欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2917-2924.doi: 10.3724/SP.J.1006.2024.43026

• 综述 •    下一篇

黄淮海地区夏玉米育种目标与策略

陈永强1(), 王雅菲1, 谢惠玲1, 张战辉1, 黑洪超1, 彭强2, 杨雪利2, 何革命3,*(), 汤继华1,*()   

  1. 1河南农业大学 / 省部共建小麦玉米作物学国家重点实验室 / 神农种业实验室, 河南郑州 450002
    2河南省豫玉种业有限公司, 河南郑州 450001
    3南阳市种业发展中心, 河南南阳 473000
  • 收稿日期:2024-06-20 接受日期:2024-09-03 出版日期:2024-12-12 网络出版日期:2024-09-09
  • 通讯作者: *何革命, E-mail: hegeming10@sina.com; 汤继华, E-mail: tangjihua1@163.com
  • 作者简介:E-mail: chenyongqiang@henau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFD1201004);河南省重大科技专项(221100110300);河南神农种业实验室一流课题(SN01-2022-02);河南省重点研发专项(241111114300);河南省农业良种联合攻关项目(2022010204)

Breeding objectives and strategies for maize in the Huang-Huai-Hai Region

CHEN Yong-Qiang1(), WANG Ya-Fei1, XIE Hui-Ling1, ZHANG Zhan-Hui1, HEI Hong-Chao1, PENG Qiang2, YANG Xue-Li2, HE Ge-Ming3,*(), TANG Ji-Hua1,*()   

  1. 1National Key Laboratory of Wheat and Maize Crop Science / the Shennong Laboratory / Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Henan Yuyu Seed Industry Co., Ltd., Zhengzhou 450001, Henan, China
    3Nanyang Seed Industry Development Center, Nanyang 473000, Henan, China
  • Received:2024-06-20 Accepted:2024-09-03 Published:2024-12-12 Published online:2024-09-09
  • Contact: *E-mail: hegeming10@sina.com; E-mail: tangjihua1@163.com
  • Supported by:
    National Key Research and Development Program of China(2022YFD1201004);Major Projects of Henan Province(221100110300);Key Research Project of the Shennong Laboratory(SN01-2022-02);Key Research and Development Projects of Henan Province(241111114300);Agricultural Seed Joint Research Project of Henan Province(2022010204)

摘要:

黄淮海地区是我国第二大玉米产区, 位于亚热带向北温带的过渡区域, 具有全球唯一的小麦玉米周年两熟耕作制度, 特殊的生态环境和耕作制度对玉米品种的综合抗性与适应性提出了更高要求。本文详细分析了黄淮海地区玉米生产概况及存在问题, 明确了“高产、宜机收、早熟、耐密、耐非生物逆境、抗主要病虫害”的育种目标, 提出了黄淮海地区“降优(杂种优势)增密(密度)、增容(容重)扩率(脱籽率)、多重(基因)增抗(逆)、增(气生)根抗倒(伏)、提早散粉避高温”的育种策略, 同时要针对育种目标发掘优异基因资源, 加强核心种质资源创制, 建立基因编辑和全基因组选择等现代分子育种体系, 组建科研院校和企业从种质资源创新、高效育种体系建立和新品种选育与推广的全产业链科企创新模式, 进而选育出优良新品种为黄淮海玉米生产提供有效支撑。

关键词: 黄淮海地区, 玉米, 存在问题, 育种目标, 策略

Abstract:

