Ying-Jie, TIAN Hong-Li, FAN Ya-Ming, WANG Lu, LI Song, XU Li, LU Bai-Shan, SHI Ya-Xing, YI Hong-Mei, LU Da-Lei, YANG Yang, WANG Feng-Ge. Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform [J]. Acta Agronomica Sinica, 2025, 51(9): 2330-2340. |
| [9] | YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163. |
| [10] | YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203. |
| [11] | XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990. |
| [12] | ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837. |
| [13] | HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900. |
| [14] | YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675. |
| [15] | YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513. |
|
||