欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (08): 1112-1121.doi: 10.3724/SP.J.1006.2016.01112

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯HD-Zip I家族ATHB12基因的克隆及功能鉴定

武亮亮,姚磊,马瑞,朱熙,杨江伟,张宁,司怀军   

  1. 甘肃省作物遗传改良与种质创新重点实验室,甘肃省干旱生境作物学省部共建国家重点实验室培育基地 / 甘肃农业大学生命科学技术学院,甘肃兰州 730070
  • 收稿日期:2016-01-19 修回日期:2016-05-09 出版日期:2016-08-12 网络出版日期:2016-06-02
  • 通讯作者: 张宁, E-mail: ningzh@gsau.edu.cn, Tel: 0931-7631875
  • 基金资助:

    本研究由国家自然科学基金项目(31460370),高等学校博士学科点专项科研基金项目(20126202110007),国家国际科技合作专项(0102014DFG31570)和甘肃省干旱生境作物学省部共建国家重点实验室培育基地开放基金项目(GSCS-2012-02)资助。

Cloning and Functional Identification of the ATHB12 Gene of HD-Zip IFamily in Potato(Solanum tuberosum L.)

WU Liang-Liang,YAO Lei,MA Rui,ZHU Xi,YANG Jiang-Wei,ZHANG Ning*,SI Huai-Jun   

  1. Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science /College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2016-01-19 Revised:2016-05-09 Published:2016-08-12 Published online:2016-06-02
  • Contact: 张宁, E-mail: ningzh@gsau.edu.cn, Tel: 0931-7631875
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31460370), Specialized Research Fund for the Doctoral Program of Higher Education of China (20126202110007), International Science & Technology Cooperation Program of China (0102014DFG31570) and Gansu Key Laboratory of Aridland Crop Science of Gansu Agricultural University (GSCS-2012-02).

摘要:

HD-Zip I是一类植物特异转录因子, 在植物应对外界逆境胁迫过程中有重要的调控作用。本研究从马铃薯栽培品种甘农薯2号中克隆了HD-Zip I转录因子ATHB12基因, 其开放阅读框为759 bp, 编码252个氨基酸残基。该基因位于马铃薯1号染色体, 其启动子区含有ABRE、LTRECOREATCOR15和WBOXATNPR1等多种响应非生物胁迫(ABA、低温、脱水及高盐)的顺式作用元件。ATHB12基因在马铃薯根、茎和叶中均有表达, 其根中表达量最高。qRT-PCR分析证实该基因的表达受聚乙二醇(PEG)、NaCl和ABA诱导, 受低温抑制。构建了由组成型表达启动子CaMV 35S驱动的ATHB12基因的过表达载体, 通过农杆菌介导法转化马铃薯获得了转基因植株。干旱处理后, 转基因植株叶片中丙二醛含量显著低于非转基因植株(P<0.05), 而脯氨酸含量显著高于非转基因植株(P<0.05); 转基因植株根鲜重和干重均高于非转基因植株; 说明马铃薯ATHB12基因可能参与了逆境胁迫的响应

关键词: 马铃薯, HD-Zip, ATHB12基因, 根, 丙二醛, 脯氨酸

Abstract:

HD-Zip I is a class of plant-specific transcription factors, which has an important role in response to adversity stress in plant. A ATHB12 gene of HD-Zip I transcription factors was cloned from potato cultivar Gannongshu2, which contains a 759 bp open reading frame (ORF) encoding a protein of 252 amino acid residues. ATHB12 gene is located on potato chromosome 1, and its promoter region sequence contains cis-acting elements including ABRE, LTRECOREATCOR15, WBOXATNPR1 responsive to abiotic stresses (ABA, temperature, dehydration and salt stress). ATHB12 gene expressed in root, stem and leaf of potato, with the highest expression in the root. qRT-PCR analysis confirmed that the gene was induced by PEG, NaCl and ABA, but repressed by cold treatment. The overexpressed-vector of ATHB12 gene driven by the constitutive promoter CaMV 35S was constructed, and the transgenic plants were obtained using Agrobacterium-mediated transformation system. The malondialdehyde (MDA) content in the transgenic plant leaves was significantly lower (P<0.05), whereas the proline content was significantly higher (P<0.05) than those of non-transgenic control under drought stress. The fresh and dry weight of the transgenic plant root was higher than that of non-transgenic plants. These results showed that ATHB12 gene may be involved in response to stress.

Key words: Potato, HD-Zip, THB12 gene, Root, Malondialdehyde, Proline

[1]Ariel FD, Manavella PA, Dezar CA, Chan RL. The true story of the HD-Zip family. Trends Plant Sci, 2007, 12:419–426
[2]De Smet I, Lau S, Ehrismann JS, Axiotis I, Kolb M, Kientz M, Weijers D, Jurgens G. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana. J Exp Bot, 2013, 64: 3009–3019
[3]Re DA, Dezar CA, Chan RL, Baldwin IT, Bonaventure G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. J Exp Bot, 2011, 62 :155–166
[4]Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell, 2010, 22:2171–2183
[5]Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol, 2001,18:491–502
[6]Soderman E, Hjellstrom M, Fahleson J, Engstrom P. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol Biol, 1999, 40:1073–1083
[7]Olsson AS, Engstrom P, Soderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004, 55:663–677
[8]Deng X, Phillips J, Meijer AH, Salamini F, Bartels D. Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum.Plant Mol Biol, 2002, 49:601–610
[9]Dezar CA, Gago G M, Gonzalez DH, Chan RL. Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res, 2005, 14:429–440
[10]Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B. A novel maize homeodomain-leucine zipper (HD–Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol, 2014, 55:1142–1156
[11]Potato Genome Sequencing Consortium, Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti S K, Patil V U, Skryabin K G, Kuznetsov B B, Ravin N V, Kolganova T V, Beletsky A V, Mardanov A V, Di Genova A, Bolser D M, Martin D M, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop G J, Sagredo B, Mejía N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, Herrera Mdel R, Giuliano G, Pietrella M, Perrotta G, Facella P, O'Brien K, Feingold S E, Barreiro L E, Massa G A, Diambra L, Whitty B R, Vaillancourt B, Lin H, Massa A N, Geoffroy M, Lundback S, DellaPenna D, Buell C R, Sharma S K, Marshall D F, Waugh R, Bryan G J, Destefanis M, Nagy I, Milbourne D, Thomson S J, Fiers M, Jacobs J M, Nielsen K L, Sønderkær M, Iovene M, Torres G A, Jiang J, Veilleux R E, Bachem C W, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekkert Bt, Goverse A, van Ham R C, Visser R G.. Genome sequence and analysis of the tuber crop potato. Nature, 2011,475: 189–195
[12]张宁,司怀军, 王蒂. 拟南芥rd29A基因启动子克隆及其在马铃薯抗胁迫转基因中的应用. 作物学报, 2005, 31:159–164
Zhang N, Si HJ, Wang D. Cloning of rd29A gene promoter from Arabidopsis thaliana and its application in stress–resistance transgenic potato.Acta Agron Sin, 2005, 31: 159–164 (in Chinese with English abstract)
[13]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real–time quantitative PCR and the 2(-Delta Delta C(T)) method.Methods, 2001, 25:402–408
[14]司怀军, 谢从华, 柳俊. 农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义Class Ipatatin基因的导入.作物学报, 2003, 29: 801–805
Si H J, Xie C H, Liu J. An efficient protocol for Agrobacterium-mediated transformation with microtuber and the introduction of an antisense class I patatin gene into potato. Acta Agron Sin, 2003, 29: 801–805 (in Chinese with English abstract)
[15]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19:1349–1352
[16]陈建勋, 王晓峰.植物生理学实验指导.广州: 华南理工大学出版社,2002. pp 119–124
Chen J X,Wang X F. Experiment Manual for Plant Physiology. Guangzhou: South China University of Technology Press, 2002. pp 119–124 (in chinese)
[17]Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell, 2005, 17:61–76
[18]Wang Y, Henriksson E, Soderman E, Henriksson KN, Sundberg E, Engstrom P. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol, 2003, 264:228–239
[19]Capella M, Ribone PA, Arce AL, Chan RL. Arabidopsis thalianaHomeoBox 1 (AtHB1), a Homedomain–Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME–INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol, 2015, 207:669–682
[20]Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PB. Function of the HD-Zip I gene Oshox22 in ABA–mediated drought and salt tolerances in rice. Plant Mol Biol, 2012, 80:571–585
[21]Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z. Tomato HD–Zip I transcription factor, SlHZ24, modulates ascorbate accumulation through positively regulating the D–mannose/L–galactose pathway. Plant J, 2016, 85: 16–29
[22]Liu W, Fu R, Li Q, Li J, Wang L, Ren Z. Genome–wide identification and expression profile of homeodomain–leucine zipper Class I gene family in Cucumis sativus. Gene, 2013, 531:279–287
[23]梁毅, 刘小义,张洪伟, 谭武平. 洋葱花青素合成相关基因(AcPAL1)的克隆和表达分析. 农业生物技术学报, 2014, 22:47–54
Liang Y, Liu X Y, Zhang H W, Tan W P. Cloning and expression analysis of an anthocyanin bio–synthesis–related gene(AcPAL1) in onion (Allium cepa L.). J Agric Biotechnol, 2014, 22: 47–54 (in Chinese with English abstract)
[24]亢键, 姜永华, 王豪杰, 杨艳青, 任小林. 苹果果实HD–Zip I转录因子亚家族基因鉴定及表达分析. 西北农业学报, 2014, 23: 160–165
Kang J, JiangY H, WangH J,YangY Q, Ren X L. Identification and expression analysis of HD-ZIP Itranscription factor genes in applefruit. Acta Bot Boreali–Occidential Sinica, 2014, 23: 160–165 (in Chinese with English abstract)
[25]Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice.J Exp Bot, 2011, 62:4863–4874
[26]Song Y, Wang L, Xiong L. Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta, 2009, 229:577–591
[27]Luan M, Xu M, Lu Y, Zhang L, Fan Y, Wang L. Expression of zma–miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maizeleaves. Gene, 2015, 555:178–185
[28]Hou XJ, Li SB, Liu SR, Hu CG, Zhang JZ. Genome–wide classification and evolutionary and expression analyses of citrus MYB transcription factor families insweet orange.PloS One, 2014, 9: e95489
[29]Dai M, Hu Y, Ma Q, Zhao Y, Zhou DX. Functional analysis of rice HOMEOBOX4(Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol,2008, 66: 289–301
[30]惠非琼, 彭兵, 楼兵干, 林福呈, 聂长春, 刘剑.印度梨形孢通过促进渗透调节物质的合成和诱导抗逆相关基因的表达提高烟草耐盐性. 农业生物技术学报, 2014, 22:168–176
Hui F Q, Peng B, Lou BG, Lin FC, Nie CC, Liu J.Piriformospora indica improves salt tolerance in Nicotiana tobacum by promoting the synthesis of osmolyte and inducing the expression of stress resistance genes. J Agric Biotechnol, 2014, 22: 168–176 (in Chinese with English abstract)

[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[5] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[6] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[7] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[8] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[9] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[10] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[11] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[12] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[13] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!