ZHANG Shun-Jie1,2,3,4,WU Wei-Tai1,RAN Xi-Yue1,2,3,4,ZHAO Zi-Han1,2,3,4,HAN Yong-Hui1,2,3,4,WU Zheng-Dan1,5,*,ZHANG Kai1,*
[1] Lai Y C, Wang S Y, Gao H Y, Nguyen K M, Nguyen C H, Shih M C, Lin K H. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chem, 2016, 199: 556–564.
[2] 杨世雄, 张玲, 张欢欢, 张雪梅, 李雪, 梁叶星, 高飞虎. 甘薯淀粉的食品应用研究进展. 贵州农业科学, 2022, 50(10): 114–119.
[3] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483–492. [4] David L C, Lee S K, Bruderer E, Abt M R, Fischer-Stettler M, Tschopp M A, Solhaug E M, Sanchez K, Zeeman S C. BETA-AMYLASE9 is a plastidial nonenzymatic regulator of leaf starch degradation. Plant Physiol, 2022, 188: 191–207. [5] Zeeman S C, Kossmann J, Smith A M. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol, 2010, 61: 209–234. [6] Toda H, Nitta Y, Asanami S, Kim J P, Sakiyama F. Sweet potato β-amylase. Eur J Biochem, 1993, 216: 25–38. [7] Ziegler P. CerealBeta-amylases. J Cereal Sci, 1999, 29: 195–204. [8] Weise S E, Kim K S, Stewart R P, Sharkey T D. Beta-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol, 2005, 137: 756–761. [9] Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S C, Smith A M. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 2004, 136: 2687–2699. [10] Monroe J D, Breault J S, Pope L E, Torres C E, Gebrejesus T B, Berndsen C E, Storm A R. Arabidopsis β-Amylase2 is a K+-requiring, catalytic tetramer with sigmoidal kinetics. Plant Physiol, 2017, 175: 1525–1535. [11] Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, et al. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008, 20: 1040–1058. [12] Lao N T, Schoneveld O, Mould R M, Hibberd J M, Gray J C, Kavanagh T A. An Arabidopsis gene encoding a chloroplast-targeted beta-amylase. Plant J, 1999, 20: 519–527. [13] Reinhold H, Soyk S, Simková K, Hostettler C, Marafino J, Mainiero S, Vaughan C K, Monroe J D, Zeeman S C. β-amylase-like proteins function as transcription factors in Arabidopsis, controlling shoot growth and development. Plant Cell, 2011, 23: 1391–1403. [14] Sparla F, Costa A, Lo Schiavo F, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol, 2006, 141: 840–850. [15] Wang Y, Feng Y F, Yan M, Pu X Q, Lu D Y, Yuan H Z, Wu C Y. Transcriptome analyses reveal the mechanism of changes in the sugar constituents of jujube fruits under saline–alkali stress. Agronomy, 2023, 13: 2243. [16] Liang G P, Hou Y J, Wang H, Wang P, Mao J, Chen B H. VaBAM1 weakens cold tolerance by interacting with the negative regulator VaSR1 to suppress β-amylase expression. Int J Biol Macromol, 2023, 225: 1394–1404.
[17] 杨泽峰, 徐暑晖, 王一凡, 张恩盈, 徐辰武. 禾本科植物β-淀粉酶基因家族分子进化及响应非生物胁迫的表达模式分析. 科技导报, 2014, 32(31): 29–36. [18] Zhang Y, Zhu J, Khan M, Wang Y, Xiao W, Fang T, Qu J, Xiao P, Li C L, Liu J H. Transcription factors ABF4 and ABR1 synergistically regulate amylase-mediated starch catabolism in drought tolerance. Plant Physiol, 2023, 191: 591–609. [19] Yang Y L, Sun F L, Wang P L, Yusuyin M, Kuerban W, Lai C X, Li C P, Ma J, Xiao F. Genome-wide identification and preliminary functional analysis of BAM (β-amylase) gene family in upland cotton. Genes, 2023, 14: 2077. [20] Nakamura K, Ohto M A, Yoshida N, Nakamura K. Sucrose-induced accumulation of beta-amylase occurs concomitant with the accumulation of starch and sporamin in leaf-petiole cuttings of sweet potato. Plant Physiol, 1991, 96: 902–909.
