Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (8): 2240-2250.doi: 10.3724/SP.J.1006.2025.51008

• RESEARCH NOTES • Previous Articles    

Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat

GAO Meng-Juan,ZHAO He-Ying,CHEN Jia-Hui,CHEN Xiao-Qian,NIU Meng-Kang,QIAN Qi-Run,CUI Lu-Fei,XING Jiang-Min,YIN Qing-Miao,GUO Wen,ZHANG Ning SUN Cong-Wei,YANG Xia,PEI Dan,JIA Ao-Lin,CHEN Feng,YU Xiao-Dong*,REN Yan*   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Zhengzhou 450046, Henan, China
  • Received:2025-01-17 Revised:2025-04-27 Accepted:2025-04-27 Online:2025-08-12 Published:2025-05-13
  • Supported by:
    This study was supported by the National Key Research and Development Program (2022YFD1201504), the Henan Major Science and Technology Project (201100110100), the Science and Technology R & D Plan Joint Fund of Henan Province (242103810020), and the China Postdoctoral Science Foundation (2023M741068).

Abstract:

Sharp eyespot, caused by Rhizoctonia cerealis, is a destructive soil-borne disease that poses a serious threat to wheat production in China, significantly affecting yield stability and productivity. Breeding and deploying resistant varieties is one of the most economical, effective, and environmentally sustainable strategies for disease control. Identifying resistance genes is fundamental to the development of superior resistant varieties. In this study, 349 wheat varieties (or lines) from the Huang-Huai region of China were collected and evaluated for sharp eyespot resistance in an artificial climate chamber at the Wheat Molecular Breeding Innovation Center, Henan Agricultural University. Genotyping was performed using the wheat 660K SNP array. A genome-wide association study (GWAS) was conducted using a mixed linear model (MLM) approach, integrating phenotypic data to identify loci associated with resistance. A novel quantitative trait locus (QTL), designated Qse.hnau-5AS, was identified on the short arm of chromosome 5A. GWAS results revealed 15 significant SNPs clustered within a 960.6 kb genomic region. Haplotype analysis confirmed that this locus significantly enhances resistance to sharp eyespot. Within the Qse.hnau-5AS region, 13 high-confidence annotated genes were identified. Based on expression profiling and response to R. cerealis infection, two candidate genes were proposed: one encoding a Hedgehog-interacting-like protein (TaHIPL) and the other encoding a plasma membrane ATPase (TaHA). Functional validation using virus-induced gene silencing (VIGS) showed that silencing of TaHIPL and TaHA resulted in significant downregulation of gene expression (confirmed by qRT-PCR) and a marked increase in disease index (DI) compared to control plants. These findings indicate that TaHIPL and TaHA positively regulate resistance to sharp eyespot in wheat. This study provides valuable genetic resources for understanding the molecular mechanisms underlying sharp eyespot resistance and for advancing resistance breeding in wheat.

Key words: wheat, sharp eyespot, seedling-stage resistance, GWAS, VIGS

[1] Wu X J, Wang J C, Wu D, Jiang W, Gao Z F, Li D S, Wu R L, Gao D R, Zhang Y. Identification of new resistance loci against wheat sharp eyespot through genome-wide association study. Front Plant Sci, 2022, 13: 1056935.

[2] Chen J, Li G H, Du Z Y, Quan W, Zhang H Y, Che M Z, Wang Z, Zhang Z J. Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Theor Appl Genet, 2013, 126: 2865–2878.

[3] 2024年小麦春季重大病虫害防控技术方案. [2024.12.8]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450964.htm.

Technical plan for the prevention and control of major diseases and pests of wheat in spring 2024. [2024.12.8]. https://www.moa.gov.cn/gk/nszd_1/nszd_2/202403/t20240308_6450964.htm (in Chinese).

[4] Liu C Y, Guo W, Zhang Q F, Fu B S, Yang Z J, Sukumaran S, Cai J, Liu Y, Zhai W L, Wu X Y, et al. Genetic dissection of adult plant resistance to sharp eyespot using an updated genetic map of Niavt14 × Xuzhou25 winter wheat recombinant inbred line population. Plant Dis, 2021, 105: 997–1005.

[5] Guo Y, Du Z Y, Chen J, Zhang Z J. QTL mapping of wheat plant architectural characteristics and their genetic relationship with seven QTLs conferring resistance to sheath blight. PLoS One, 2017, 12: e0174939.

[6] Wu X J, Cheng K, Zhao R H, Zang S J, Bie T D, Jiang Z N, Wu R L, Gao D R, Zhang B Q. Quantitative trait loci responsible for sharp eyespot resistance in common wheat CI12633. Sci Rep, 2017, 7: 11799.

