Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2026, Vol. 52 ›› Issue (1): 44-55.doi: 10.3724/SP.J.1006.2026.53046

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evolution and expression analysis of the choline monooxygenase gene family in plants

Wang Ting**(), Duan Wu-Li**(), Wang Rui, Liu Hai-Lan*()   

  1. Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2025-07-06 Accepted:2025-09-10 Online:2026-01-12 Published:2025-09-24
  • Contact: *E-mail:liu.hailan@foxmail.com
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32271984)

Abstract:

Glycine betaine (GB) is a compatible solute widely found in plants, animals, bacteria, and algae, where it plays a key role in regulating osmotic pressure and maintaining cellular water balance upon accumulation in the cytoplasm. As such, GB is crucial for plant responses to osmotic stress. Choline monooxygenase (CMO) is a rate-limiting enzyme in the biosynthetic pathway of GB in plants. Among 168 genomes analyzed in this study, 131 were found to contain homologous CMO genes, with a total of 169 CMO members identified. Selective pressure analysis revealed that most gene pairs have undergone purifying selection, while only seven gene pairs exhibited signs of positive selection. Phylogenetic analysis classified the CMO gene family into six subfamilies, with positive selection sites detected in five subfamilies except subfamily F. Further analysis of the Rieske domain and Ring-hydroxyl A domain showed a significant positive correlation between their dN/dS values, suggesting co-evolution. qRT-PCR analysis demonstrated that the expression of CMO genes in maize was upregulated under MgSO4-induced stress. This study provides a comprehensive analysis of the evolution and expression of the CMO gene family, offering a theoretical foundation for the future application of CMO genes in improving crop tolerance to abiotic stress.

Key words: plant glycine betaine, choline monooxygenase gene, selection pressure, purifying selection, maize

Table S1

Genomic data for identifying homologous genes of CMO in plants"

