Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (12): 2251-2260.doi: 10.3724/SP.J.1006.2011.02251

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Differentiation of Multiple Shoot Apical Meristems in Mutant Rice with One Embryo Causing Multiple Plumuples

GUO Jing-Yu1,CHEN Zhi-Xiong1,**, YANG Bing-Yao2, CHEN Xin-Fen2, LIU Xiang-Dong1,*,LU Yong-Gen1,*   

  1. 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agriculture University, Guangzhou 510642, China;
    2 Electronic Microscope Laboratory, South China Agricultural University, Guangzhou 510642, China
  • Received:2011-05-05 Revised:2011-07-15 Online:2011-12-12 Published:2011-09-06
  • Contact: 刘向东, E-mail: xdliu@scau.edu.cn; 卢永根, E-mail: yglu@scau.edu.cn
  • About author:郭静玉, E-mail: jy.guo2010@hotmail.com, 陈志雄, E-mail: chenzx@scau.edu.cn

Abstract: The proper formation and development of shoot apical meristem during plant embryonic development is prerequisite to generate leaves, buds and stems. Rice (Oryza sativa L.) mutant line 4001 produces multiple plumules in one seed and is considered as an important mutant with abnormal differentiation of shoot apical meristem. While the embryonic basis of the mutant with multiple plumules is yet unknown. To elucidate the cytological basis, mature embryo sac structure and process of double fertilization were observed with whole-mount eosin B-staining confocal laser scanning microscopy (WE-CLSM), semi-thin plastic sections and scanning electron microscopy (SEM). The observation by WE-CLSM showed that both embryo sac structure and double fertilization process were normal in the mutant line, suggesting that the abnormal traits were related to the later embryonic development. By semi-thin plastic sections and SEM, the retardation of embryonic development and the formation of multiple shoot apical meristems (SAM) under abnormal orientation were observed in one embryo of the mutant line, compared with those of wild-type rice. At three days after pollination, the process of embryonic development was slower in the mutant line than in the wild type rice. The abnormality included the diverse number of SAMs under irregular orientation and the changes of dorsal-ventral axis. Two separate plumules, two plumules in one coleoptile and two connected plumules with one separate plumule were also observed in the mutant line 4001. It was concluded that differentiation of multiple SAMs and the the changes of dorsal-ventral axis in one embryo contribute to the multiple plumuples in the mutant line. It was inferred that mutant trait-related genes might play important roles in the regulations of the timing of shoot apical meristem differentiation, the number of undifferentiated cells and the establishment of dorsal-ventral axis.

Key words: Rice (Oryza sativa L.), Shoot apical meristem, Embryonic development

[1]Wu X-Y(吴先军), Zhou K-D(周开达). Embryogeny for poly-embryo strain 9003 in rice (Oryza sativa L.). J Sichuan Univ (Nat Sci Edn) (四川大学学报?自然科学版), 2003, 40(5): 966–969 (in Chinese with English abstract)
[2]Hirochika H, Guiderdoni E, An G, Hsing Y I, Eun M Y, Han C D, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H. Rice mutant resources for gene discovery. Plant Mol Biol, 2004, 54: 325–334