[7] Jiang Y J, Zhu F F, Cai S B, Wu J Z, Zhang Q F. Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 × Xuzhou 25. Czech J Genet Plant Breed, 2016, 52: 139–144.

[8] Su J, Zhao J J, Zhao S Q, Li M Y, Pang S Y, Kang Z S, Zhen W C, Chen S S, Chen F, Wang X D. Genetics of resistance to common root rot (spot blotch), Fusarium crown rot, and sharp eyespot in wheat. Front Genet, 2021, 12: 699342.

[9] Ma J H, Ye M M, Liu Q Q, Yuan M, Zhang D J, Li C X, Zeng Q D, Wu J H, Han D J, Jiang L N. Genome-wide association study for grain zinc concentration in bread wheat (Triticum aestivum L.). Front Plant Sci, 2023, 14: 1169858.

[10] Yao F J, Guan F N, Duan L Y, Long L, Tang H, Jiang Y F, Li H, Jiang Q T, Wang J R, Qi P F, et al. Genome-wide association analysis of stable stripe rust resistance loci in a Chinese wheat Landrace panel using the 660K SNP array. Front Plant Sci, 2021, 12: 783830.

[11] Liu S Y, Wang C Y, Gou J Y, Dong Y, Tian W F, Fu L P, Xiao Y G, Luo X M, He Z H, Xia X C, et al. Genome-wide association study of ferulic acid content using 90K and 660K SNP chips in wheat. J Cereal Sci, 2022, 106: 103498.

[12] Wu J H, Wang X T, Chen N, Yu R, Yu S Z, Wang Q L, Huang S, Wang H Y, Singh R P, Bhavani S, et al. Association analysis identifies new loci for resistance to Chinese Yr26-virulent races of the stripe rust pathogen in a diverse panel of wheat germplasm. Plant Dis, 2020, 104: 1751–1762.

[13] 余蓬勃. 小麦纹枯病苗期抗性鉴定方法的改良及全基因组关联分析. 河南农业大学硕士学位论文, 河南郑州, 2019.
Yu P B. Improvement of Identification Method for Resistance to Wheat Sharp Eyespot and Genome-wide Association Analysis. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).

[14] Fernandez-Pozo N, Rosli H G, Martin G B, Mueller L A. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant, 2015, 8: 486–488.

[15] 于寒松, 彭帅, 谢远红, 胡耀辉. 一种RNA提取试剂盒: TRIZOL的使用方法初探. 食品科学, 2005, 26(11): 39–42.
Yu H S, Peng S, Xie Y H, Hu Y H. Study on improvement of RNA isolating reagent kit: TRIZOL. Food Sci, 2005, 26(11): 39–42 (in Chinese with English abstract).

[16] 董恩妮, 梁青, 李利, 王林杰, 仲涛, 王永, 张红平. 实时荧光定量PCR内参基因的选择. 中国畜牧杂志, 2013, 49(11): 92–96.
Dong E N, Liang Q, Li L, Wang L J, Zhong T, Wang Y, Zhang H P. The selection of reference gene in real-time quantitative reverse transcription PCR. Chin J Anim Sci, 2013, 49(11): 92–96 (in Chinese).

[17] 韩天龙, 王敏, 李志明. QRT-PCR检测目的基因mRNA转录水平的应用. 安徽农业科学, 2011, 39: 18432–18434.
Han T L, Wang M, Li Z M. Application of QRT-PCR in the detection of mRNA transcription level. J Anhui Agric Sci, 2011, 39: 18432–18434 (in Chinese with English abstract).

[18] 吴凯朝, 黄诚梅, 李杨瑞, 杨丽涛, 吴建明. Trizol试剂法快速高效提取3种作物不同组织总RNA. 南方农业学报, 2012, 43: 1934–1939.
Wu K C, Huang C M, Li Y R, Yang L T, Wu J M. Fast and effective total RNA extraction from different tissues in 3 crops through the Trizol reagent method. J South Agric, 2012, 43: 1934–1939 (in Chinese with English abstract).

[19] McBeath J H, McBeath J. Environmental Change and Food Security in China. Duxford: Woodhead Publishing, 2010. pp 119–120.

[20] Ren Y, Yu P B, Wang Y, Hou W X, Yang X, Fan J L, Wu X H, Lv X L, Zhang N, Zhao L, et al. Development of a rapid approach for detecting sharp eyespot resistance in seedling-stage wheat and its application in Chinese wheat cultivars. Plant Dis, 2020, 104: 1662–1667.