物种名
Species name
基因组数获取的网址
Website for genomic data acquisition
相思子 Abrus precatorius https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/003/935/025/GCF003935025.1Abrus2018/
漾濞槭 Acer yangbiense http://gigadb.org/dataset/100610
猕猴桃 Actinidia eriantha http://gigadb.org/dataset/100568
粗山羊草Aegilops tauschii http://plants.ensembl.org/index.html
欧洲桤木 Alnus glutinosa http://gigadb.org/dataset/101042
无油樟 Amborella trichopoda http://plants.ensembl.org/index.html
三色凤梨 Ananas bracteatus ftp://download.big.ac.cn/gwh/Plants/
菠萝 Ananas comosus http://plants.ensembl.org/index.html
金鱼草 Antirrhinum majus http://bioinfo.sibs.ac.cn/Am/downloadv3.php
圆叶拟南芥 Arabidopsis halleri http://plants.ensembl.org/index.html
琴叶拟南芥 Arabidopsis lyrata http://plants.ensembl.org/index.html
拟南芥 Arabidopsis thaliana http://plants.ensembl.org/index.html
高山拟南芥 Arabis alpina http://plants.ensembl.org/index.html
石刁柏 Asparagus officinalis http://plants.ensembl.org/index.html
阳桃 Averrhoa carambola https://bigd.big.ac.cn/search/?dbId=gwh&q=GWHABKE00000000
细叶满江红 Azolla filiculoides https://www.fernbase.org/
冬瓜 Benincasa hispida ftp://download.big.ac.cn/gwh/Plants/BenincasahispidaALLPATHS-LGPBJellyGWHAAAR00000000/
甜菜 Beta vulgaris http://plants.ensembl.org/index.html
木棉树 Bombax ceiba http://gigadb.org/dataset/100445
芸香竹 Bonia amplexicaulis http://www.genobank.org/bamboo
二穗短柄草 Brachypodium distachyon http://plants.ensembl.org/index.html
甘蓝型油菜 Brassica napus http://plants.ensembl.org/index.html
甘蓝 Brassica oleracea http://plants.ensembl.org/index.html
白菜 Brassica rapa http://plants.ensembl.org/index.html
木豆 Cajanus cajan http://gigadb.org/dataset/100028
茶花 Camelina sativa http://plants.ensembl.org/index.html
大麻 Cannabis sativa female http://plants.ensembl.org/index.html
辣椒 Capsicum annuum http://plants.ensembl.org/index.html
山核桃 Carya cathayensis http://gigadb.org/dataset/100571
板栗 Castanea mollissima http://gigadb.org/dataset/view/id/100643
粗枝木麻黄 Casuarina glauca http://gigadb.org/dataset/101051
珍珠粟 Cenchrus americanus https://plantgarden.jp/en/list/t4543/genome/t4543.G001
加拿大紫荆 Cercis canadensis http://gigadb.org/dataset/101044
鹧鸪豌豆 Chamaecrista fasciculata http://gigadb.org/dataset/101045
无皮轮藻 Chara braunii http://plants.ensembl.org/index.html
藜麦 Chenopodium quinoa http://plants.ensembl.org/index.html
柳叶腊梅 Chimonanthus salicifolius http://xhhuanglab.cn/data/Chimonanthussalicifolius.html
莱茵衣藻 Chlamydomonas reinhardtii http://plants.ensembl.org/index.html
皱波角叉菜 Chondrus crispus http://plants.ensembl.org/index.html
菊花脑 Chrysanthemum nankingense http://www.amwayabrc.com/download.htm
鹰嘴豆 Cicer arietinum http://gigadb.org/dataset/100076
西瓜 Citrullus lanatus http://plants.ensembl.org/index.html
金钱橘 Citrus clementina http://plants.ensembl.org/index.html
椰子 Cocos nuciferacds http://gigadb.org/dataset/view/id/100347/Filepage/3
中粒咖啡 Coffea canephora http://plants.ensembl.org/index.html
黄麻 Corchorus capsularis http://plants.ensembl.org/index.html
甜瓜 Cucumis melo http://plants.ensembl.org/index.html
黄瓜 Cucumis sativus http://plants.ensembl.org/index.html
野地菟丝子 Cuscuta campestris https://www.plabipd.de/projectcuscuta2/start.ep
红藻 Cyanidioschyzon merolae http://plants.ensembl.org/index.html
刺苞菜蓟 Cynara cardunculus http://plants.ensembl.org/index.html
野胡萝卜 Daucus carota http://plants.ensembl.org/index.html
龙眼 Dimocarpus longan http://gigadb.org/dataset/100276
君迁子 Diospyros lotus ftp://ftp.kazusa.or.jp/pub/persimmon/
油柿 Diospyros oleifera http://gigadb.org/dataset/100687
亮黄仙女木 Dryas drummondii http://gigadb.org/dataset/101047
野稗 Echinochloa crusgalli http://ibi.zju.edu.cn/RiceWeedomes/Echinochloa/
粗柄象腿蕉 Ensete ventricosum https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/818/735/GCA000818735.3Bedadetiannotated/
弯叶画眉草 Eragrostis curvula http://plants.ensembl.org/index.html
苔麸 Eragrostis tef http://plants.ensembl.org/index.html
赤桉 Eucalyptus camaldulensis ftp://ftp.kazusa.or.jp/pub/eucaly/
大桉 Eucalyptus grandis http://plants.ensembl.org/index.html
杜仲 Eucommia ulmoides ftp://download.big.ac.cn/gwh/Plants/Eucommiaulmoideshardyrubberv0GWHAAAL00000000/
荞麦 Fagopyrum esculentum ftp://ftp.kazusa.or.jp/pub/buckwheat/
天仙果 Ficus erecta https://plantgarden.jp/en/list/t66383/genome/t66383.G001
粉叶黄毛草莓 Fragaria nilgerrensis ftp://download.big.ac.cn/gwh/Plants/FragarianilgerrensisTheFragarianilgerrensisgenomefromYunnanGWHABKC00000000/
嗜硫原始红藻 Galdieria sulphuraria http://plants.ensembl.org/index.html
天麻 Gastrodia elata ftp://download.big.ac.cn/gwh/Plants/
大豆 Glycine max http://plants.ensembl.org/index.html
海岛棉 Gossypium barbadense Hai7124 http://ibi.zju.edu.cn/cotton/
海岛棉 Gossypium barbadense TM-1 http://ibi.zju.edu.cn/cotton/
雷蒙德氏棉 Gossypium raimondii http://plants.ensembl.org/index.html
瓜多竹 Guadua angustifolia http://www.genobank.org/bamboo
紫花风铃木 Handroanthus impetiginosus http://gigadb.org/dataset/100379
向日葵 Helianthus annuus http://plants.ensembl.org/index.html
大麻槿 Hibiscus cannabinus ftp://download.big.ac.cn/gwh/Plants/HibiscuscannabinusKenafgenomeofFuhong952GWHACDB00000000/
木槿 Hibiscus syriacus https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/006/381/635/GCA006381635.2ASM638163v2/
大麦 Hordeum vulgare http://plants.ensembl.org/index.html
番薯 Ipomoea batatas ftp://ftp.kazusa.or.jp/pub/sweetpotato/Mx23Hm/
牵牛 Ipomoea nil https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/001/879/475/GCA001879475.1Asagao1.1/
三裂叶薯 Ipomoea triloba http://plants.ensembl.org/index.html
核桃 Juglans regia http://plants.ensembl.org/index.html
玉吊钟 Kalanchoe fedtschenkoi http://plants.ensembl.org/index.html
秋茄树 Kandelia obovata https://bigd.big.ac.cn/search/?dbId=gwh&q=GWHACBH00000000
独叶草 Kingdonia uniflora translated https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/014/058/105/GCA014058105.1ASM1405810v1/
苹果 Malus domestica golden http://plants.ensembl.org/index.html
杧果 Mangifera indica ftp://download.big.ac.cn/gwh/Plants/MangiferaindicamangoV1GWHABLA00000000/
木薯 Manihot esculenta http://plants.ensembl.org/index.html
地钱 Marchantia polymorpha http://plants.ensembl.org/index.html
蒺藜苜蓿 Medicago truncatula http://plants.ensembl.org/index.html
小菥蓂 Microthlaspi erraticum https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/902/728/155/GCA902728155.2Merrgenes/
含羞草 Mimosa pudica http://gigadb.org/dataset/101049
辣木 Moringa oleifera http://gigadb.org/dataset/101058
香蕉 Musa acuminata http://plants.ensembl.org/index.html
烟草 Nicotiana attenuata http://plants.ensembl.org/index.html
丝叶龙舌兰 Nissolia schottii http://gigadb.org/dataset/101050
蓝星睡莲 Nymphaea colorata http://plants.ensembl.org/index.html
侏儒卢旺达睡莲 Nymphaea thermarum https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/011/799/765/GCA011799765.1ASM1179976v1/
油橄榄、木犀榄 Olea europaea sylvestris http://plants.ensembl.org/index.html
莪莉竹 Olyra latifolia http://www.genobank.org/bamboo
短叶舌野生稻 Oryza barthii http://plants.ensembl.org/index.html
短花药野生稻 Oryza brachyantha http://plants.ensembl.org/index.html
非洲栽培稻 Oryza glaberrima http://plants.ensembl.org/index.html
展颖野生稻 Oryza glumipatula http://plants.ensembl.org/index.html
籼稻 Oryza sativa indica http://plants.ensembl.org/index.html
长花药野生稻 Oryza longistaminata http://plants.ensembl.org/index.html
尼瓦拉野生稻 Oryza nivara http://plants.ensembl.org/index.html
斑点野生稻 Oryza punctata http://plants.ensembl.org/index.html
普通野生稻 Oryza rufipogon http://plants.ensembl.org/index.html
粳稻 Oryza sativa Japonica http://plants.ensembl.org/index.html
绿色鞭毛藻 Ostreococcus lucimarinus http://plants.ensembl.org/index.html
柳枝稷 Panicum hallii http://plants.ensembl.org/index.html
罂粟 Papaver somniferum http://plants.ensembl.org/index.html
腋花矮牵牛 Petunia axillaris ftp://ftp.solgenomics.net/genomes/Petuniaaxillaris/annotation/
矮牵牛 Petunia inflata ftp://ftp.solgenomics.net/genomes/Petuniainflata/
菜豆 Phaseolus vulgaris http://plants.ensembl.org/index.html
小立碗藓 Physcomitrium patens http://plants.ensembl.org/index.html
开心果 Pistacia vera http://plants.ensembl.org/index.html
银白杨 Populus alba ftp://download.big.ac.cn/gwh/Plants/Populusalbavar.pyramidalisPopulusalbavar.pyramidalisv1GWHAAEP00000000/
欧洲山杨 Populus tremula ftp://plantgenie.org/Data/PopGenIE/Populustremula/v1.1/
白杨 Populus tremuloides ftp://plantgenie.org/Data/PopGenIE/Populustremuloides/
毛果杨 Populus trichocarpa http://plants.ensembl.org/index.html
微甘蓝委陵菜 Potentilla micrantha http://gigadb.org/dataset/100407
甜樱桃 Prunus avium.PAV http://plants.ensembl.org/index.html
扁桃 Prunus dulcis http://plants.ensembl.org/index.html
桃花 Prunus persica.Prunus persica http://plants.ensembl.org/index.html
星星草 Puccinellia tenuiflora http://xhhuanglab.cn/data/alkaligrass.html
杜梨 Pyrus betuleafolia ftp://download.big.ac.cn/gwh/Plants/PyrusbetulifoliaPbe-SDGWHAAYT00000000/
白梨 Pyrus bretschneideri https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/315/295/GCF000315295.1Pbrv1.0/
莪莉竹 Raddia guianensis http://www.genobank.org/bamboo
马缨杜鹃 Rhododendron delavayi http://gigadb.org/dataset/100331
月季 Rosa chinensis http://plants.ensembl.org/index.html
野蔷薇 Rosa multiflora ftp://ftp.kazusa.or.jp/pub/rosa/
黑树莓 Rubus occidentalis http://gigadb.org/dataset/100465
甜根子草 Saccharum spontaneum http://plants.ensembl.org/index.html
甘蔗 Saccharum spp R570 https://sugarcane-genome.cirad.fr/content/download
勺叶槐叶苹 Salvinia cucullata https://www.fernbase.org/
伯尔硬胡桃 Sclerocarya birrea http://gigadb.org/dataset/101057
江南卷柏 Selaginella moellendorffii http://plants.ensembl.org/index.html
芝麻 Sesamum indicum http://plants.ensembl.org/index.html
小米 Setaria italica http://plants.ensembl.org/index.html
狗尾草 Setaria viridis http://plants.ensembl.org/index.html
油蜡树 Simmondsia chinensis https://bigd.big.ac.cn/search?dbId=gwh&q=GWHAASQ00000000
罗汉果 Siraitia grosvenorii http://gigadb.org/dataset/100452
番茄 Solanum lycopersicum http://plants.ensembl.org/index.html
Solanum melongena ftp://ftp.kazusa.or.jp/pub/eggplant/
番茄 Solanum pennellii https://www.plabipd.de/projectspenn/start.ep
马铃薯 Solanum tuberosum.SolTub http://plants.ensembl.org/index.html
高粱 Sorghum bicolor http://plants.ensembl.org/index.html
密花豆 Spatholobus suberectus https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/004/329/165/GCA004329165.1ASM432916v1/
菠菜 Spinacia oleracea http://www.spinachbase.org/?q=download
异子蓬 Suaeda aralocaspica http://gigadb.org/dataset/view/id/100646/Filepage/2
可可树 Theobroma cacao http://plants.ensembl.org/index.html
红车轴草 Trifolium pratense http://plants.ensembl.org/index.html
小麦 Triticum aestivum http://plants.ensembl.org/index.html
野生二粒小麦 Triticum dicoccoides http://plants.ensembl.org/index.html
斯卑尔脱小麦 Triticum spelta http://plants.ensembl.org/index.html
圆锥小麦 Triticum turgidum http://plants.ensembl.org/index.html
乌拉尔图小麦 Triticum urartu http://plants.ensembl.org/index.html
赤豆 Vigna angularis http://plants.ensembl.org/index.html
绿豆 Vigna radiata http://plants.ensembl.org/index.html
葡萄 Vitis vinifera http://plants.ensembl.org/index.html
文冠果 Xanthoceras sorbifolium http://gigadb.org/dataset/view/id/100606/Filepage/3
墨西哥大刍草 Zea Mexicana https://www.maizegdb.org/
玉米 Zea mays https://www.maizegdb.org/
结蒌草 Zoysia_japonica ftp://ftp.kazusa.or.jp/pub/zoysia/
马尼拉草 Zoysia_matrella ftp://ftp.kazusa.or.jp/pub/zoysia/
细叶结缕草 Zoysia_pacifica ftp://ftp.kazusa.or.jp/pub/zoysia/