[3]Liu X-D(刘向东), Chen Q-F(陈启锋), Li W-M(李维明). Polyembryony in crops. J Fujian Agric Coll (福建农学院学报), 1992, 21(2): 147–156 (in Chinese with English abstract)
[4]Huang R-H(黄日辉). Preliminary report on rice polyembryony. Guangxi Agric Sci (广西农业科学), 1988, (2): 10–14 (in Chinese)
[5]Deng H-D(邓鸿德). Identification of 45 two-embryo seedling of rice germplasm in Hunan Hybrid Rice Research Centre. Hybrid Rice (杂交水稻), 1990, (6): 28 (in Chinese)
[6]Guo M-Q(郭名奇). Discovery and research progress of two-embryo seedling of rice. Hybrid Rice (杂交水稻), 1990, (2): 26–27 (in Chinese)
[7]Liu X-D(刘向东), Chen Q-F(陈启锋), Li W-M(李维明), Ding F(丁菲). Preliminary studies on polyembryonic seedlings in rice: II. The study of isozyme. J Fujian Agric Coll (福建农学院学报), 1991, 20(3): 248–253 (in Chinese with English abstract)
[8]Liu Y-S(刘永胜), Sun J-S(孙敬三), Wang F-X(王伏雄), Zhou K-D(周开达). Cytoembryological studies on polyembryonic line SB1 of Oryza sativa: polyembryony and its origin. Acta Bot Sin (植物学报), 1994, 36(11): 821–827 (in Chinese with English abstract)
[9]Liu X-D(刘向东), Lu Y-G(卢永根), Xu X-B(徐雪宾), Xu S-X(徐是雄). Study on the structure and genetic polymorphism of embryo sac in polyembryonic rice strain APIV. Acta Bot Sin (植物学报), 1996, 38(8): 594–598 (in Chinese with English abstract)
[10]Liu X-D(刘向东), Lu Y-G(卢永根), Xu X-B(徐雪宾), Xu S-X(徐是雄). Fertilization of different types of embryo sacs and its embryo formation in in polyembryonic rice strain APIV. Acta Bot Sin (植物学报), 1997, 39(3): 214–217 (in Chinese with English abstract)
[11]Wu X-J(吴先军), Zhou K-D(周开达). Embryogeny for poly-embryo Sstrain 9003 in rice (Oryza sativa L.). J Sichuan Univ (Nat Sci Edn) (四川大学学报•自然科学版), 2003, 40(5): 966–969 (in Chinese with English abstract)
[12]Mu X-J(母锡金), Chen Z-J(陈祖铿), Wang F-X(王伏雄). Morphological observation on “polyembryonic seedling” of rice. Acta Bot Sin (植物学报), 1994, 36(11): 838–841 (in Chinese with English abstract)
[13]Mu X-J(母锡金), Shi G-C(时光春), Zhu Z-Q(朱至清), Cai X(蔡雪), Ni P-C(倪丕冲). Embryological observation on the apomictic rice ApIII (SHUANG 13). Acta Bot Sin (植物学报), 1996, 38(12): 969–971 (in Chinese with English abstract)
[14]He T(何涛), Guo X-X(郭学兴), Zeng X-Y(曾秀英), Liu G(刘刚), Luo K(罗科), Tan W(谭薇), Han S-H(韩思怀). Studies on the anatomy and embryology of rice C001. Southwest China J Agric Sci (西南农业学报), 1996, 9(2): 20–23 (in Chinese)
[15]Sheridan W F, Clark J K. Mutational analysis of morphogenesis of maize embryo. Plant J, 1993, 3: 347–358
[16]Hong, S K, Aoki T, Kitano H, Satoh H, Nagato Y. Phenotypic diversity of 188 rice embryo mutants. Dev Genet, 1995, 16: 298–310
[17]Satoh N, Hong S K, Nishimura A, Matsuoka M, Kitano H, Nagato Y. Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes. Development, 1999, 126: 3629–3636
[18]Kinae T, Hong S K, Nagato Y. Apical displacement 1 gene regulates apical-basal pattern formation in rice embryo. Plant Sci, 2005, 168: 1345–1351
[19]Yang X C, Hwa C M. Genetic and physiological characterization of the OsCem mutant in rice: formation of connected embryos with multiple plumules or multiple radicles. Heredity, 2008, 101: 239–246
[20]Zeng Y X, Hu C Y, Lu Y G, Li J Q, Liu X D. Diversity of abnormal embryo sacs in indica/japonica hybrids in rice demonstrated by confocal microscopy of ovaries. Plant Breed, 2007, 126: 574–580
[21]Wang L(王兰), Liu X-D(刘向东), Lu Y-G(卢永根), Xu X-B(徐雪宾), Zee S-Y(徐是雄). Endosperm development in autotetraploid rice: the fusion of polar nuclei and the formation of endosperm cell wall. Chin J Rice Sci (中国水稻科学), 2004, 18(4):281–289 (in Chinese with English abstract)
[22]Feng J H, Xu X B, Liu X D, Zhang C L, Liang X L, Wu W C. Embryogenesis, germination, structure and cotyledon dimorphism of Zea mays embryo. Acta Bot Sin, 2003, 45: 712–723
[23]Xiao Y(肖祎). Embryonic and Genetic Study on Twin-Seedling in Rice (胚胎学和遗传学结合研究水稻双苗的遗传). Chengdu: Sichuan Agricultural University, 2006. pp 29–36 (in Chinese)
[24]Endrizzi K, Moussian B, Heacker A, Levin J Z, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10: 967–979
[25]Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell, 1996, 85: 159–170
[26]Satoh N, Itoh J, Nagato Y. The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells. Genetics, 2003, 164: 335–346
[27]Mayer U, Büttner G, Jürgens G. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development, 1993, 117: 149–162
[28]Hardtke C, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J, 1998, 17(5): 1405–1411
[29]Baud S, Bellec Y, Miquel M, Bellini C, Caboche M, Lepiniec L, Faure J D, Rochat C. GURKE and pasticcino3 mutants affected in embryo development are impaired in acetyI-CoA carboxylase. EMBO Rep, 2004, 5: 515–520
[30]Kepinski S. Integrating hormone signaling and patterning mechanisms in plant development. Curr Opin Plant Biol, 2006, 9(5): 28–34
[31]Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B. An auxin-dependent distal organizater of pattern and polarity in the Arabidopsis root. Cell, 1999, 99: 463–474
[32]Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradient as a common module for plant organ formation. Cell, 2003, 115: 591–602
[33]Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature, 2003, 426: 255–260
[34]Friml J, Vieten A, Sauer M, Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 2003, 426: 147–153
[35]Weijers D, Jürgens G. Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol, 2005, 8: 32–37
[36]Fischer C, Speth V, Fleig-Eberenz S, Neuhaus G. Induction of zygotic polyembryos in wheat: influence of auxin polar transport. Plant Cell, 1997, 9: 1767–1780
[1] Xin LI,Lu XIAO,Lin-Fang LI,De-Zhi DU. Comparative analysis on flower bud differentiation of multilocular and bilocular traits in Brassica juncea [J]. Acta Agronomica Sinica, 2019, 45(5): 705-713.
[2] Jing AN,Fang LI,Chun-Jiang ZHOU,Xiao-Li TIAN,Zhao-Hu LI. Morpho-physiological Responses of Cotton Shoot Apex to the Chemical Topping with Fortified Mepiquat Chloride [J]. Acta Agronomica Sinica, 2018, 44(12): 1837-1843.
[3] ZHANG Xiao-Qiong, WANG Xiao-Wen, TIAN Wei-Jiang, ZHANG Xiao-Bo, Sun Ying, LI Yang-Yang, Xie Jia, HE Guang-Hua,SANG Xian-Chun. LAZY1 Regulates the Development of Rice Leaf Angle through BR Pathway [J]. Acta Agron Sin, 2017, 43(12): 1767-1773.
[4] ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602.
[5] ZHOU Ke,LI Yan,WANG Shi-Ming,CUI Guo-Qing,YANG Zheng-Lin,HE Guang-Hua,LING Ying-Hua,ZHAO Fang-Ming. Identification of Rice Chromosome Segment Substitution Line Z519 with Purple Sheath and Candidate Gene Analysis of PSH1 [J]. Acta Agron Sin, 2017, 43(07): 974-982.
[6] YANG Bo,XIA Min, ZHANG Xiao-Bo,WANG Xiao-Wen,ZHU Xiao-Yan,HE Pei-Long,HE Guang-Hua,SANG Xian-Chun*. Identification and Gene Mapping of an Early Senescent Leaf Mutant esl6 in Oryza sativa L. [J]. Acta Agron Sin, 2016, 42(07): 976-983.
[7] ZHANG Tian-Quan,GUO Shuang,XING Ya-Di,DU Dan,SANG Xian-Chun,LING Ying-Hua,HE Guang-Hua. Molecular Mapping of a New Yellow Green Leaf Gene YGL9 in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2015, 41(07): 989-997.
[8] ZHONG Zhen-Quan,LUO Wen-Long,LIU Yong-Zhu,WANG Hui,CHEN Zhi-Qiang,GUO Tao. Characterization of a Novel Spotted Leaf Mutant spl32 and Mapping of Spl32(t) Gene in Rice (Oryza sativa) [J]. Acta Agron Sin, 2015, 41(06): 861-871.
[9] TAN Yan-Ning,SUN Xue-Wu,YUAN Ding-Yang,SUN Zhi-Zhong,YU Dong,HE Qiang,DUAN Mei-Juan,DENG Hua-Feng,YUAN Long-Ping. Identification and Fine Mapping of Green-Revertible Chlorina Gene grc2 in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2015, 41(06): 831-837.
[10] WANG Xing-Chun,WANG Min,JI Zhi-Juan,CHEN Zhao,LIU Wen-Zhen,HAN Yuan-Huai,YANG Chang-Deng. Functional Characterization of the Glycoside Hydrolase Encoding Gene OsBE1 during Chloroplast Development in Oryza sativa [J]. Acta Agron Sin, 2014, 40(12): 2090-2097.
[11] WANG Bao-Xiang,HU Jin-Long,SUN Zhi-Guang,SONG Zhao-Qiang,LU Bai-Guan,ZHOU Zhen-Ling,FAN Ji-Wei,QIN De-Rong,LIU Yu-Qiang,JIANG Ling,XU Da-Yong,WAN Jian-Min. An Evaluation System for Rice Black-Streaked Dwarf Virus Disease and Screening for Resistant Rice Germplasm [J]. Acta Agron Sin, 2014, 40(09): 1521-1530.
[12] HUANG Zhi-Xiong,WANG Fei-Juan,JIANG Han,LI Zhi-Lan,DING Yan-Fei,JIANG Qiong,TAO Yue-Liang,ZHU Cheng. A Comparison of Cadmium-Accumulation-Associated Genes Expression and Molecular Regulation Mechanism between Two Rice Cultivars (Oryza sativa L. subspecies japonica) [J]. Acta Agron Sin, 2014, 40(04): 581-590.
[13] MA Jiao,REN De-Yong,WU Guo-Chao,ZHU Xiao-Yan,MA Ling,SANG Xian-Chun,LING Ying-Hua,HE Guang-Hua. Genetic Analysis and Gene Mapping of a Marginal Albino Leaf Mutant mal in Rice [J]. Acta Agron Sin, 2014, 40(04): 591-599.
[14] GUO Tao,HUANG Yong-Xiang,LUO Wen-Long,HUANG Xuan,WANG Hui,CHEN Zhi-Qiang,LIU Yong-Zhu. Gene Differential Expression of a Green-revertible Albino and High-tillering Dwarf Mutant hfa-1 by Using Rice Microarray [J]. Acta Agron Sin, 2013, 39(12): 2123-2134.
[15] CHEN Da-Gang,ZHOU Xin-Qiao,LI Li-Jun,LIU Chuan-Guang,ZHANG Xu,CHEN You-Ding. Relationship between Root Morphological Characteristics and Yield Components of Major Commercial Indica Rice in South China [J]. Acta Agron Sin, 2013, 39(10): 1899-1908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!