Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (05): 863-870.doi: 10.3724/SP.J.1006.2010.00863
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
LI Chang-Ning1,2,Manoj Kumar SRIVASTAVA2,NONG Qian1,LI Yang-Rui2,*
[1] Duan B L, Yang Y Q, Lu Y W, Helena K, Frank B, Li C Y. Interactions between water deficits, ABA, and provenances in Picea asperata. J Exp Bot, 2007, 58: 3025-3036 [2] Jiang M Y, Zhang J H. Abscisic acid and antioxidant defense in plant Cells. Acta Bot Sin, 2004, 46: 1-9 [3] Ikegami K, Okamoto M, Seo M, Koshiba T. Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. J Plant Res, 2009, 122: 235-243 [4] Zhang J H, Jia W S, Yang J C, Ismail A M. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res, 2006, 97: 111-119 [5] Jiang M Y, Zhang J H. Role of abscisic acid in water stress induced antioxidant defence in leaves of maize seedlings. Free Radical Res, 2002, 36: 1001-1015 [6] Jiang M Y, Zhang J H. Water stress induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 2002, 53: 2401-2410 [7] Jiang M Y, Zhang J H. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001, 42: 1265-1273 [8] Murata Y, Pei Z M, Mori I C, Schroeder J L. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 2001, 13: 2513-2523 [9] Zhang X, Zhang L, Dong F C, Gao J F, Galbraith D W, Song C P. Hydrogen peroxide is involved in abscisic acid induced stomatal closure in Vicia faba. Plant Physiol, 2001, 126: 1438-1448 [10] Anderson M D, Prasad T K, Martin B A, Stewart C R. Differential gene expression in chilling acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol, 1994, 105: 331-339 [11] Guan L Q, Scandalios J G. Two structurally similar maize cytosolic superoxide dismutase genes, Sod 4 and Sod4A, respond differentially to abscisic acid and high osmoticum. Plant Physiol, 1998, 117: 217-224 [12] Kamminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K. Differential gene expression of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Radical Res, 1999, 31: 219-225 [13] Shao H B, Liang Z S, Shao M A, Wang B C. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage. Colloids Surfaces, 2005, 42: 107-113 [14] Wang W(王玮), Zhang F(张枫), Li D-Q(李德全). The effects of exogenous ABA on osmotic adjustment in maize roots under osmotic stress. Acta Agron Sin (作物学报), 2002, 28(1): 121-126 (in Chinese with English abstract) [15] Agarwal S, Sairam R K, Srivastava G C, Meena R C. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol Plant, 2005, 49: 541-550 [16] Li C Y, Yin C Y, Liu S R. Different responses of two contrasting Populus davidiana populations to exogenous abscisic acid application. Environ Exp Bot, 2004, 51: 237-246 [17] Gong M, Li Y J, Chen S Z. Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol, 1998, 153: 488-496 [18] Hu XCalcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol, 2007, 173: 27-38, Jiang M, Zhang J, Zhang A, Lin F, Tan M. [19] Health R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochem Biophysics, 1968, 125: 189-198 [20] Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water stress studies. Plant Soil, 1973, 39: 205-207 [21] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol, 1977, 59: 411-416 [22] Aebi H. Catalase in vitro. Methods Enzymol, 1984, 105: 121-126 [23] Schaedle M, Bassham J A. Chloroplast glutathione reductase. Plant Physiol, 1977, 59: 1011-1012. [24] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867-880 [25] Zheng X, Van Huystee R B. Peroxidase regulated elongation of segments from peanut hypocotyls. Plant Sci, 1992, 81: 47-56 [26] Liu J, Jiang M Y, Zhou Y F, Liu Y L. Production of polyamines is enhanced by endogenous abscisic acid in maize seedlings subjected to salt stress. J Integr Plant Biol, 2005, 47: 1326-1334 [27] Gomez C A, Arbona V, Jacas J, Primo M E, Talon M. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants. J Plant Growth Regul, 2003, 21: 234-240 [28] Iqbal M, Ashraf M, Rehman S, Rha E S. Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in hexaploid wheat (Triticum aestivum L.) plants under salt stress? Bot Studies, 2006, 47: 239-250 [29] Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 1989, 28: 1057-1060 [30] Bassi R, Rigoni F, Giacometti G M. Chlorophyll binding proteins with antenna function in higher plants and green algae. Photochem Photobiol, 1990, 52: 1187-1206 [31] Kause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basis. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 313-349 [32] Jiang M Y, Zhang J H. Involvement of plasma membrane NADPH oxidase in abscisic acid and water stress-induced antioxidant defense in leaves of maize seedling. Planta, 2002, 215: 1022-1030 [33] Shinozaki K, Yamaguchi S K. Gene expression and signal transduction in water stress response. Plant Physiol, 1997, 115: 327-334 |
[1] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[2] | XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234. |
[3] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[4] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[5] | KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872. |
[6] | YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341. |
[7] | ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530. |
[8] | WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274. |
[9] | SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296. |
[10] | LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359. |
[11] | WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586. |
[12] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[13] | ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382. |
[14] | JING Xia, ZOU Qin, BAI Zong-Fan, HUANG Wen-Jiang. Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data [J]. Acta Agronomica Sinica, 2021, 47(11): 2067-2079. |
[15] | CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296. |
|