Table 1

Primers for the maize CMO gene family"

基因名称
Gene name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
Zm00001eb273050_T002 AAGGCTACAAGAATATCAGGAAT CTTCAGTGGACTCATCATCAA

Table S2

Distribution of CMO gene in plants"

物种名
Species name
基因数量
Number of genes
物种名
Species name
基因数量
Number of genes
菠萝 Ananas comosus 1 辣木 Moringa oleifera 1
粗山羊草 Aegilops tauschii 1 甜菜 Beta vulgaris 2
二穗短柄草 Brachypodium distachyon 1 藜麦 Chenopodium quinoa 4
野稗 Echinochloa crusgalli 3 菠菜 Spinacia oleracea 2
弯叶画眉草 Eragrostis curvula 1 独叶草 Kingdonia uniflora translated 1
苔麸 Eragrostis tef 1 猕猴桃 Actinidia eriantha 1
大麦 Hordeum vulgare 1 粗枝木麻黄 Casuarina glauca 1
短叶舌野生稻 Oryza barthii 1 油橄榄、木犀榄 Olea europaea sylvestris 1
短花药野生稻 Oryza brachyantha 1 葡萄 Vitis vinifera 1
非洲栽培稻 Oryza glaberrima 1 杧果 Mangifera indica 1
展颖野生稻 Oryza glumipatula 1 开心果 Pistacia vera 1
籼稻 Oryza sativa indica 1 漾濞槭 Acer yangbiense 1
长花药野生稻 Oryza longistaminata 1 中粒咖啡 Coffea canephora 1
尼瓦拉野生稻 Oryza nivara 1 亮黄仙女木 Dryas drummondii 1
斑点野生稻 Oryza punctata 1 粉叶黄毛草莓 Fragaria nilgerrensis 1
普通野生稻 Oryza rufipogon 1 苹果 Malus domestica golden 1
柳枝稷 Panicum hallii 1 微甘蓝委陵菜 Potentilla micrantha 1
星星草 Puccinellia tenuiflora 1 扁桃 Prunus dulcis 1
甜根子草 Saccharum spontaneum 4 桃花 Prunus persica.Prunus persica 1
甘蔗 Saccharum spp R570 1 杜梨 Pyrus betuleafolia 1
小米 Setaria italica 1 白梨 Pyrus bretschneideri 1
狗尾草 Setaria viridis 1 月季 Rosa chinensis 1
高粱 Sorghum bicolor 1 野蔷薇 Rosa multiflora 1
小麦 Triticum aestivum 3 黑树莓 Rubus occidentalis 3
野生二粒小麦 Triticum dicoccoides 2 辣椒 Capsicum annuum 1
斯卑尔脱小麦 Triticum spelta 3 烟草 Nicotiana attenuata 1
圆锥小麦 Triticum turgidum 2 番茄 Solanum lycopersicum 1
墨西哥大刍草 Zea Mexicana 1 Solanum melongena 1
玉米 Zea mays 1 番茄 Solanum pennellii 2
丝叶龙舌兰 Nissolia schottii 1 马铃薯 Solanum tuberosum.SolTub 1
三裂叶薯 Ipomoea triloba 1 野胡萝卜 Daucus carota 1
石刁柏 Asparagus officinalis 1 大麻 Cannabis sativa female 1
板栗 Castanea mollissima 1 天仙果 Ficus erecta 2
香蕉 Musa acuminata 1 茶花 Camelina sativa 3
金鱼草 Antirrhinum majus 1 圆叶拟南芥 Arabidopsis halleri 1
木薯 Manihot esculenta 1 琴叶拟南芥 Arabidopsis lyrata 1
相思子 Abrus precatorius 1 拟南芥 Arabidopsis thaliana 1
木豆 Cajanus cajan 1 高山拟南芥 Arabis alpina 2
加拿大紫荆 Cercis canadensis 1 甘蓝型油菜 Brassica napus 2
鹰嘴豆 Cicer arietinum 1 甘蓝 Brassica oleracea 1
大豆 Glycine max 1 白菜 Brassica rapa 1
蒺藜苜蓿 Medicago truncatula 1 小菥蓂 Microthlaspi erraticum 1
含羞草 Mimosa pudica 1 君迁子 Diospyros lotus 2
菜豆 Phaseolus vulgaris 1 油柿 Diospyros oleifera 1
密花豆 Spatholobus suberectus 1 蓝星睡莲 Nymphaea colorata 1
红车轴草 Trifolium pratense 1 侏儒卢旺达睡莲 Nymphaea thermarum 1
赤豆 Vigna angularis 1 赤桉 Eucalyptus camaldulensis 1
绿豆 Vigna radiata 1 大桉 Eucalyptus grandis 2
杜仲 Eucommia ulmoides 1 文冠果 Xanthoceras sorbifolium 2
黄麻 Corchorus capsularis 1 无油樟 Amborella trichopoda 1
秋茄树 Kandelia obovata 1 可可树 Theobroma cacao 1
山核桃 Carya cathayensis 1 番薯 Ipomoea batatas 1
核桃 Juglans regia 2 银白杨 Populus alba 1
冬瓜 Benincasa hispida 1 欧洲山杨 Populus tremula 1
西瓜 Citrullus lanatus 1 白杨 Populus tremuloides 1
甜瓜 Cucumis melo 1 毛果杨 Populus trichocarpa 1
黄瓜 Cucumis sativus 1 罂粟 Papaver somniferum 3
罗汉果 Siraitia grosvenorii 2 油蜡树 Simmondsia chinensis 3
欧洲桤木 Alnus glutinosa 1 金钱橘 Citrus clementina 1
海岛棉 Gossypium barbadense Hai7124 2 芝麻 Sesamum indicum 1
海岛棉 Gossypium barbadense TM-1 2 紫花风铃木 Handroanthus impetiginosus 2
雷蒙德氏棉 Gossypium raimondii 1 阳桃 Averrhoa carambola 1
玉吊钟 Kalanchoe fedtschenkoi 1 柳叶腊梅 Chimonanthus salicifolius 1
菊花脑 Chrysanthemum nankingense 1 江南卷柏 Selaginella moellendorffii 2
刺苞菜蓟 Cynara cardunculus 1 小立碗藓 Physcomitrium patens 1
向日葵 Helianthus annuus 2

Table S3

Molecular characteristics of CMO gene family"

