欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2435-2446.doi: 10.3724/SP.J.1006.2024.32060

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用基因编辑技术创制低谷蛋白水稻种质

周田田1,2(), 唐兆成1, 李笑1, 朱鹏1, 邓晶晶1, 杨郁文1, 张保龙1,2, 郭冬姝1,*()   

  1. 1江苏省农业科学院种质资源与生物技术研究所,江苏南京 210014
    2南京农业大学生命科学学院,江苏南京 210014
  • 收稿日期:2023-12-22 接受日期:2024-05-21 出版日期:2024-10-12 网络出版日期:2024-06-21
  • 通讯作者: *郭冬姝, E-mail: guods_cau@163.com
  • 作者简介:E-mail: 2021116027@stu.njau.edu.cn
  • 基金资助:
    江苏省重点研发计划现代农业项目(BE2022365);江苏省重点研发计划现代农业项目(cx(21)1002)

Development of low-glutelin rice germplasm by gene editing technology

ZHOU Tian-Tian1,2(), TANG Zhao-Cheng1, LI Xiao1, ZHU Peng1, DENG Jing-Jing1, YANG Yu-Wen1, ZHANG Bao-Long1,2, GUO Dong-Shu1,*()   

  1. 1Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2College of Life Sciences, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China
  • Received:2023-12-22 Accepted:2024-05-21 Published:2024-10-12 Published online:2024-06-21
  • Contact: E-mail: guods_cau@163.com
  • Supported by:
    Jiangsu Key Research and Development Program(BE2022365);Jiangsu Agricultural Science and Technology Innovation Fund (cx(cx(21)1002)

摘要:

水稻(Oryza sativa L.)是重要的粮食作物,蛋白质是稻米的第二大营养物质。肾脏病人通常需要限制蛋白质的摄入量以减轻肾脏的负担和控制病情进展。稻米蛋白中谷蛋白含量最高,且易被人体消化。本研究以LGC-1作为供体亲本培育出的粳稻品种为转基因受体,利用CRISPR/Cas9介导的基因编辑技术一次性敲除谷蛋白A (Glutelin A,GluA)亚家族编码基因GluA1GluA2GluA3,获得了不含转基因元件的谷蛋白含量约为1.8%的低谷蛋白种质,并对所得种质的稻米品质和农艺性状进行了全面评估。所得低谷蛋白种质外观品质较好,相比于受体品种垩白度降低、糙米率和精米率提高。本研究为创制低谷蛋白水稻品种提供了一种高效、简便的方法,为培育适合肾病患者的功能性水稻品种提供了一种新的遗传材料。

关键词: 水稻, 基因编辑, 蛋白, 低谷蛋白水稻

Abstract:

Rice (Oryza sativa L.) is a crucial cereal crop worldwide, with protein being its second-most significant nutritional component. Patients with kidney diseases are required to limit their protein intake to alleviate the metabolic burden on their kidneys and control disease progression. In regular rice cultivars, glutelin is the predominant protein component and is easily digested by the human body. In this study, simultaneous mutations were introduced into Glutelin A1 (GluA1), GluA2, and GluA3 using CRISPR/Cas9-mediated targeted mutagenesis in a japonica rice cultivar derived from Low Glutelin Content-1 (LGC-1). Consequently, a low-glutelin rice germplasm with approximately 1.8% glutelin content, free from transgenic elements, was generated. The quality and agronomic traits of this germplasm were further comprehensively evaluated. The low-glutelin germplasms generated in this study exhibited significantly lower chalkiness degree compared to the recipient cultivar, while the brown rice rate and milled rice rate were significantly higher. This study presents a highly efficient and convenient method for generating rice germplasm with reduced glutelin content and offers new genetic materials for the cultivation of functional rice cultivars suitable for patients with kidney diseases.