[21] 陈显让, 李红兵, 康乐, 郭尚洙, 邓西平. 甘薯块根膨大后期β-淀粉酶和淀粉含量相关性分析. 食品工业科技, 2013, 34(19): 93–96.
[22] 黄小芳, 毕楚韵, 黄伟群, 刘江洪, 胡韵卓, 黄碧芳, 林世强, 陈选阳. 甘薯β-淀粉酶家族基因的全基因组鉴定和表达分析. 华南农业大学学报, 2021, 42(5): 50–59. [23] Zhang K, Wu Z D, Tang D B, Lyu C W, Luo K, Zhao Y, Liu X, Huang Y X, Wang J C. Development and identification of SSR markers associated with starch properties and β-carotene content in the storage root of sweet potato (Ipomoea batatas L.). Front Plant Sci, 2016, 7: 223. [24] Xiong Y F, Tian C X, Zhu J J, Zhang S J, Wang X, Chen W X, Han Y H, Du Y Z, Wu Z D, Zhang K. Dynamic changes of starch properties, sweetness, and β-amylases during the development of sweet potato storage roots. Food Biosci, 2024, 61: 104964.
[25] 吴正丹. 甘薯块根淀粉性状关键调控基因及关联SSR标记鉴定. 西南大学博士学位论文, 重庆, 2021. [26] Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502.
[27] 冯倩倩, 王文娟, 李海东, 潘勋. 利用激光扫描共聚焦显微镜研究叶绿体自发荧光. 清华大学学报(自然科学版), 2017, 57: 651–654. [28] Feldmann K A, Marks M D, Christianson M L, Quatrano R S. A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science, 1989, 243: 1351–1354. [29] Kunz H H, Häusler R E, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge U I, Schneider A. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol, 2010, 12: 115–128. [30] Zeeman S C, Smith S M, Smith A M. The diurnal metabolism of leaf starch. Biochem J, 2007, 401: 13–28. [31] Outlaw W H, Manchester J. Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol, 1979, 64: 79–82. [32] Francisco P, Li J, Smith S M. The gene encoding the catalytically inactive β-amylase BAM4 involved in starch breakdown in Arabidopsis leaves is expressed preferentially in vascular tissues in source and sink organs. J Plant Physiol, 2010, 167: 890–895. [33] Zhu H, Yang X, Wang X, Li Q Y, Guo J Y, Ma T, Zhao C M, Tang Y Y, Qiao L X, Wang J S, et al. The sweetpotato β-amylase gene IbBAM1.1 enhances drought and salt stress resistance by regulating ROS homeostasis and osmotic balance. Plant Physiol Biochem, 2021, 168: 167–176. [34] Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F. Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 2011, 62: 545–555. [35] Outlaw W H Jr, De Vlieghere-He X. Transpiration rate. An important factor controlling the sucrose content of the guard cell apoplast of broad bean. Plant Physiol, 2001, 126: 1716–1724. [36] Lee M, Choi Y, Burla B, Kim Y Y, Jeon B, Maeshima M, Yoo J Y, Martinoia E, Lee Y. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol, 2008, 10: 1217–1223.
