作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2674-2683.doi: 10.3724/SP.J.1006.2024.43014
杨雅文1,2,3,4,6(), 朱东杰3, 潘弘3, 张云涛5,6, 夏梦吟5,6, 韩宝柱3,6, 金敏亮3, 李梦娇3, 董鲁朋3, 杨宁1,2,6, 周英5,6, 许洁婷3,6,*(), 严建兵1,2,4,6,*()
YANG Ya-Wen1,2,3,4,6(), ZHU Dong-Jie3, PAN Hong3, ZHANG Yun-Tao5,6, XIA Meng-Yin5,6, HAN Bao-Zhu3,6, JIN Min-Liang3, LI Meng-Jiao3, DONG Lu-Peng3, YANG Ning1,2,6, ZHOU Ying5,6, XU Jie-Ting3,6,*(), YAN Jian-Bing1,2,4,6,*()
摘要:
农杆菌介导的玉米自交系遗传转化具有基因型依赖性。形态发生基因Baby boom (Bbm)和Wuschel2 (Wus2)显著提高了转化效率, 拓宽了可转化自交系的范围。然而, 多数玉米自交系仍然难以得到转基因苗, 且潜在机制尚不清楚。本研究发现, 目标载体与Bbm和Wus2的辅助载体按10∶1比例混合能使大部分自交系产生体细胞胚。瞬时侵染效率和筛选是影响体细胞胚形成和成苗的关键因素。通过利用Bbm和Wus2混转以及优化侵染和延迟筛选的方式, 建立了一个快速、不受基因型限制的玉米遗传转化体系。利用该技术体系对131个自交系进行遗传转化, 其中104个自交系获得阳性转基因植株。
[1] | 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议. 农业经济问题, 2021, (7): 4-15. |
Chou H G, Li X H, Yu J L. China maize industry: development trends and policy suggestions. Issues Agric Econ, 2021, (7): 4-15 (in Chinese with English abstract). | |
[2] |
Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nat Protoc, 2007, 2: 1614-1621.
doi: 10.1038/nprot.2007.241 pmid: 17585302 |
[3] |
Zhang Q, Zhang Y, Lu M H, Chai Y P, Jiang Y Y, Zhou Y, Wang X C, Chen Q J. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiol, 2019, 181: 1441-1448.
doi: 10.1104/pp.19.00767 pmid: 31558579 |
[4] | Sylvie De Buck C D W, Montagu M V, Depicker A. Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol Plant Microbe Interact, 2000, 13: 658-665. |
[5] | Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant, 2018, 54: 240-252. |
[6] |
Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A M, Miki B L A, Custers J B M, van Lookeren Campagne M M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14: 1737-1749.
doi: 10.1105/tpc.001941 pmid: 12172019 |
[7] | Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamm W. Morphogenic regulators Baby Boom and wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998-2015. |
[8] | Keith Lowe G H, Sun X F, Sonriza R G, Paul L, Sam E, Shane A, Kimberly G, Bill G K. Maize LEC1 improves transfromation in both maize and wheat. Plant Biotechnol, 2002: 283-284. |
[9] |
McFarland F L, Collier R, Walter N, Martinell B, Kaeppler S M, Kaeppler H F. A key to totipotency: Wuschel-like homeobox 2a unlocks embryogenic culture response in maize (Zea mays L.). Plant Biotechnol J, 2023, 21: 1860-1872.
doi: 10.1111/pbi.14098 pmid: 37357571 |
[10] |
Liu X, Bie X M, Lin X, Li M, Wang H, Zhang X, Yang Y, Zhang C, Zhang X S, Xiao J. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat Plants, 2023, 9: 908-925.
doi: 10.1038/s41477-023-01406-z pmid: 37142750 |
[11] |
Zhai N, Xu L. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nat Plants, 2021, 7: 1453-1460.