序列ID
Sequence ID
氨基酸数
Number of amino acids
分子量
Molecular weight
理论pI
Theoretical pI
不稳定性指数
Instability index
脂族指数
Aliphatic index
亲水性的总平均值
Grand average of hydropathicity
Abrus precatorius_lcl|NW 020874428.1 cds XP 027333652.1 35200A 388 44,426.80 7.55 40.01 80.31 −0.268
Acer yangbiense_Acyan05G0044100.1 407 45,991.44 5.84 34.55 78.77 −0.217
Actinidia eriantha_DTZ79 01g10130 499 56,655.53 6.19 37.35 84.97 −0.216
Aegilops tauschii_AET7Gv21027100.10 384 43,303.83 7.93 46.95 74.14 −0.366
Alnus glutinosa_Alngl15693S17170 424 48,283.89 6.24 50.18 79.53 −0.288
Amborella trichopoda_ERN07450 422 47,702.22 6.23 41.94 80.40 −0.200
Ananas comosus_Aco012177.1.mrna1 420 46,648.75 6.06 41.48 81.79 −0.174
Antirrhinum majus_Am07g29560.T02 420 47,806.01 5.46 40.42 73.55 −0.304
Arabidopsis halleri_g04236.t1 423 47,829.34 6.32 34.25 75.48 −0.259
Arabidopsis lyrata_Al scaffold 0007 1121 422 47,612.95 6.40 33.97 75.21 −0.292
Arabidopsis thaliana_AT4G29890.1 422 47,724.20 6.40 34.62 75.00 −0.267
Arabis alpina_KFK40841 236 26,405.74 4.92 34.18 74.66 −0.122
Arabis alpina_KFK29548 420 47,609.13 5.98 37.50 76.76 −0.225
Asparagus officinalis_ONK69555 320 36,247.06 5.70 36.12 84.69 −0.204
Averrhoa carambola_GWHTABKE015297 384 43,481.68 5.76 32.64 88.57 −0.138
Benincasa hispida_GWHTAAAR012286 417 47,165.43 6.01 41.06 81.58 −0.263
Beta vulgaris_KMS95013 418 47,721.94 6.08 39.51 78.11 −0.290
Beta vulgaris_KMT07791 446 50,218.75 6.02 42.91 73.05 −0.414
Brachypodium distachyon_KQK17361 409 45,443.46 5.77 37.45 84.69 −0.146
Brassica napus_CDY30186 429 48,768.32 6.57 41.34 74.24 −0.338
Brassica napus_CDY46714 425 47,706.96 5.98 39.40 76.56 −0.298
Brassica oleracea_Bo7g114080.1 438 49,047.26 5.77 40.72 76.96 −0.295
Brassica rapa_Bra024118.1 413 46,710.85 6.40 39.10 74.77 −0.344
Cajanus cajan_C.cajan 25086 416 47,372.76 6.31 42.05 75.60 −0.299
Camelina sativa_Csa12g017360.1 427 48,362.86 6.20 36.43 71.17 −0.326
Camelina sativa_Csa11g013650.1 617 68,956.12 6.27 33.67 73.10 −0.291
Camelina sativa_Csa10g012700.1 691 77,759.06 7.03 35.57 71.61 −0.336
Cannabis sativa female_evm.model.06.1887 295 33,355.51 8.61 34.42 83.19 −0.086
Capsicum annuum_PHT75633 497 56,063.43 7.58 36.79 87.85 −0.086
Carya cathayensis_CIL1068S0063 432 49,240.95 6.38 44.67 79.63 −0.301
Castanea mollissima_BUA.CMHBY200043 310 34,967.08 8.22 40.13 83.29 −0.171
Casuarina glauca_Casgl141S08699 459 51,750.59 5.74 44.24 78.39 −0.247
Cercis canadensis_Cerca1S17463 388 44,131.33 6.20 43.02 82.86 −0.202
Chenopodium quinoa_AUR62031264-RA 304 34,241.85 5.81 30.23 83.36 −0.202
Chenopodium quinoa_AUR62032506-RA 435 48,595.97 6.06 42.70 74.18 −0.317
Chenopodium quinoa_AUR62043230-RA 433 48,469.71 5.72 44.30 74.76 −0.324
Chenopodium quinoa_AUR62027431-RA 421 47,732.94 5.44 35.10 83.30 −0.214
Chimonanthus salicifolius_Cs01g01842 381 42,964.78 5.25 36.81 82.91 −0.127
Chrysanthemum nankingense_CHR00024703-RA 406 46,137.13 5.59 38.40 78.25 −0.312
Cicer arietinum_Ca 03209 414 46,735.03 6.27 42.85 78.33 −0.293
Citrullus lanatus_Cla97C03G062150.1 417 47,190.43 6.01 39.36 80.86 −0.249
Citrus clementina_ESR66460 408 46,131.30 5.50 36.96 82.16 −0.210
Coffea canephora_CDP08949 431 49,346.07 6.78 35.41 78.89 −0.349
Corchorus capsularis_OMO52515 319 36,135.18 6.00 41.88 81.29 −0.195
Cucumis melo_MELO3C009992.2.1 417 47,485.84 6.11 37.31 79.47 −0.287
Cucumis sativus_KGN66608 417 47,255.67 6.05 35.10 82.04 −0.245
Cynara cardunculus_KVI11819 394 45,199.09 6.78 40.59 87.06 −0.167
Daucus carota_KZM92492 1464 16,4552.7 5.65 46.54 78.82 −0.477
Diospyros lotus_Dlo pri0547F.1 g00580.1 446 50,158.65 6.64 47.03 73.21 −0.300
Diospyros lotus_Dlo pri0547F.1 g00640.1 393 43,994.53 6.11 52.70 73.41 −0.257
Diospyros oleifera_evm.model.fragScaff scaffold 92.1300 evm.model.fragScaff scaffold 92.1301 421 47,222.44 7.06 45.60 73.14 −0.287
Dryas drummondii_Drydr37S21113 408 46,063.16 5.79 33.25 75.71 −0.306
Echinochloa crusgalli_scaffold225.242 404 44,809.47 6.05 37.99 78.24 −0.226
Echinochloa crusgalli_scaffold60.245 404 45,015.79 5.81 39.67 80.67 −0.195
Echinochloa crusgalli_scaffold9.745 402 44,698.32 5.96 41.01 78.41 −0.240
Eragrostis curvula_TVU07759 409 45,451.22 5.82 32.29 81.83 −0.184
Eragrostis tef_Et s5159-1.44-1.mrna1 383 42,226.80 6.19 35.86 78.25 −0.198
Eucalyptus camaldulensis_EcC049426.60 412 46,208.76 6.59 35.67 83.11 −0.168
Eucalyptus grandis_KCW78622 429 48,260.9- 6.21 36.30 82.07 −0.232
Eucalyptus grandis_KCW78623 317 35,414.28 6.88 42.38 77.85 −0.248
Eucommia ulmoides_GWHTAAAL012211 313 35,652.59 6.42 38.14 81.25 −0.258
Ficus erecta_Fer r1.1chr01b g000830.1 393 43,744.51 5.73 38.98 78.37 −0.231
Ficus erecta_Fer1.1hctg g093930.1 410 46,082.28 5.63 37.17 79.15 −0.219
Fragaria nilgerrensis_GWHTABKC012960 414 46,874.23 5.97 36.42 79.32 −0.29
Glycine max_KRH02754 418 47,845.48 7.90 35.83 77.13 −0.381
Gossypium barbadense Hai7124_GB A05G4385 439 49,992.50 6.03 38.42 79.07 −0.325
Gossypium barbadense Hai7124_GB D04G0080 407 46,197.25 5.97 35.22 77.86 −0.284
Gossypium barbadense TM-1_GH A05G4292 409 46,493.66 5.97 35.07 79.63 −0.264
Gossypium barbadense TM-1_GH D04G0081 407 46,212.26 5.87 36.17 77.86 −0.284
Gossypium raimondii_KJB74798 411 46,728.73 5.68 35.99 76.86 −0.319
Handroanthus impetiginosus_Haimp10008576m 439 49,923.51 6.18 38.79 72.85 −0.351
Handroanthus impetiginosus_Haimp10031904m 439 49,856.46 6.25 38.37 74.83 −0.314
Helianthus annuus_OTG23339 410 46,604.07 6.14 32.99 81.29 −0.196
Helianthus annuus_OTG23340 459 52,375.47 5.97 40.36 77.49 −0.282
Hordeum vulgare_HORVU7Hr1G097970.8 361 40,218.39 5.59 38.78 81.86 −0.192
Ipomoea batatas_Itr sc001900.1 g00002.1 414 46,542.74 5.83 41.54 77.68 −0.220
Ipomoea triloba_itb13g16230.t1 421 47,270.46 5.50 40.95 78.48 −0.204
Juglans regia_Jr11 26260 p1 428 48,689.53 6.64 44.28 81.07 −0.290
Juglans regia_Jr11 26250 p1 430 48,902.77 6.64 44.12 81.37 −0.287
Kalanchoe fedtschenkoi_Kaladp0809s0111.2.v1.1 462 51,675.05 6.00 39.59 77.88 −0.274
Kandelia obovata_GWHTACBH001622 553 62,890.92 6.98 42.13 80.71 −0.138
Kingdonia uniflora translated_lcl|JACGCM010001097.1 cds KAF6161747.1 37800 423 47,750.42 6.14 36.92 83.40 −0.203
Malus domestica golden_mRNA:MD13G0209900 405 45,902.03 6.27 38.10 74.84 −0.326
Mangifera indica_GWHTABLA026339 410 46,769.59 6.28 29.96 80.78 −0.248
