[1]Ariel FD, Manavella PA, Dezar CA, Chan RL. The true story of the HD-Zip family. Trends Plant Sci, 2007, 12:419–426
[2]De Smet I, Lau S, Ehrismann JS, Axiotis I, Kolb M, Kientz M, Weijers D, Jurgens G. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana. J Exp Bot, 2013, 64: 3009–3019
[3]Re DA, Dezar CA, Chan RL, Baldwin IT, Bonaventure G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions. J Exp Bot, 2011, 62 :155–166
[4]Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. Plant Cell, 2010, 22:2171–2183
[5]Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol, 2001,18:491–502
[6]Soderman E, Hjellstrom M, Fahleson J, Engstrom P. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol Biol, 1999, 40:1073–1083
[7]Olsson AS, Engstrom P, Soderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol, 2004, 55:663–677
[8]Deng X, Phillips J, Meijer AH, Salamini F, Bartels D. Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum.Plant Mol Biol, 2002, 49:601–610
[9]Dezar CA, Gago G M, Gonzalez DH, Chan RL. Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants. Transgenic Res, 2005, 14:429–440
[10]Zhao Y, Ma Q, Jin X, Peng X, Liu J, Deng L, Yan H, Sheng L, Jiang H, Cheng B. A novel maize homeodomain-leucine zipper (HD–Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis. Plant Cell Physiol, 2014, 55:1142–1156
[11]Potato Genome Sequencing Consortium, Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti S K, Patil V U, Skryabin K G, Kuznetsov B B, Ravin N V, Kolganova T V, Beletsky A V, Mardanov A V, Di Genova A, Bolser D M, Martin D M, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop G J, Sagredo B, Mejía N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, Herrera Mdel R, Giuliano G, Pietrella M, Perrotta G, Facella P, O'Brien K, Feingold S E, Barreiro L E, Massa G A, Diambra L, Whitty B R, Vaillancourt B, Lin H, Massa A N, Geoffroy M, Lundback S, DellaPenna D, Buell C R, Sharma S K, Marshall D F, Waugh R, Bryan G J, Destefanis M, Nagy I, Milbourne D, Thomson S J, Fiers M, Jacobs J M, Nielsen K L, Sønderkær M, Iovene M, Torres G A, Jiang J, Veilleux R E, Bachem C W, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekkert Bt, Goverse A, van Ham R C, Visser R G.. Genome sequence and analysis of the tuber crop potato. Nature, 2011,475: 189–195
[12]张宁,司怀军, 王蒂. 拟南芥rd29A基因启动子克隆及其在马铃薯抗胁迫转基因中的应用. 作物学报, 2005, 31:159–164
Zhang N, Si HJ, Wang D. Cloning of rd29A gene promoter from Arabidopsis thaliana and its application in stress–resistance transgenic potato.Acta Agron Sin, 2005, 31: 159–164 (in Chinese with English abstract)
[13]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real–time quantitative PCR and the 2(-Delta Delta C(T)) method.Methods, 2001, 25:402–408
[14]司怀军, 谢从华, 柳俊. 农杆菌介导的马铃薯试管薯遗传转化体系的优化及反义Class Ipatatin基因的导入.作物学报, 2003, 29: 801–805
Si H J, Xie C H, Liu J. An efficient protocol for Agrobacterium-mediated transformation with microtuber and the introduction of an antisense class I patatin gene into potato. Acta Agron Sin, 2003, 29: 801–805 (in Chinese with English abstract)
[15]Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res, 1991, 19:1349–1352
[16]陈建勋, 王晓峰.植物生理学实验指导.广州: 华南理工大学出版社,2002. pp 119–124
Chen J X,Wang X F. Experiment Manual for Plant Physiology. Guangzhou: South China University of Technology Press, 2002. pp 119–124 (in chinese)
[17]Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell, 2005, 17:61–76
[18]Wang Y, Henriksson E, Soderman E, Henriksson KN, Sundberg E, Engstrom P. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol, 2003, 264:228–239
[19]Capella M, Ribone PA, Arce AL, Chan RL. Arabidopsis thalianaHomeoBox 1 (AtHB1), a Homedomain–Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME–INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol, 2015, 207:669–682
[20]Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PB. Function of the HD-Zip I gene Oshox22 in ABA–mediated drought and salt tolerances in rice. Plant Mol Biol, 2012, 80:571–585
[21]Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z. Tomato HD–Zip I transcription factor, SlHZ24, modulates ascorbate accumulation through positively regulating the D–mannose/L–galactose pathway. Plant J, 2016, 85: 16–29
[22]Liu W, Fu R, Li Q, Li J, Wang L, Ren Z. Genome–wide identification and expression profile of homeodomain–leucine zipper Class I gene family in Cucumis sativus. Gene, 2013, 531:279–287
[23]梁毅, 刘小义,张洪伟, 谭武平. 洋葱花青素合成相关基因(AcPAL1)的克隆和表达分析. 农业生物技术学报, 2014, 22:47–54
Liang Y, Liu X Y, Zhang H W, Tan W P. Cloning and expression analysis of an anthocyanin bio–synthesis–related gene(AcPAL1) in onion (Allium cepa L.). J Agric Biotechnol, 2014, 22: 47–54 (in Chinese with English abstract)
[24]亢键, 姜永华, 王豪杰, 杨艳青, 任小林. 苹果果实HD–Zip I转录因子亚家族基因鉴定及表达分析. 西北农业学报, 2014, 23: 160–165
Kang J, JiangY H, WangH J,YangY Q, Ren X L. Identification and expression analysis of HD-ZIP Itranscription factor genes in applefruit. Acta Bot Boreali–Occidential Sinica, 2014, 23: 160–165 (in Chinese with English abstract)
[25]Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice.J Exp Bot, 2011, 62:4863–4874
[26]Song Y, Wang L, Xiong L. Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta, 2009, 229:577–591
[27]Luan M, Xu M, Lu Y, Zhang L, Fan Y, Wang L. Expression of zma–miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maizeleaves. Gene, 2015, 555:178–185
[28]Hou XJ, Li SB, Liu SR, Hu CG, Zhang JZ. Genome–wide classification and evolutionary and expression analyses of citrus MYB transcription factor families insweet orange.PloS One, 2014, 9: e95489
[29]Dai M, Hu Y, Ma Q, Zhao Y, Zhou DX. Functional analysis of rice HOMEOBOX4(Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol,2008, 66: 289–301
[30]惠非琼, 彭兵, 楼兵干, 林福呈, 聂长春, 刘剑.印度梨形孢通过促进渗透调节物质的合成和诱导抗逆相关基因的表达提高烟草耐盐性. 农业生物技术学报, 2014, 22:168–176
Hui F Q, Peng B, Lou BG, Lin FC, Nie CC, Liu J.Piriformospora indica improves salt tolerance in Nicotiana tobacum by promoting the synthesis of osmolyte and inducing the expression of stress resistance genes. J Agric Biotechnol, 2014, 22: 168–176 (in Chinese with English abstract) |