doi: 10.1038/s41477-021-01015-8 pmid: 34782770 |
[12] | Khanday I, Santos-Medellin C, Sundaresan V. Somatic embryo initiation by rice BABY BOOM1 involves activation of zygote-expressed auxin biosynthesis genes. New Phytol, 2023, 238: 673-687. |
[13] | Ogura N S Y, Ito T, Tameshige T, Kawai S, Sano M, Doll Y, Iwase A, Kawamura A, Suzuki T, Nikaido I, Sugimoto K, Ikeuchi M. WUSCHEL-RELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus. Sci Adv, 2023, 9: 1-13. |
[14] | Mendez-Hernandez H A, Ledezma-Rodriguez M, Avilez- Montalvo R N, Juarez-Gomez Y L, Skeete A, Avilez-Montalvo J, De-la-Pena C, Loyola-Vargas V M. Signaling overview of plant somatic embryogenesis. Front Plant Sci, 2019, 10: 77. |
[15] |
许洁婷, 刘相国, 金敏亮, 潘弘, 韩宝柱, 李梦娇, 岩说, 胡国庆, 严建兵. 不依赖基因型的高效玉米遗传转化体系的建立. 作物学报, 2022, 48: 2987-2993.
doi: 10.3724/SP.J.1006.2022.13068 |
Xu J T, Liu X G, Jin M L, Pan H, Han B Z, Li M J, Yan S, Hu G Q, Yan J B. Establishment of genotype-independent high efficiency transformation system in maize. Acta Agron Sin, 2022, 48: 2987-2993 (in Chinese with English abstract). | |
[16] | Sidorov V, Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods Mol Biol, 2009. pp 47-58. |
[17] | Liu S, Shi Y, Liu F, Guo Y, Lu M. LaCl3 treatment improves Agrobacterium-mediated immature embryo genetic transformation frequency of maize. Plant Cell Rep, 2022, 41: 1439-1448. |
[18] | Jha P, Kumar V. BABY BOOM (BBM): a candidate transcription factor gene in plant biotechnology. Biotechnol Lett, 2018, 40: 1467-1475. |
[19] | Hoerster G, Wang N, Ryan L, Wu E, Anand A, McBride K, Lowe K, Jones T, Gordon-Kamm B. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitro Cell Dev Biol Plant, 2020, 56: 265-279. |
[20] | Yadav R K, Perales M, Gruel J, Girke T, Jonsson H, Reddy G V. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev, 2011, 25: 2025-2030. |
[21] | Mookkan M, Nelson-Vasilchik K, Hague J, Zhang Z J, Kausch A P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep, 2017, 36: 1477-1491. |
[22] | Aregawi K, Shen J, Pierroz G, Sharma M K, Dahlberg J, Owiti J, Lemaux P G. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnol J, 2022, 20: 748-760. |
[23] | Masters A, Kang M, McCaw M, Zobrist J D, Gordon-Kamm W, Jones T, Wang K. Agrobacterium-mediated immature embryo transformation of recalcitrant maize inbred lines using morphogenic genes. J Vis Exp, 2020, 156: e60782. |
[24] |
Sun C, Lei Y, Li B, Gao Q, Li Y, Cao W, Yang C, Li H, Wang Z, Li Y, Wang Y, Liu J, Zhao K T, Gao C. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat Biotechnol, 2023, 42: 316-327.
doi: 10.1038/s41587-023-01769-w pmid: 37095350 |
[25] | Wang F X, Shang G D, Wu L Y, Xu Z G, Zhao X Y, Wang J W. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Dev Cell, 2020, 54: 742-757. |
[26] | Chen Z, Debernardi J M, Dubcovsky J, Gallavotti A. The combination of morphogenic regulators BABY BOOM and GRF-GIF improves maize transformation efficiency. bioRxiv, 2022, doi: 101101/2022.09.02.506370. |
[27] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126: 663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174 |
[1] | 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395. |
[2] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[3] | 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013. |
[4] | 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10、ZmCCT9、ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970. |
[5] | 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077. |
[6] | 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933. |
[7] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[8] | 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066. |
[9] | 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876. |
[10] | 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4型ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657. |
[11] | 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627. |
[12] | 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434. |
[13] | 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450. |
[14] | 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222. |
[15] | 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324. |
|