[21] 任丽娟, 蔡士宾, 汤颋, 吴纪中, 周淼平, 颜伟, 马鸿翔, 陆维忠. 小麦纹枯病抗性QTLSSR标记研究. 扬州大学学报(农业与生命科学版), 2004, 25(4): 16–19.
Ren L J, Cai S B, Tang T, Wu J Z, Zhou M P, Yan W, Ma H X, Lu W Z. SSR markers linked resistance QTLs to sharp eyespot (Rhizoctonia cerealis) in wheat. J Yangzhou Univ (Agric Life Sci Edn), 2004, 25(4): 16–19 (in Chinese with English abstract).

[22] 刘颖, 张巧凤, 付必胜, 蔡士宾, 蒋彦婕, 张志良, 邓渊钰, 吴纪中, 戴廷波. 小麦纹枯病抗源的遗传多样性及抗性基因位点SSR标记分析. 作物学报, 2015, 41: 16711681.

Liu Y, Zhang Q F, Fu B S, Cai S B, Jiang Y J, Zhang Z L, Deng Y Y, Wu J Z, Dai T B. Genetic diversity of wheat germplasm resistant to sharp eyespot and geno-typing of resistance loci using SSR markers. Acta Agron Sin, 2015, 41: 1671–1681 (in Chinese with English abstract).

[23] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354–1360.

[24] Yang X, Pan Y B, Singh P K, He X Y, Ren Y, Zhao L, Zhang N, Cheng S H, Chen F. Investigation and genome-wide association study for Fusarium crown rot resistance in Chinese common wheat. BMC Plant Biol, 2019, 19: 153.

[25] Liu J, Cobertera D C, Zemetra R S, Mundt C C. Identification of quantitative trait loci for resistance to wheat sharp eyespot in the Einstein × tubbs recombinant inbred line population. Plant Dis, 2023, 107: 820–825.

[26] 李於亭, 熊宏春, 郭会君, 赵林姝, 谢永盾, 古佳玉, 李慧园, 赵世荣, 丁玉萍, 方正武, 等.小麦抽穗期微效QTL精细定位与候选基因分析. 第二十届中国作物学会学术年会. 2023. 
Li Y T, Xiong H C, Guo H J, Zhao L S, Xie Y D, Gu J Y, Li H Y, Zhao S R, Ding Y P, Fang Z W, et al. Fine mapping of micro-effect QTLs at heading stage and analysis of candidate genes in wheat. The 20th Annual meeting of the Crop Science Society of China. 2023 (in Chinese).

[27] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, . 小麦茎秆性状的转录组测序及全基因组关联分析. 作物学报, 2024, 50: 2187–2206.
Yu H L, Wu W X, Pei X X, Liu X Y, Deng G W, Li X C, Zhen S C, Wang J S, Zhao Y T, Xu H X, et al. Transcriptome sequencing and genome-wide association study of wheat stem traits. Acta Agron Sin, 2024, 50: 2187–2206 (in Chinese with English abstract).

[28] Li M T, Guo P, Nan N, Ma A, Liu W X, Wang T J, Yun D J, Xu Z Y. Plasma membrane-localized H+-ATPase OsAHA3 functions in saline-alkaline stress tolerance in rice. Plant Cell Rep, 2023, 43: 9.

[29] Kim C Y, Park J Y, Choi G, Kim S, Vo K T X, Jeon J S, Kang S, Lee Y H. A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol Plant Pathol, 2022, 23: 400–416.

[1] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[2] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-Analysis of stripe rust resistance-associated traits and candidate gene identification in Wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[3] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed N application optimizes interspecific interactions and enhances N use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[4] XUE Xiao-Fei, DAI Yun-Jing, LI Xi-Lin, DING Yan-Yan, WANG Xiang, LEI Zhang-Ying, HAN Huan-Yong, HE Dao-Hua. Characterization of GhCDN10 encoding cadinene synthase and its involvement in gossypol biosynthesis pathway in Gossypium hirsutum [J]. Acta Agronomica Sinica, 2025, 51(8): 2060-2076.
[5] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU, Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[6] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[7] LI Yi-Qian, XU Shou-Zhen, LIU Ping, MA Qi, XIE Bin, CHEN Hong. Genome-wide association study of yield components using a 40K SNP array and identification of a stable locus for boll weight in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2025, 51(8): 2128-2138.
[8] JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086.
[9] LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047.
[10] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[11] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[12] ZHAO Jia-Wen, LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1914-1933.
[13] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[14] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[15] LYU Guo-Feng, FAN Jin-Ping, WU Su-Lan, ZHANG Xiao, ZHAO Ren-Hui, LI Man, WANG Ling, GAO De-Rong, BIE Tong-De, LIU Jian. Genetic analysis of key target traits in the early-maturing wheat cultivar Yangmai 37 [J]. Acta Agronomica Sinica, 2025, 51(6): 1538-1547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .