Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (03): 507-514.

• RESEARCH NOTES • Previous Articles    

Transformation of Barnyardgrass (Echinochloa crusgalli) Root Type Phosphoenolpyruvate Carboxylase Gene into Rice (Oryza sativa) Plants and Their Effects on Photosynthesitic Gas Exchange

ZHANG Gui-Fang1,2,DING Zai-Song1,ZHAO Ming1,*   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of the Ministry of Agriculture Crop Physiology and Ecology,
    Beijing 100081,China; 2 College of Life Science / Editorial Department of Journal of Beijing Normal University (Natural Science), Beijing 100875, China
  • Received:2014-05-09 Revised:2014-12-19 Online:2015-03-12 Published:2015-01-28
  • Contact: 赵明, E-mail: zhaomingcau@vip.tom.com

Abstract:

Barnyardgrass (Echinochloa crusgalli) is a C4 weed commonly found in rice field. To fully utilize the photosynthestic potential of Barnyardgrass C4 gene, we transformed Barnyardgrass root Phosphoenolpyruvate Carboxylase gene into rice plant with vectors contained promoters of Ubiqitin gene and Rubisco small unit gene by Agrobactirium- mediated transformation. Both marker genes Hygr and ppc were detected by PCR in regenerated plants. RT-PCR and Western blot analysis confirmed that the ppc gene was incorporated into rice plant and expressed with stable transcripts and proteins. PEPC activity as measured in most of the transgenic rice plants was higher than that in control, being up to 5.85-fold of that in untransformed rice. At T0 generation, net photosynthetic rate (Pn) in most of transgenic rice plants was 20.00% higher than that in untransformed rice, with the highest increase of 47.16%. Water utilization efficiency (WUE) in transgenic rice was also improved. At T6 generation, PEPC activity and Pn of transgenic lines remained higher than those of the wild type. These indicate that over-expressing C3 Eppc gene also can improve rice photosynthesis.

Key words: Echinochloa crusgalli, Root phosphoenolpyruvate carboxylase gene, Rice, PEPC activities, Net photosynthetic efficiency, Water use efficiency

[1]Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76–80

[2]Fukayama H, Imanari E, Tsuchida H, Izui K, Matsuoka M. In vivo activity of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Plant Cell Physiol, 2000, 41: S112

[3]Matsuoka M, Fukayama H, Tsuchida H, Nomura M, Agari S, Ku M S B, Miyao M. How to express some C4 photosynthesis genes at high levels in rice. In: Sheehy J E, Mitchell P L, Hardy B, eds. Redesigning Rice Photosynthesis to Increase Yield. Proceedings of the Workshop on the Quest to Reduce Hunger: Redesigning Rice Photosynthesis, 30 November to 3 December 1999, Los Banos, Philippines. International Rice Research Institute and Amsterdam: Elsevier Science BV, 2000. pp 167–175

[4]Agarie S, Miura A, Sumikura R, Tsukamoto S, Nose A, Arima S, Matsuoka M, Miyao-Tokutomi M. Overexpression of C4 PEPC caused O2-insensitive photosynthesis in transgenic rice plant. Plant Sci, 2002, 162: 257–265

[5]Fukayama H, Hatch M D, Tamai T, Tsuchida H, Sudoh S, Furbank R T, Miyao M. Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynth Res, 2003, 77: 227–239

[6]Ding Z S, Huang S H, Zhou B Y, Sun X F, Zhao M. Over-expression of phosphoenolpyruvate carboxylase cDNA from C4 millet (Seteria italica) increase rice photosynthesis and yield under upland condition but not in wetland fields. Plant Biotechnol Rep, 2013, 7: 155–163

[7]O’Leary B, Park J, Plaxton W C. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J, 2011, 436: 15–34

[8]Setién I, Vega-Mas I,Celestino N, Calleja-Cervantes M E,González-Murua C, Estavillo J M, González-Moro M B. Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato. J Plant Physiol, 2014, 171: 49–63

[9]张桂芳, 赵明, 丁在松, 张丽, 肖俊涛. 稗草磷酸烯醇式丙酮酸羧化酶(PEPCase)基因的克隆与分析. 作物学报, 2005, 31: 1365–1369

Zhang G F, Zhao M, Ding Z S, Zhang L, Xiao J T. Cloning and characterization of phosphoenolpyruvate carboxylase gene from Echinochloa crusgalli. Acta Agron Sin, 2005, 31: 1365–1369 (in Chinese with English abstract)

[10]Kawamura T, Shigesada K, Yanagisawa S, Izui K. Phosphoenolpyruvate carboxylase prevalent in maize roots: Isolation of cDNA clone and its use for analysis of the gene and the gene expression. J Biochem (Tokyo), 1990, 107: 165–168

[11]Kawamura T, Shigesada K, Toh H, Okumura S, Yanagisawa S, Izui K. Molecular evolution of phosphoenolpyruvate carboxylase for C4 photosynthesis in maize: comparison of its cDNA sequence with a newly isolated cDNA encoding an isozyme involved in the anaplerotic function. J Biochem (Tokyo), 1992, 112: 147–154