Key words: rice, gene editing, protein, low-glutelin rice

表1

载体构建及基因型鉴定相关引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
功能
Function
GluA1/2-1F GGCAtaggccagagcactagtcaa 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA1/2-1R AAACttgactagtgctctggccta 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA1/2-2F TGTGcggagtgtgaggtctcaagc 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA1/2-2R AAACgcttgagacctcacactccg 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA3-1F GGCAcaatggcaaagttctcgccg 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA3-1R AAACcggcgagaactttgccattg 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA3-2F TGTGctagtgagtcacttcatatg 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA3-2R AAACcatatgaagtgactcactag 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
LGC-F1 ACCACAAGACAACACTGTCACACC LGC-1突变体鉴定正向引物
Genotyping forward primer of Lgc1 locus
LGC-R1 TATGGTCGCTCAATCGAGCAACAC LGC-1突变体鉴定反向引物
Genotyping reverse primer of Lgc1 locus
WT-R TAGTGTTTCCTAGGAGTGGG 野生型位点鉴定反向引物(正向引物LGC-F1)
Genotyping reverse primer of wild-type LGC1 locus (the forward primer is LGC-F1)
GluA1-F CATGATCACCAACAACCATG GluA1基因型鉴定正向引物
Genotyping forward primer of GluA1 gene
GluA1/2-R CTAGAGATGCACCATTAGTG GluA1GluA2基因型鉴定反向引物
Genotyping reverse primer of GluA1 and GluA2 gene
GluA2-F CAAAAAGAGGAGGGCTTTAC GluA2基因型鉴定正向引物
Genotyping forward primer of GluA2 gene
GluA3-F CACTAAAGCAACACACAACG GluA3基因型鉴定正向引物
Genotyping forward primer of GluA3 gene
GluA3-R CAAGTGTGGATTGCCATGTT GluA3基因型鉴定反向引物
Genotyping reverse primer of GluA1 gene
35S-TF1 ACAATCCCACTATCCTTCGCAAG 潮霉素基因表达盒检测 hpt cassette detection
HYG-TR GTACTTCTACACAGCCATCGGTC 潮霉素基因表达盒检测 hpt cassette detection
UBI-F1 TTTCCCCAACCTCGTGTTGTTC Cas9基因表达盒检测 Cas9 cassette detection
Cas9-R2 GAGGTTCTTCTTGATGGAGTGG Cas9基因表达盒检测 Cas9 cassette detection

图1

谷蛋白编码基因靶标位点及载体T-DNA区段示意图 A: GluA1和GluA2基因结构,黄色和桔黄色方框分别代表GluA1和GluA2基因的外显子,外显子间的黑色短线代表内含子,蓝色和绿色线显示基因编辑靶标位点的位置,带下画线的红色字母显示基因编辑靶标位点序列,带下画线的黑色字母显示PAM (protospacer adjacent motif)序列; B: GluA3基因结构,浅蓝色方框代表GluA3基因的外显子,外显子间的黑色短线代表内含子,枚红色短线和粉色线显示基因编辑靶标位点的位置,带下划线的红色字母显示基因编辑靶标位点序列,带下画线的黑色字母显示PAM序列; C: 基因编辑载体T-DNA区段示意图。ZmpUBI: 玉米Ubiquitin1基因启动子; SpCas9: 针对水稻进行密码子优化后的来源于酿脓链球菌的Cas9基因; NOST: NOS终止子; 3: 水稻U3b启动子; 6: 水稻U6b启动子; GluA1/2-1: GluA1和GluA2基因的第1个靶标位点序列; GluA1/2-2: GluA1和GluA2基因的第2个靶标位点序列; GluA3-1: GluA3基因的第一个靶标位点序列; GluA3-2: GluA3基因的第2个靶标位点序列; 35S Promoter: 花椰菜花叶病毒(Cauliflower mosaic virus) 35S启动子; HygR: 潮霉素抗性基因; 35ST: 35S终止子; LB: T-DNA左边界; RB: T-DNA右边界。"

图2

基因型鉴定及Sanger测序峰图 A: 琼脂糖凝胶电泳鉴定基因型; B: Sanger测序峰图; C: 转基因元件检测。Marker: DNA分子量标准; WT: 野生型粳稻苏秀867; LGC-1: 受体品种; +CK: 基因编辑质粒阳性对照; -CK: PCR阴性对照; LGC1: 野生型LGC1位点; Lgc1: 突变型Lgc1位点; GluA1: GluA1基因位点; GluA2: GluA2基因位点; GluA3: GluA3基因位点; Cas9: Cas9基因表达盒; Hyg: 潮霉素抗性基因表达盒。A中GluA1、GluA2和GluA3基因的较长条带代表野生型基因型,较短条带代表突变型基因型; B中“*”和“·”分别标注基因序列缺失区段两侧的碱基; A和C中左侧箭头标注分子量标准对应的条带大小。"