Manihot esculenta_OAY46667 417 47,169.66 6.37 33.63 76.64 −0.283
Medicago truncatula_AES92225 411 46,601.76 6.02 44.97 75.60 −0.365
Microthlaspi erraticum_lcl|CACVBM020001396.1 cds CAA7048834.1 36068 422 47,879.50 5.88 37.06 75.05 −0.248
Mimosa pudica_Mimpu2389S20482 409 46,395.69 6.25 35.45 83.13 −0.255
Moringa oleifera_Morol34346S06261 MOROL 467 53,023.26 6.88 38.42 76.81 −0.306
Musa acuminata_Ma07 t21070.1 425 47,566.22 6.85 41.15 81.62 −0.134
Nicotiana attenuata_OIT26339 480 54,484.74 6.80 34.85 75.31 −0.370
Nissolia schottii_Nissc300S07994 410 46,648.90 6.02 44.11 75.78 −0.332
Nymphaea colorata_NC3G0230150.1 410 45,945.85 5.77 41.67 76.85 −0.265
Nymphaea thermarum_lcl|JAANDH010000749.1 cds KAF3777953.1 18956 436 49,065.48 6.10 44.01 76.49 −0.283
Olea europaea sylvestris_Oeu035450.1 436 49,685.34 5.74 37.76 78.21 −0.297
Oryza barthii_OBART06G26220.3 375 41,971.26 6.26 37.37 75.73 −0.279
Oryza brachyantha_OB06G33830.1 305 34,751.22 5.43 29.43 76.07 −0.305
Oryza glaberrima_ORGLA06G0218800.1 410 45,685.57 6.27 38.89 78.56 −0.228
Oryza glumipatula_OGLUM06G27620.1 411 45,744.59 6.05 39.91 77.42 −0.232
Oryza sativa indica_BGIOSGA023545-TA 410 45,660.55 6.05 38.57 78.56 −0.209
Oryza longistaminata_KN538794.1 FGT003 425 47,860.75 4.91 39.44 78.02 −0.309
Oryza nivara_ONIVA06G28770.1 411 45,743.64 6.05 39.91 78.37 −0.213
Oryza punctata_OPUNC06G23800.1 498 55,960.26 6.18 45.79 76.69 −0.313
Oryza rufipogon_ORUFI06G28150.1 411 45,715.59 5.95 39.73 78.37 −0.210
Panicum hallii_PUZ59274 407 45,304.24 5.96 36.57 81.03 −0.202
Papaver somniferum_RZC56707 315 35,126.77 5.46 37.69 78.92 −0.161
Papaver somniferum_RZC71240 332 36,842.53 5.35 43.00 80.18 −0.171
Papaver somniferum_RZC75460 339 39,190.38 8.88 27.79 74.72 −0.354
Phaseolus vulgaris_ESW26689 282 31,985.18 7.62 35.56 72.16 −0.349
Physcomitrium patens_Pp3c13 13580V3.4 451 49,987.43 6.06 49.99 76.76 −0.217
Pistacia vera_EVM0007850.1 375 42,913.04 6.36 36.60 76.91 −0.293
Populus alba_GWHTAAEP028330 424 47,982.36 5.79 34.74 83.21 −0.257
Populus tremula_Potra002430g18449.1 424 48,022.42 5.82 34.41 83.21 −0.255
Populus tremuloides_Potrs005543g07870.1 249 27,910.64 5.44 33.11 84.94 −0.143
Populus trichocarpa_PNT30270 467 52,921.30 5.82 37.57 87.24 −0.166
Potentilla micrantha_28126 t 412 46,553.93 6.36 35.68 74.71 −0.330
Prunus dulcis_VVA22231 414 46,744.00 5.91 38.15 76.04 −0.307
Prunus persica.Prunus persica_ONI27175 414 46,775.10 6.01 39.07 76.98 −0.314
Puccinellia tenuiflora_Pt Chr0401059 410 45,827.76 5.63 38.87 82.37 −0.189
Pyrus betuleafolia_GWHTAAYT015348 405 45,877.03 5.96 36.93 74.59 −0.309
Pyrus bretschneideri_lcl|NW 008988770.1 cds XP 009343850.1 40199 406 46,036.22 6.07 35.95 74.66 −0.327
Rosa chinensis_PRQ37103 410 46,499.79 6.24 34.86 72.95 −0.374
Rosa multiflora_Rmu ssc0000064.1 g000028.1 494 55,680.09 8.31 37.26 69.84 −0.486
Rubus occidentalis_Ro04 G13963 393 44,640.76 5.81 34.27 80.05 −0.249
Rubus occidentalis_Ro04 G13961 398 45,543.24 6.27 32.11 79.50 −0.130
Rubus occidentalis_Ro04 G36994 439 49,902.83 6.07 33.43 78.54 −0.269
Saccharum spontaneum_Sspon.08G0002390-4D-mRNA-1 472 52,679.72 5.80 39.09 83.33 −0.209
Saccharum spontaneum_Sspon.08G0002390-2B-mRNA-1 497 55,071.88 5.21 40.36 79.13 −0.254
Saccharum spontaneum_Sspon.08G0002390-3C-mRNA-1 426 47,242.18 5.78 36.40 78.12 −0.262
Saccharum spontaneum_Sspon.08G0002390-1A-mRNA-1 412 45,699.59 5.77 35.69 80.53 −0.185
Saccharum spp R570_Sh10 t017070 440 48,737.27 6.57 38.83 82.27 −0.151
Selaginella moellendorffii_EFJ17750 410 45,816.94 6.36 44.22 81.59 −0.228
Selaginella moellendorffii_EFJ16278 410 45,847.90 6.23 43.60 80.39 −0.258
Sesamum indicum_SIN 1003525.t 430 48,784.68 6.85 44.19 78.19 −0.245
Setaria italica_KQL11792 411 45,582.43 5.78 37.14 79.32 −0.221
Setaria viridis_TKW22888 411 45,601.43 5.87 37.40 79.32 −0.227
Simmondsia chinensis_GWHTAASQ009711 421 47,619.84 6.46 42.96 76.86 −0.350
Simmondsia chinensis_GWHTAASQ009712 389 44,074.98 6.91 43.10 77.17 −0.351
Simmondsia chinensis_GWHTAASQ009713 316 35,527.14 7.14 40.10 76.52 −0.321
Siraitia grosvenorii_evm.TU.tig00001789.1 1149 129,249.30 8.88 38.84 79.57 −0.549
Siraitia grosvenorii_evm.TU.tig00153047.352 580 65,709.65 8.36 39.13 86.00 −0.134
Solanum lycopersicum_Solyc07g008300.2.1 791 90,114.56 6.63 35.53 82.04 −0.208
Solanum melongena_Sme2.5 00354.1 g00012.1 321 35,716.77 6.63 31.59 88.29 −0.156
Solanum pennellii_Sopen07g004190.1 363 41,018.23 5.23 39.76 79.70 −0.268
Solanum pennellii_Sopen07g004200.1 412 46,683.02 6.20 35.84 76.63 −0.244
Solanum tuberosum.SolTub_PGSC0003DMT400051201 412 46,827.11 6.11 36.97 75.66 −0.256
Sorghum bicolor_OQU76986 405 45,068.85 5.96 34.75 79.98 −0.194
Spatholobus suberectus_lcl|CM014734.1 cds TKY54511.1 18660 310 35,336.97 7.11 33.28 71.61 −0.365
Spinacia oleracea_Spo13645 437 49,056.18 5.73 44.35 70.94 −0.431
Spinacia oleracea_Spo25467 321 36,406.12 5.49 32.25 79.22 −0.311
Theobroma cacao_EOY05290 407 46,322.69 5.49 39.57 84.30 −0.168
Trifolium pratense_Tp57577 TGAC v2 mRNA5577 432 48,959.60 8.12 35.71 76.67 −0.351
Triticum aestivum_TraesCS7A02G425000.1 409 45,026.73 5.54 42.36 81.64 −0.162
Triticum aestivum_TraesCS7D02G416700.1 403 44,397.09 5.70 43.35 83.08 −0.153
Triticum aestivum_TraesCS7B02G324900.1 410 44,942.74 5.84 44.22 80.73 −0.124
Triticum dicoccoides_TRIDC7BG051890.1 411 45,046.76 5.64 44.39 79.59 −0.145
Triticum dicoccoides_TRIDC7AG059040.26 406 45,181.15 5.65 44.38 84.78 −0.209
Triticum spelta_TraesTSP7B01G348200.1 410 449,42.74 5.84 44.22 80.73 −0.124
Triticum spelta_TraesTSP7A01G456800.1 409 45,026.73 5.54 42.36 81.64 −0.162
Triticum spelta_TraesTSP7D01G455400.1 403 44,388.08 5.64 43.35 83.08 −0.154
Triticum turgidum_TRITD7Bv1G178280.2 388 42,494.90 5.65 42.72 80.77 −0.145
Triticum turgidum_TRITD7Av1G228650.5 409 45,026.73 5.54 42.36 81.64 −0.162
Vigna angularis_KOM29586 416 47,546.17 6.70 43.03 78.68 −0.306
Vigna radiata_Vradi07g22700.1 348 39,760.25 7.96 40.03 75.29 −0.327
Vitis vinifera_VIT 11s0052g00330.t01 441 49,558.18 7.56 41.20 77.39 −0.310
Xanthoceras sorbifolium_EVM0015788.1 365 41,192.00 7.17 29.01 76.88 −0.192
Xanthoceras sorbifolium_EVM0018042.1 366 41,313.86 5.58 37.06 79.92 −0.211
Zea Mexicana_ZMex06t021860 03 389 43,468.00 5.41 35.14 80.00 −0.214
Zea mays_Zm00001eb273050 T002 433 48,549.04 6.04 37.51 79.08 −0.198

Fig. 1

Phylogenetic tree and conserved motifs of the CMO gene family This gene family was classified into six subfamilies: A, B, C, D, E, and F."

Table 2

Estimation of dN/dS values and likelihood ratio test of the CMO gene family under site models"

亚家族
Subfamily
模型
Model
dN/dS
(ω)
参数估计
Estimates of parameters
正选择位点个数Number of positively selected sites 似然值检验P
P-value of Likelihood ratio test
A M0 0.261 ω = 0.261 None 2Δlnl (M0 vs M3) = 1320.096, P < 0.001
M3 0.314 p0 = 0.259, ω0 = 0.015; p1 = 0.516, ω1 = 0.213; p2 = 0.226, ω2 = 0.890
M1 0.361 p0 = 0.744, ω0 = 0.142; p1 = 0.256, ω1 = 1.000 Not allowed 2Δlnl (M1 vs M2) = 0.000, P = 1.000
M2 0.361 p0 = 0.744, ω0 = 0.142; p1 = 0.069, ω1 = 1.000; p2 = 0.187, ω2 = 1.000
M7 0.306 p = 0.478, q = 1.081 Not allowed 2Δlnl (M7 vs M8) = 40.802, P < 0.001
M8 0.320 p0 = 0.892 (p1 = 0.108), p = 0.680; q = 2.434, ω = 1.185 3
B M0 0.228 ω = 0.228 None 2Δlnl (M0 vs M3) = 835.826, P < 0.001
M3 0.349 p0 = 0.509, ω0 = 0.044; p1 = 0.378, ω1 = 0.354; p2 = 0.113, ω2 = 1.704
M1 0.323 p0 = 0.760, ω0 = 0.109; p1 = 0.240, ω1 = 1.000 Not allowed 2Δlnl (M1 vs M2) = 43.476, P < 0.001
M2 0.459 p0=0.749, ω0=0.116; p1 = 0.211, ω1 = 1.000; p2 = 0.040, ω2 = 4.004 6
M7 0.279 p = 0.371, q = 0.953 Not allowed 2Δlnl (M7 vs M8) = 78.597, P < 0.001
M8 0.369 p0 = 0.926 (p1 = 0.074), p = 0.519; q = 1.883, ω = 2.312 8
C M0 0.244 ω = 0.244 None
2Δlnl (M0 vs M3) = 1432.434, P < 0.001
M3 0.352 p0 = 0.481, ω0 = 0.054; p1 = 0.377, ω1 = 0.346
p2 = 0.142, ω2 =1.381
M1 0.361 p0 = 0.735, ω0 = 0.131; p1 = 0.265, ω1 = 1.000 Not allowed 2Δlnl (M1 vs M2) = 34.748, P < 0.001
M2 0.460 p0 = 0.720, ω0 = 0.138; p1 = 0.222, ω1 = 1.000; p2 = 0.058, ω2 = 2.390 4
M7 0.304 p = 0.436, q = 0.992 Not allowed 2Δlnl (M7 vs M8) = 93.993, P < 0.001
M8 0.364 p0 = 0.889 (p1 = 0.111), p = 0.658; q = 2.455, ω = 1.610 20
D M0 0.260 ω = 0.260 None 2Δlnl (M0 vs M3) = 1697.515, P < 0.001
M3 0.377 p0 = 0.469, ω0 = 0.042; p1 = 0.381, ω1 = 0.344; p2 = 0.150, ω2 = 1.510
M1 0.371 p0 = 0.706, ω0 = 0.108 Not allowed 2Δlnl (M1 vs M2) = 106.877, P < 0.001
M2 0.508 p0 = 0.691, ω0 = 0.113; p1 = 0.258, ω1 = 1.000; p2 = 0.051, ω2 = 3.345 1
M7 0.317 p = 0.368, q = 0.790 Not allowed 2Δlnl (M7 vs M8) = 135.394, P < 0.001
M8 0.403 p0 = 0.930 (p1 = 0.070), p = 0.469; q = 1.379, ω = 2.402 1
E M0 0.313 ω = 0.313 None
2Δlnl (M0 vs M3) = 237.886, P < 0.001
M3 0.377 p0 = 0.553, ω0 = 0.026; p1 = 0.340, ω1 = 0.486; p2 = 0.107, ω2 = 1.839
M1 0.336 p0 = 0.711, ω0 = 0.067; p1 = 0.289, ω1 = 1.000 Not allowed 2Δlnl (M1 vs M2) = 7.991, P = 0.018
M2 0.395 p0 = 0.711, ω0 = 0.072; p1 = 0.258, ω1 = 1.000; p2 = 0.032, ω2 = 2.699
M7 0.316 p = 0.162, q = 0.351 Not allowed 2Δlnl (M7 vs M8) = 16.603, P < 0.001
M8 0.377 p0 = 0.921 (p1 = 0.079), p = 0.268; q = 0.857, ω = 2.007 2
F M0 0.187 ω = 0.187 None 2Δlnl (M0 vs M3) = 158.336, P < 0.001
M3 0.224 p0 = 0.220, ω0 = 0; p1 = 0.621, ω1 = 0.170; p2 = 0.168, ω2 = 0.703
M1 0.276 p0 = 0.828, ω0 = 0.126; p1 = 0.172, ω1 = 1.000 Not allowed 2Δlnl (M1 vs M2) = 0.000, P = 1.000
M2 0.276 p0 = 0.828, ω0 = 0.126; p1 = 0.043, ω1 = 1.000; p2 = 0.130, ω2 = 1.000
M7 0.217 p = 0.690, q = 2.456 Not allowed 2Δlnl (M7 vs M8) = 1.821, P = 0.402
M8 0.225 p0 = 0.950 (p1 = 0.050), p = 0.838, q = 3.627, ω = 1.000

Fig. 2

Distribution of dN/dS values between CMO gene pairs"

Table 3

Seven CMO gene pairs under positive selection"

序列1
Sequence 1
序列2
Sequence 2
dN/dS值
dN/dS value
Brassica napus__CDY30186 Brassica rapa__Bra024118.1 1.113
Oryza glaberrima__ORGLA06G0218800.1 Oryza glumipatula__OGLUM06G27620.1 1.868
Oryza glaberrima__ORGLA06G0218800.1 Oryza sativa indica__BGIOSGA023545-TA 1.866
Oryza glaberrima__ORGLA06G0218800.1 Oryza nivara__ONIVA06G28770.1 1.602
Oryza glaberrima__ORGLA06G0218800.1 Oryza rufipogon__ORUFI06G28150.1 2.140
Rubus occidentalis__Ro04 G13961 Rubus occidentalis__Ro04 G36994 1.175
Saccharum spontaneum__Sspon.08G0002390-4DmRNA-1 Saccharum spontaneum__Sspon.08G0002390-2BmRNA-1 1.002

Fig. 3

Distribution of dN/dS values among gene pairs within CMO gene subfamilies"

Table 4

Species capable of accumulating GB"

物种
Species
文献
Reference
物种
Species
文献
Reference
甜菜Beta vulgaris [10] 黄瓜Cucumis sativus [25]
大麦Hordeum vulgare [10] 粉叶黄毛草莓Fragaria nilgerrensis [26]
高粱Sorghum bicolor [10] 大豆Glycine max [27]
菠菜Spinacia oleracea [10] 向日葵Helianthus annuus [28]
小麦Triticum aestivum [10] 番薯Ipomoea batatas [29]
玉米Zea mays [10] 甘蔗Saccharum officinarum [30]
黎麦Chenopodium quinoa [23] 绿豆Vigna radiata [31]
西瓜Citrullus lanatus [24] 葡萄Vitis vinifera [32]

Table 5

Species incapable of accumulating GB"

物种
Species
文献
Reference
物种
Species
文献
Reference
番茄Solanum lycopersicum [10] 烟草Nicotiana tabacum [10]
马铃薯Solanum tuberosum [10] 粳稻Oryza sativa Japonica [10,33]
拟南芥Arabidopsis thaliana [10] 毛果杨Populus trichocarpa [34]

Fig. 4

Correlation between dN/dS values of the two domains of CMO genes in GB-accumulating species"

Fig. 5

Correlation of dN/dS values between the two domains of CMO genes in non-GB-accumulating species"

Fig. 6

Branch-specific dN/dS values in the phylogenetic tree of CMO genes in GB-accumulating species"

Fig. 7

Branch-specific dN/dS values in the phylogenetic tree of CMO genes in non-GB-accumulating species"

Fig. 8

Relative expression levels of maize CMO genes in leaves and roots under MgSO4 treatment at 6, 12, and 24 hours TR: roots under MgSO4 treatment conditions; TL: leaves under MgSO4 treatment conditions. **, *** mean significant difference at the 0.01 and 0.001 level, respectively."