[37] 梁国平. β-淀粉酶调控糖代谢参与葡萄的抗寒机理研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2022. [38] Flütsch S, Wang Y Z, Takemiya A, Vialet-Chabrand S R M, Klejchová M, Nigro A, Hills A, Lawson T, Blatt M R, Santelia D. Guard cell starch degradation yields glucose for rapid stomatal opening in Arabidopsis. Plant Cell, 2020, 32: 2325–2344. [39] Drake P L, Froend R H, Franks P J. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J Exp Bot, 2013, 64: 495–505. [40] Talbott L D, Zeiger E. Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol, 1996, 111: 1051–1057. [41] Amodeo G, Talbott L D, Zeiger E. Use of potassium and sucrose by onion guard cells during a daily cycle of osmoregulation. Plant Cell Physiol, 1996, 37: 575–579. [42] Horrer D, Flütsch S, Pazmino D, Matthews J S A, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D. Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr Biol, 2016, 26: 362–370. [43] Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, Meier T, Kölling K, Pfeifhofer H W, Zeeman S C, Santelia D. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. Plant Cell, 2016, 28: 1860–1878. |
[1] | WAN Hui-Lan, WU Hua-Ying, ZENG Dan, QIAN Zhen-Feng, ZHAO Chang-Zu, LIAO Ran-Chao, HE Li-Lian, LI Fu-Sheng. Cloning analysis and functional validation of EfWRKY51 gene related to cold tolerance in Erianthus fulvus [J]. Acta Agronomica Sinica, 2025, 51(8): 2048-2059. |
[2] | SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175. |
[3] | YIN Yu-Meng, WANG Yan-Nan, KANG Zhi-He, QIAO Shou-Chen, BIAN Qian-Qian, LI Ya-Wei, CAO Guo-Zheng, ZHAO Guo-Rui, XU Dan-Dan, YANG Yu-Feng. Cloning and functional analysis of glutathione S-transferase gene IbGSTU7 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(7): 1736-1746. |
[4] | WU Mei-Juan, ZHANG Yin-Hui, LI Yuan-Hao, LIU Hai-Xia, HUANG Yi-Lin, LI Tian, LIU Hong-Xia, ZHANG Xue-Yong, HAO Chen-Yang, GUO Jie, HOU Jian. Functional dissection of sucrose synthase gene TaSUS2 regulating grain starch synthesis and quality in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 1514-1525. |
[5] | ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117. |
[6] | XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109. |
[7] | SU Ming, WU Jia-Rui, HONG Zi-Qiang, LI Fan-Guo, ZHOU Tian, WU Hong-Liang, KANG Jian-Hong. Response of potato tuber starch formation and yield to phosphorus fertilizer reduction in the semi-arid region of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 713-727. |
[8] | HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666. |
[9] | YAN Bing-Chun, WAN Xue, ZHONG Min, LIU Yu-Qi, ZHAO Yan-Ze, JIANG Hong-Fang, LIU Ya, LIU Hui-Ling, MA Qin-Chun, GAO Ji-Ping, ZHANG Wen-Zhong. Effects of nitrogen levels on quality and fine grinding powder characteristics of northern japonica rice [J]. Acta Agronomica Sinica, 2025, 51(2): 503-515. |
[10] | WANG Yu-Xin, CHEN Tian-Yu, ZHAI Hong, ZHANG Huan, GAO Shao-Pei, HE Shao-Zhen, ZHAO Ning, LIU Qing-Chang. Cloning and characterization of drought tolerance function of kinase gene IbHT1 in sweetpotato [J]. Acta Agronomica Sinica, 2025, 51(2): 301-311. |
[11] | XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431. |
[12] | LI Xu-Juan, LI Chun-Jia, TIAN Chun-Yan, KONG Chun-Yan, XU Chao-Hua, LIU Xin-Long. Identification of nitrate transporter protein 1/peptide transporter protein family 6.4 gene (ScNPF6.4) and functional analysis of its regulation of tillering in sugarcane [J]. Acta Agronomica Sinica, 2024, 50(8): 2131-2142. |
[13] | LI Wen-Juan, WANG Li-Min, QI Yan-Ni, ZHAO Wei, XIE Ya-Ping, DANG Zhao, ZHAO Li-Rong, LI Wen, XU Chen-Meng, WANG Yan, ZHANG Jian-Ping. Functional analysis of flax LuWRI1a in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2024, 50(7): 1750-1761. |
[14] | CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884. |
[15] | ZHAO Na, LIU Yu-Xi, ZHANG Chao-Shu, SHI Ying. Transcriptomic analysis of differences in the starch content of different potatoes [J]. Acta Agronomica Sinica, 2024, 50(6): 1503-1513. |
|