图3

水稻SDS-PAGE和氨基酸组成测定 A: 糙米蛋白聚丙烯酰胺凝胶电泳; B: 精米蛋白聚丙烯酰胺凝胶电泳; C: 稻米氨基酸组成测定结果。M: 蛋白marker; WT: 野生型粳稻苏秀867; LGC-1: 受体品种; GluA-2-11和GluA-3-6: 突变体; A和B右侧竖线表示不同贮藏蛋白组分; C中Asp~Lys代表不同氨基酸,不同字母表示P < 0.01水平差异显著。"

图4

稻米主要营养成分含量检测结果 A: 糙米总蛋白含量; B: 精米总蛋白含量; C: 糙米总淀粉含量; D: 糙米总脂肪酸含量。A~D: 每个样品重复测定3次, 不同小写字母代表显著性差异(P < 0.01); E~G: LGC-1、GluA-2-11和GluA-3-6成熟种子横截面扫描电镜观察结果, 标尺为10 μm; H~J: LGC-1、GluA-2-11和GluA-3-6成熟种子总脂肪酸检测的总离子流图。"

表2

外观品质统计结果"

指标Index LGC-1 GluA-2-11 GluA-3-6
长/宽均值 Average of length/width 1.83 ± 0.02 1.88 ± 0.01 1.84 ± 0.01
糙米率 Brown rice yield 76.19 ± 0.68 a 83.22 ± 0.07 b 82.73 ± 0.39 b
精米率 Milled rice yield 68.33 ± 0.58 a 72.91 ± 0.93 b 72.83 ± 0.82 b
整精米率 Head rice yield 61.09 ± 4.34 62.54 ± 2.17 66.02 ± 2.57
垩白粒率 Chalky kernel percentage 7.52 ± 1.24 7.28 ± 0.78 6.45 ± 0.16
垩白度 Chalkiness 2.75 ± 0.90 A 1.23 ± 0.31 B 1.23 ± 0.17 B
透明度 Transparency 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00

表3

食味品质统计结果"

指标 Index LGC-1 GluA-2-11 GluA-3-6
外观 Appearance 4.10 ± 0.35 4.80 ± 0.17 5.23 ± 0.44
硬度 Hardness 8.07 ± 0.26 7.77 ± 0.09 7.50 ± 0.10
黏度 Viscosity 4.67 ± 0.26 5.40 ± 0.12 5.70 ± 0.59
平衡度 Balance degree 3.93 ± 0.33 4.67 ± 0.15 5.03 ± 0.44
食味值 Comprehensive 53.4 ± 2.10 58.03 ± 0.91 60.50 ± 2.82

图5

水稻株型和稻米外观表型 A: LGC-1、GluA-2-11和GluA-3-6成株外观; B~D: LGC-1、GluA-2-11和GluA-3-6种子外观; E~G: LGC-1、GluA-2-11和GluA-3-6精米外观。A中标尺为20 cm; B~G中标尺为1 cm。"

表4

农艺性状统计结果"

指标 Index LGC-1 GluA-2-11 GluA-3-6
株高 Plant height (cm) 86.16 ± 0.70 ab 87.74 ± 0.71 a 84.72 ± 0.72 b
分蘖数 Tiller number 14.80 ± 0.51 15.90 ± 0.60 16.20 ± 0.70
每穗粒数 Number of spikelets per panicle 105.00 ± 1.73 102.00 ± 1.53 104.33 ± 0.88
千粒重 1000-grain weight (g) 21.34 ± 0.22 a 20.55 ± 0.11 b 20.46 ± 0.03 b
结实率 Filled grain percentage (%) 89.68 ± 0.92 88.08 ± 0.18 88.90 ± 0.43
[1] Furukawa S, Mizuma T, Kiyokawa Y, Masumura T, Tanaka K, Wakai Y. Distribution of storage proteins in low-glutelin rice seed determined using a fluorescent antibody. J Biosci Bioeng, 2003, 96: 467-473.
pmid: 16233557
[2] Safdar L B, Foulkes M J, Kleiner F H, Searle I R, Bhosale R A, Fisk I D, Boden S A. Challenges facing sustainable protein production: opportunities for cereals. Plant Commun, 2023, 4: 100716.
[3] He W, Wang L, Lin Q L, Yu F. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. J Integr Plant Biol, 2021, 63: 1999-2019.
doi: 10.1111/jipb.13176
[4] Mochizuki T, Hara S. Usefulness of the low protein rice on the diet therapy in patients with chronic renal failure. Nihon Jinzo Gakkai Shi, 2000, 42: 24-29 (in Japanese with English abstract).
[5] Okita T W, Hwang Y S, Hnilo J, Kim W T, Aryan A P, Larson R, Krishnan H B. Structure and expression of the rice glutelin multigene family. J Biol Chem, 1989, 264: 12573-12581.
pmid: 2745459
[6] Kawakatsu T, Yamamoto M P, Hirose S, Yano M, Takaiwa F. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot, 2008, 59: 4233-4245.
doi: 10.1093/jxb/ern265 pmid: 18980953
[7] Iida S, Amano E, Nishio T. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theor Appl Genet, 1993, 87: 374-378.
doi: 10.1007/BF01184926 pmid: 24190265
[8] 万建民, 翟虎渠, 刘世家, 江铃, 杨世湖, 陈亮明, 王春明. 功能性专用水稻品种W3660的选育. 作物杂志, 2004, (5): 58.
Wan J M, Zhai H Q, Liu S J, Jiang L, Yang S H, Chen L M, Wang C M. Breeding of functional rice variety W3660. Crops, 2004, (5): 58 (in Chinese).
[9] 张云辉, 张所兵, 周金云亮, 林静, 汪迎节, 方先文. 水稻低谷蛋白创新种质的选育和鉴定. 植物遗传资源学报, 2015, 16: 158-162.
doi: 10.13430/j.cnki.jpgr.2015.01.024
Zhang Y H, Zhang S B, Zhou J Y L, Lin J, Wang Y J, Fang X W. Enhancement and identification of new rice germplasms with low glutelin content. J Plant Genet Resour, 2015, 16: 158-162 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2015.01.024
[10] Lu Y, Wang J Y, Chen B, Mo S D, Lian L, Luo Y M, Ding D H, Ding Y H, Cao Q, Li Y C, Li Y, Liu G Z, Hou Q Q, Cheng T T, Wei J T, Zhang Y R, Chen G W, Song C, Hu Q, Sun S, Fan G Y, Wang Y T, Liu Z T, Song B A, Zhu J K, Li H R, Jiang L J. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nat Plants, 2021, 7: 1445-1452.
doi: 10.1038/s41477-021-01019-4 pmid: 34782773
[11] Yang Y H, Shen Z Y, Li Y G, Xu C D, Xia H, Zhuang H, Sun S Y, Guo M, Yan C J. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. J Integr Plant Biol, 2022, 64: 1860-1865.
doi: 10.1111/jipb.13334
[12] Chen Z H, Du H X, Tao Y J, Xu Y, Wang F Q, Li B, Zhu Q H, Niu H B, Yang J. Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9. Plant Sci, 2022, 324: 111449.