[1] Weretilnyk E A, Bednarek S, McCue K F, et al. Comparative biochemical and immunological studies of the Glycine betaine synthesis pathway in diverse families of dicotyledons. Planta, 1989, 178: 342-352.
doi: 10.1007/BF00391862 pmid: 24212901
[2] Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44: 357-384.
doi: 10.1146/arplant.1993.44.issue-1
[3] Sakamoto A, Murata N. The role of Glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ, 2002, 25: 163-171.
doi: 10.1046/j.0016-8025.2001.00790.x
[4] Brown A D, Simpson J R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol, 1972, 72: 589-591.
pmid: 4404634
[5] 侯晓敏, 闫锋, 董扬, 等. 外源甜菜碱对干旱胁迫下谷子萌发及幼苗生理特性的影响. 作物杂志, 2025(2): 228-233.
Hou X M, Yan F, Dong Y, et al. Effects of exogenous betaine on germination and seedling physiological characteristics of foxtail millet under drought stress. Crops, 2025(2): 228-233 (in Chinese with English abstract).
[6] Yuwansiri R, Park E J, Jeknić Z, et al. Enhancing cold tolerance in plants by genetic engineering of glycinebetaine synthesis. In: Li P H, Palva E T, eds. Plant Cold Hardiness. Boston, MA: Springer US, 2002. pp 259-275.
[7] Chen W P, Li P H, Chen T H H. Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ, 2000, 23: 609-618.
doi: 10.1046/j.1365-3040.2000.00570.x
[8] Park E J, Jeknic Z, Chen T H H. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol, 2006, 47: 706-714.
doi: 10.1093/pcp/pcj041
[9] Nomura M, Muramoto Y, Yasuda S, et al. The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley. Euphytica, 1995, 83: 247-250.
doi: 10.1007/BF01678137
[10] Zulfiqar F, Ashraf M, Siddique K H M. Role of Glycine betaine in the thermotolerance of plants. Agronomy, 2022, 12: 276.
doi: 10.3390/agronomy12020276
[11] Rath H, Sappa P K, Hoffmann T, et al. Impact of high salinity and the compatible solute Glycine betaine on gene expression of Bacillus subtilis. Environ Microbiol, 2020, 22: 3266-3286.
doi: 10.1111/emi.v22.8
[12] Russell B L, Rathinasabapathi B, Hanson A D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol, 1998, 116: 859-865.
pmid: 9489025
[13] Rathinasabapathi B, Burnet M, Russell B L, et al. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of Glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci USA, 1997, 94: 3454-3458.
pmid: 9096415
[14] 朱天艺, 龚一富, 刘增美, 等. 北美海蓬子胆碱单加氧酶基因CMO的克隆及表达研究. 宁波大学学报(理工版), 2016, 29(4): 7-12.
Zhu T Y, Gong Y F, Liu Z M, et al. Cloning and expression analysis of choline monooxygenase gene (CMO) in Salicornia bigelovii Torr. J Ningbo Univ (Nat Sci Eng Edn), 2016, 29(4): 7-12 (in Chinese with English abstract).
[15] 曹红利, 岳川, 郝心愿, 等. 茶树胆碱单加氧酶CsCMO的克隆及甜菜碱合成关键基因的表达分析. 中国农业科学, 2013, 46: 3087-3096.
doi: 10.3864/j.issn.0578-1752.2013.15.002
Cao H L, Yue C, Hao X Y, et al. Cloning of choline monooxygenase gene (CMO) and expression analysis of the key Glycine betaine biosynthesis-related genes in tea plant (Camellia sinensis). Sci Agric Sin, 2013, 46: 3087-3096 (in Chinese with English abstract).
[16] 张慧军, 董合忠, 石跃进, 等. 山菠菜胆碱单加氧酶基因对棉花的遗传转化和耐盐性表达. 作物学报, 2007, 33: 1073-1078.
Zhang H J, Dong H Z, Shi Y J, et al. Transformation of cotton (Gossypium hirsutum L.) with AhCMO gene and the expression of salinity tolerance. Acta Agron Sin, 2007, 33: 1073-1078 (in Chinese with English abstract).
[17] 李慧, 丛郁, 常有宏, 等. 杜梨胆碱单加氧酶基因克隆及胁迫表达. 西北植物学报, 2012, 32: 1093-1098.
Li H, Cong Y, Chang Y H, et al. Cloning and expression analysis of a choline monooxygenase gene in Pyrus betulaefolia bunge under abiotic stress. Acta Bot Boreali-Occident Sin, 2012, 32: 1093-1098 (in Chinese with English abstract).
[18] Altschul S F, Madden T L, Schäffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402.
[19] Eddy S R. Profile hidden Markov models. Bioinformatics, 1998, 14: 755-763.
doi: 10.1093/bioinformatics/14.9.755 pmid: 9918945
[20] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887
[21] Yang Z H. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007, 24: 1586-1591.
doi: 10.1093/molbev/msm088 pmid: 17483113
[22] 兰海, 向勇, 李芦江, 等. 玉米新品种川单99的选育与推广. 玉米科学, 2023, 31(2): 25-29.
Lan H, Xiang Y, Li L J, et al. Breeding and promotion of maize new variety Chuandan 99. J Maize Sci, 2023, 31(2): 25-29 (in Chinese with English abstract).
[23] Jiang Y R, Zhu S J, Yuan J J, et al. A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): structure, phylogeny, and expression pattern. Genes Genom, 2016, 38: 1013-1020.
doi: 10.1007/s13258-016-0445-z
[24] Xu Z J, Sun M L, Jiang X F, et al. Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Front Plant Sci, 2018, 9: 1469.
doi: 10.3389/fpls.2018.01469 pmid: 30369936
[25] Moosavi-Nejhad M, Estaji A, Karimi H R, et al. Glycine betaine induced changes on morphological traits and osmolyte compounds in cucumber under salinity stress. Acta Hortic, 2021: 413-418.
[26] Rajashekar C B, Zhou H, Marcum K B, et al. Glycine betaine accumulation and induction of cold tolerance in strawberry (Fragaria X ananassa Duch.) plants. Plant Sci, 1999, 148: 175-183.
doi: 10.1016/S0168-9452(99)00136-3
[27] Castiglioni P, Bell E, Lund A, et al. Identification of GB1, a gene whose constitutive overexpression increases glycinebetaine content in maize and soybean. Plant Direct, 2018, 2: e00040.
[28] Kumari A, Kapoor R, Bhatla S C. Nitric oxide and light co-regulate Glycine betaine homeostasis in sunflower seedling cotyledons by modulating betaine aldehyde dehydrogenase transcript levels and activity. Plant Signal Behav, 2019, 14: 1666656.
doi: 10.1080/15592324.2019.1666656
[29] Fan W J, Zhang M, Zhang H X, et al. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One, 2012, 7: e37344.
[30] Abbas S R, Ahmad S D, Sabir S M, et al. Detection of drought tolerant sugarcane genotypes (Saccharum officinarum) using lipid peroxidation, antioxidant activity, Glycine-betaine and proline contents. J Soil Sci Plant Nutr, 2014, 14: 233-243.
[31] Khan M I R, Asgher M, Khan N A. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem, 2014, 80: 67-74.
doi: 10.1016/j.plaphy.2014.03.026
[32] Mickelbart M V, Chapman P, Collier-Christian L. Endogenous levels and exogenous application of glycinebetaine to grapevines. Sci Hortic, 2006, 111: 7-16.
doi: 10.1016/j.scienta.2006.07.031
[33] Shirasawa K, Takabe T, Takabe T, et al. Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot, 2006, 98: 565-571.
doi: 10.1093/aob/mcl126
[34] Bray L, Chriqui D, Gloux K, et al. Betaines and free amino acids in salt stressed vitroplants and winter resting buds of Populus trichocarpa × deltoides. Physiol Plant, 1991, 83: 136-143.
doi: 10.1111/ppl.1991.83.issue-1
[35] Hibino T, Waditee R, Araki E, et al. Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem, 2002, 277: 41352-41360.
doi: 10.1074/jbc.M205965200 pmid: 12192001
[36] Khan M S, Yu X, Kikuchi A, et al. Genetic engineering of Glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol, 2009, 26: 125-134.
doi: 10.5511/plantbiotechnology.26.125
[37] Hanada K, Zou C, Lehti-Shiu M D, et al. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol, 2008, 148: 993-1003.
doi: 10.1104/pp.108.122457 pmid: 18715958
[38] Freeling M, Thomas B C. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res, 2006, 16: 805-814.
pmid: 16818725
[39] 刘丹, 李爱华, 刘岱松, 等. 甜菜碱在提高烟草抗逆性中的作用. 安徽农业科学, 2020, 48(7): 11-13.
Liu D, Li A H, Liu D S, et al. The role of Glycine betaine in improving tobacco stress resistance. J Anhui Agric Sci, 2020, 48(7): 11-13 (in Chinese with English abstract).
[40] Zhang J, Tan W, Yang X H, et al. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of Glycine betaine in tobacco. Plant Cell Rep, 2008, 27: 1113-1124.
doi: 10.1007/s00299-008-0549-2
[41] Nuccio M L, Russell B L, Nolte K D, et al. The endogenous choline supply limits Glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J, 1998, 16: 487-496.
doi: 10.1046/j.1365-313x.1998.00316.x pmid: 9881168
[1] Su Ai-Guo, Xiao Sen-Lin, Yi Hong-Mei, Duan Sai-Ru, Wang Shuai-Shuai, Zhang Ru-Yang, Xing Jin-Feng, Li Chun-Hui, Sun Xuan, Xu Rui-Bin, Xu Tian-Jun, Li Zhi-Yong, Zhang Yong, Wang Rong-Huan, Song Wei, Zhao Jiu-Ran. Research progress and breeding application of resistance genetics to ear rot in maize [J]. Acta Agronomica Sinica, 2026, 52(1): 1-13.
[2] Dong Li-Hua, Dong Cheng-Yan, Li Zheng-Nan, Yu Jing, Ye Liang, Liu Fang, Tan Jing. Screening and identification of candidate resistance genes to gibberella ear rot caused by Fusarium graminearum in maize [J]. Acta Agronomica Sinica, 2026, 52(1): 131-147.
[3] Chen Xuan-Yi, Zhang Jian-Wei, Zhang Xiang-Qian, Ge Guo-Long, Lu Zhan-Yuan, Guo Xing-Xing, Ma Zi-Hui, Li Xin-Yi, Chen Li-Yu. Study on the impact of different soybean-maize strip intercropping patterns on the spatio-temporal dynamics of water and heat in maize strips and on maize yield and economic returns [J]. Acta Agronomica Sinica, 2026, 52(1): 178-190.
[4] Zhang Qing-Yi, Xiao Yi-Tao, Li Qiu-Xia, Zhang Yu-Shi, Zhang Ming-Cai, Li Zhao-Hu. Differences in ABA synthesis and physiological and biochemical responses of seedlings of different maize varieties under osmotic stress [J]. Acta Agronomica Sinica, 2026, 52(1): 221-232.
[5] YANG Shu, BAI Wei, CAI Qian, DU Gui-Juan. Characteristics of light distribution in maize‖alfalfa intercropping systems and their effects on plant traits and yield [J]. Acta Agronomica Sinica, 2025, 51(9): 2514-2526.
[6] JIANG Huan-Qi, DUAN Ao, GUO Chao, HUANG Xiao-Meng, AI De-Jun, LIU Xiao-Xue, TAN Jing-Yi, PENG Cheng-Lin, LI Man-Fei, DU He-Wei. Effects of waterlogging stress on root metabolism of maize seedlings [J]. Acta Agronomica Sinica, 2025, 51(9): 2295-2306.
[7] GAO Yuan, WANG Yu-Qi, JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu, HE Lin. Identification and functional analysis of low temperature responsive genes ZmNTL1 and ZmNTL5 in maize [J]. Acta Agronomica Sinica, 2025, 51(9): 2318-2329.
[8] ZHU Wei-Jia, WANG Rui, XUE Ying-Jie, TIAN Hong-Li, FAN Ya-Ming, WANG Lu, LI Song, XU Li, LU Bai-Shan, SHI Ya-Xing, YI Hong-Mei, LU Da-Lei, YANG Yang, WANG Feng-Ge. Development and application of functional insertion and deletion (InDel) markers associated with maize Waxy gene compatible with dual-platform [J]. Acta Agronomica Sinica, 2025, 51(9): 2330-2340.
[9] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[10] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[11] XU Yi-Wei, ZHANG Ying-Ying, LI Rui, YAN Yong-Liang, LIU Yun-Jun, KONG Zhao-Sheng, ZHENG Jun, WANG Yi-Ru. csp2 gene of Deinococcus gobiensis improves drought tolerance in maize [J]. Acta Agronomica Sinica, 2025, 51(8): 1981-1990.
[12] ZHANG Jian-Peng, WANG Guo-Rui, BIE Hai, YE Fei-Yu, MA Chen-Chen, LIANG Xiao-Han, LU Xiao-Min, SHANG Xiao-Li, CAO Li-Ru. Transcription factor ZmMYB153 enhances drought tolerance in maize seedlings by regulating stomatal movement through ABA signaling [J]. Acta Agronomica Sinica, 2025, 51(7): 1827-1837.
[13] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[14] YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675.
[15] YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!