[12]Hudspeth R L, Grula J W. Structure and expression of the maize gene encoding the phosphoenolpyruvte carboxylse isozyme involved in C4 photosynthesis. Plant Mol Biol, 1989, 12: 579–589

[13]Westhoff P, Svensson P, Ernst K, Blasing O, Bruscheidt J, Stockhaus J, von Caemmerer S, Furvank R T. Molecular evolution of C4 phosphoenolphyruvate carboxylase in the genus Flaveria. Aust J Plant Physiol, 1997, 24: 429–436

[14]Gowik U, Westhoff P. C4-phosphoenolpyruvate carboxylase. In: Raghavendra A S, Sage R F. C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Advances in Photosynthesis and Respiration. Dordrecht: Springer, 2011, 32: 257−275

[15]Guillet C, Just D, Bénard N, Destrac-Irvine A, Baldet P, Hernould M, Causse M, Raymond P, Rothan C. A fruit-specific phosphoenolpyruvate carboxylase is related to rapid growth of tomato fruit. Planta, 2002, 214: 717−726

[16]Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H. Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotech J, 2004, 2: 211−219

[17]张占琴, 王金梅, 王学军, 汪凯华, 袁春新, 麻浩. 油菜籽粒发育过程中PEPCase活性与油脂、蛋白及亚基积累的特点. 中国油料作物学报, 2009, 31: 14–18

Zhang Z Q, Wang J M, Wang X J, Wang K H, Yuan C X, Ma H. The characteristics of PEPCase activity and accumulation of oil, protein and major protein subunits during seed development of rape (Brassica napus). Chin J Oil Crop Sci, 2009, 31: 14–18 (in Chinese with English abstract)

[18]Pan L J, Yang Q L, Chi X Y, Chen M N, Yang Z, Chen N, Wang T, Wang M, He Y N, Yu S L. Functional analysis of the phosphoenolpyruvate carboxylase on the lipid accumulation of peanut (Arachis hypogaea L.) seeds. J Integr Agric, 2013, 12: 36–44

[19]凌丽俐, 林宏辉, 焦德茂. 转PEPC基因水稻种质的稳定光合生理特性. 作物学报, 2006, 32: 527–531

Ling L L, Lin H H, Jiao D M. The stable photosynthetic characteristics of a PEPC transgenic rice germplasm. Acta Agron Sin, 2006, 32: 527–531 (in Chinese with English abstract)

[20]Jiao D M, Huang X Q, Li X. Characteristics of carbon assimilation and tolerance to photooxidation in transgenic rice expressing C4 photosynthesis enzymes. In: PS2001 Proceedings, 12th International Congress on Photosynthesis. Brisbane: CSIRO Publishing, 2001, S33-004, 1–6

[21]焦德茂, 李霞, 黄雪清, 迟伟, 匡廷云, 古森本. 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报, 2001, 46: 414–418

Jiao D M, Li X, Huang X Q, Chi W, Kuang T Y, Gu S B. The characteristics of CO2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Chin Sci Bull, 2001, 46: 414–418

[22]焦德茂, 匡廷云, 李霞, 戈巧英, 黄雪清, 郝乃斌, 白克智. 转PEPC基因水稻具有初级CO2浓缩机制的生理特点. 中国科学, 2003, 33: 33–39

Jiao D M, Kuang T Y, Li X, Ge Q Y, Huang X Q, Hao N W, Bai K Z. Physiological characteristics of the primitive CO2 concentrating mechanism in PEPC transgenic rice. Sci China, 2003, 33: 33–39

[23]Huang X Q, Jiao D M, Chi W, Ku M S B. Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C4 genes. Acta Bot Sin, 2002, 44(4): 405–412

[24]张边江, 华春, 周峰, 周泉澄, 陈全战, 王荣富, 焦德茂. 转PEPC+PPDK双基因水稻的光合特性. 中国农业科学, 2008, 41: 3008–3014 (in Chinese with English abstract)

Zhang B J, Hua C, Zhou F, Zhou Q C, Chen Q Z,Wang R F, Jiao D M. Photosynthetic characteristics of transgenic rice with PEPC+PPDK gene. Sci Agric Sin, 2008, 41: 3008–3014 (in Chinese with English abstract)

[25]Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie, 2002, 84: 1127–1135

[26]丁在松, 赵明, 荆玉祥, 李良璧, 匡廷云. 玉米ppc基因过表达对转基因水稻光合速率的影响. 作物学报, 2007, 33: 717–722

Ding Z S, Zhao M, Jing Y X, Li L B, Kuang T Y. Effect of overexpression of maize ppc gene on photosynthesis in transgenic rice plants. Acta Agron Sin, 2007, 33: 717 – 722 (in Chinese with English abstract)

[27]方立锋, 丁在松, 赵明. 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008, 34: 1220−1226

Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008, 34: 1220−1226 (in Chinese with English abstract)

[28]周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报, 2011, 37: 112–118

Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron Sin, 2011, 37: 112–118 (in Chinese with English abstract)

[29]Scheibe R. Malate valves to balance cellular energy supply. Physiol Plant, 2004, 120: 21–26

[30]Andreo C S, Gonzalez D H, Iglesias A A. Higher plant phosphoenolpyruvate carboxylase: Structure and regulation. FEBS Lett, 1987, 213: 1–8

[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!