[13] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[14] Miao J, Guo D S, Zhang J Z, Huang Q P, Qin G J, Zhang X, Wan J M, Gu H Y, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013, 23: 1233-1236.
doi: 10.1038/cr.2013.123 pmid: 23999856
[15] Takemoto Y, Coughlan S J, Okita T W, Satoh H, Ogawa M, Kumamaru T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol, 2002, 128: 1212-1222.
pmid: 11950970
[16] Zhu D W, Zheng X, Yu J, Chen M X, Li M, Shao Y F. Effects of starch molecular structure and physicochemical properties on eating quality of indica rice with similar apparent amylose and protein contents. Foods, 2023, 12: 3535.
[17] Lynch J M, Barbano D M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J AOAC Int, 1999, 82: 1389-1398.
pmid: 10589493
[18] 张华瑜, 潘永东, 柳小宁, 包奇军. 利用近红外谷物分析仪快速检测青稞粗蛋白质含量研究. 甘肃农业科技, 2020, (1): 33-36.
Zhang H Y, Pan Y D, Liu X N, Bao Q J. Study on content of crude protein of highland barley by near infrared grain analyzer. Gansu Agric Sci Technol, 2020, (1): 33-36 (in Chinese with English abstract).
[19] 王情, 黄谊, 王未, 魏晓蝶, 钱鑫雅, 陈小举, 陈敏敏. 小茴香精油的提取工艺研究. 云南化工, 2023, 50(6): 17-19.
Wang Q, Huang Y, Wang W, Wei X D, Qian X Y, Chen X J, Chen M M. Study on extraction of essential oil from fennel. Yunnan Chem Techn, 2023, 50(6): 17-19 (in Chinese with English abstract).
[20] 赖红芳, 潘立卫, 韦雪梅, 覃国乐, 黄秀香. 柱前衍生-高效液相色谱法测定构树饲料中氨基酸的含量. 中国饲料, 2023, 1(20): 74-78.
Lai H F, Pan L W, Wei X M, Qin G L, Huang X X. Determination of amino acids in Broussonetia papyrifera feed by HPLC with precolumn derivatization. China Feed, 2023, 1(20): 74-78 (in Chinese with English abstract).
[21] 张诚信, 郭保卫, 唐健, 许方甫, 许轲, 胡雅杰, 邢志鹏, 张洪程, 戴其根, 霍中洋, 魏海燕, 黄丽芬, 陆阳, 唐闯, 戴琪星, 周苗, 孙君仪. 灌浆结实期低温弱光复合胁迫对稻米品质的影响. 作物学报, 2019, 45: 1208-1220.
doi: 10.3724/SP.J.1006.2019.82067
Zhang C X, Guo B W, Tang J, Xu F F, Xu K, Hu Y J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Wei H Y, Huang L F, Lu Y, Tang C, Dai Q X, Zhou M, Sun J Y. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agron Sin, 2019, 45: 1208-1220 (in Chinese with English abstract).
[22] GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2020, 395: 709-733.
doi: S0140-6736(20)30045-3 pmid: 32061315
[23] Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T. Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell, 2003, 15: 1455-1467.
[24] Shewry P R, Halford N G. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot, 2002, 53: 947-958.
doi: 10.1093/jexbot/53.370.947 pmid: 11912237
[25] Chandra D, Cho K, Pham H A, Lee J Y, Han O. Down-regulation of rice glutelin by CRISPR-Cas9 gene editing decreases carbohydrate content and grain weight and modulates synthesis of seed storage proteins during seed maturation. Int J Mol Sci, 2023, 24: 16941.
[26] Kawakatsu T, Hirose S, Yasuda H, Takaiwa F. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol, 2010, 154: 1842-1854.
doi: 10.1104/pp.110.164343 pmid: 20940349
[27] Song D U, Jang M S, Kim H W, Yoon H J, Chay K O, Joo Y E, Jung Y D, Yang S Y, Ahn B W. Gastroprotective effects of glutinous rice extract against ethanol-, indomethacin-, and stress-induced ulcers in rats. Chonnam Med J, 2014, 50: 6-14.
doi: 10.4068/cmj.2014.50.1.6 pmid: 24855601
[28] Li Z T, Han S X, Pu J Y, Wang Y Y, Jiang Y, Gao M J, Zhan X B, Xu S. In vitro digestion and fecal fermentation of low-gluten rice and its effect on the gut microbiota. Foods, 2023, 12: 855.
[29] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 窦志, 徐强, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异. 作物学报, 2021, 47: 1953-1965.
doi: 10.3724/SP.J.1006.2021.02068
Che Y, Cheng S, Tian J Y, Tao Y, Liu Q Y, Xing Z P, Dou Z, Xu Q, Hu Y J, Guo B W, Wei H Y, Gao H, Zhang H C. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields. Acta Agron Sin, 2021, 47: 1953-1965 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02068
[30] Li P, Chen Y H, Lu J, Zhang C Q, Liu Q Q, Li Q F. Genes and their molecular functions determining seed structure, components, and quality of rice. Rice, 2022, 15: 18.
doi: 10.1186/s12284-022-00562-8 pmid: 35303197
[31] Yang Y H, Guo M, Sun S Y, Zou Y L, Yin S Y, Liu Y N, Tang S Z, Gu M H, Yang Z F, Yan C J. Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nat Commun, 2019, 10: 1949.
[32] Zhou S R, Yin L L, Xue H W. Functional genomics based understanding of rice endosperm development. Curr Opin Plant Biol, 2013, 16: 236-246.
[33] Biselli C, Bagnaresi P, Cavalluzzo D, Urso S, Desiderio F, Orasen G, Gianinetti A, Righettini F, Gennaro M, Perrini R, Hassen M B, Sacchi G A, Cattivelli L, Valè G. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits. BMC Genomics, 2015, 16: 1091.
doi: 10.1186/s12864-015-2321-7 pmid: 26689934
[1] 贾舒涵, 何璨, 陈敏, 刘家欣, 胡伟民, 胡晋, 关亚静. 杂交水稻不同穗萌程度种子质量差异与穗萌分级研究[J]. 作物学报, 2024, 50(9): 2310-2322.
[2] 胡丽琴, 肖正午, 方升亮, 曹放波, 陈佳娜, 黄敏. 种植季节对高直链淀粉水稻品种淀粉消化特性的影响[J]. 作物学报, 2024, 50(9): 2347-2357.
[3] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[4] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[5] 邵美红, 赵玲玲, 程楚, 程思明, 朱双兵, 翟来圆, 陈凯, 徐建龙. 水稻黄华占背景选择导入系的耐低氮筛选评价与利用[J]. 作物学报, 2024, 50(8): 1907-1919.
[6] 何丹丹, 舒亚洲, 周海连, 吴松果, 魏晓双, 杨明冲, 李波, 吴正丹, 韩世健, 杨娟, 王继斌, 王令强. OsRPTA18参与调控水稻叶片倾角的功能[J]. 作物学报, 2024, 50(8): 1934-1947.
[7] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[8] 毕俊鸽, 曾占奎, 李琼, 洪壮壮, 颜群翔, 赵越, 王春平. 两个RIL群体中小麦籽粒品质相关性状QTL定位及KASP标记开发[J]. 作物学报, 2024, 50(7): 1669-1683.
[9] 裴法敬, 张文轩, 张晓, 王昕钰, 彭少兵, 米甲明. 长粒香型的超短生育期水稻新品系创制[J]. 作物学报, 2024, 50(7): 1684-1698.
[10] 玉泉馨, 杨宗桃, 张海, 程光远, 焦文迪, 曾康, 罗廷绪, 黄国强, 王璐, 徐景升. 甘蔗类钙调素ScCML13与SCMV运动蛋白P3N-PIPO的互作研究[J]. 作物学报, 2024, 50(7): 1855-1866.
[11] 望嘉翔, 郁雪婷, 李梦桃, 麦伟涛, 陈新, 王文泉. MeLAZY1c基因调控木薯株型的初步研究[J]. 作物学报, 2024, 50(6): 1514-1524.
[12] 唐清芸, 杨晶晶, 赵蕾, 宋志文, 王国栋, 李玉祥. 施氮量对滴灌水稻根系形态构型和分形特征的影响[J]. 作物学报, 2024, 50(6): 1540-1553.
[13] 张小芳, 朱琪, 华芸堰, 贾黎惠莹, 邱士优, 陈宇杰, 马涛, 丁沃娜. 水稻OsCYP22互作蛋白的筛选及验证[J]. 作物学报, 2024, 50(6): 1628-1634.
[14] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[15] 耿孝宇, 张翔, 刘洋, 左博源, 朱旺, 马唯一, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根, 韦还和. 江苏省滨海盐碱地籼粳杂交稻产量优势形成特征[J]. 作物学报, 2024, 50(5): 1253-1270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!