The Huang-Huai-Hai region, the second largest maize-producing area in China, is situated in a transitional zone between the subtropical and north temperate climates. This region is characterized by a unique double cropping system of winter wheat-summer maize, which presents specific challenges for maize cultivation. The distinct ecological conditions and cropping system necessitate maize varieties with enhanced comprehensive resistance and adaptability. This paper provides a detailed analysis of the current production status and the primary issues facing maize cultivation in the Huang-Huai-Hai region. It identifies key breeding objectives, including “high yield, suitability for mechanized harvesting, early maturity, tolerance to high planting density, resilience to environmental stresses, and resistance to major diseases and pests.” Based on these objectives, the paper proposes several breeding strategies: “reducing heterosis to increase planting density, improving kernel bulk density and single-ear seed yield, incorporating multiple resistance genes to enhance disease resistance, strengthening lodging resistance by increasing the number of brace roots, and promoting earlier anther dehiscence and pollen release to avoid high temperatures.” Additionally, the paper emphasizes the importance of identifying and utilizing superior genes, advancing the development of new core germplasm resources, and establishing modern molecular breeding systems, such as genome editing and genome-wide selection. It also advocates for the creation of an innovative collaboration model among research institutes, universities, and seed enterprises to accelerate germplasm innovation, improve maize breeding efficiency, and enhance the breeding and promotion of the entire industry chain. The ultimate goal is to develop superior new maize varieties that will effectively support agricultural production in the Huang-Huai-Hai region.

Key words: the Huang-Huai-Hai region, maize, existing problems, breeding objective, strategy

表1

黄淮海地区(郑州)近10年7月至8月高温天气统计"

年份
Year
7月至8月温度超过35℃天数
Number of days with temperatures exceeding 35℃ from July to August
7月至8月温度持续超过35℃天数
Number of consecutive days with temperatures
exceeding 35℃ from July to August
2013 25 22
2014 18 13
2015 11 10
2016 11 8
2017 28 24
2018 18 14
2019 20 14
2020 4 0
2021 9 3
2022 21 11

图1

高密度条件下群体产量提升关系图"

表2

玉米新品种产量提升路径"

性状
Traits
MY73 一般品种
General variety
比一般品种增量
Incremental quantity than the general variety
每公顷产量增量
Incremental quantity per hectare
脱籽率Seed yield rate 92% 85%-87% 5%-7% 600 kg
容重Bulk density 798 g L−1 730-750 g L−1 50 g L−1 525 kg
种植密度Plant density >75,000 plants hm−2 60,000-67,500 plants hm−2 7500-15,000 plants hm−2 1125 kg
合计Total 2250 kg
[1] Li Q, Wang J C, Ye J W, Zheng X X, Xiang X L, Li C S, Fu M M, Wang Q, Zhang Z Y, Wu Y R. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III. Plant Cell, 2017, 29: 2661-2675.
[2] 徐小曼, 王成军. 我国玉米生产要素配置效率研究: 基于黑龙江、河南和四川3个玉米主产省的调查. 玉米科学, 2023, 31(2): 174-180.
Xu X M, Wang C J. Study on allocation efficiency of corn production factors in China: based on the investigation of three major corn producing provinces, Heilongjiang, Henan, and Sichuan. J Maize Sci, 2023, 31(2): 174-180 (in Chinese with English abstract).
[3] 刘世梦倪, 宋敏. 品种改良对玉米单产的贡献率分析. 河南农业大学学报, 2021, 55: 364-371.
Liu S M N, Song M. Analysis on the contribution rate of variety improvement to corn yield. J Henan Agric Univ, 2021, 55: 364-371 (in Chinese with English abstract).
[4] 戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010, 18(1): 1-5.
Dai J R, E L Z. Scientific and technological innovation of maize breeding in China. J Maize Sci, 2010, 18(1): 1-5 (in Chinese with English abstract).
[5] Ye X X, Ye Y, Chai R S, Li J L, Ma C, Li H Y, Xiong Q Z, Gao H J. The influence of a year-round tillage and residue management model on soil N fractions in a wheat-maize cropping system in central China. Sci Rep, 2019, 9: 4767.
doi: 10.1038/s41598-019-41409-5 pmid: 30886311
[6] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展. 作物学报, 2021, 47: 1843-1853.
doi: 10.3724/SP.J.1006.2021.13012
Zhou B Y, Ge J Z, Sun X F, Han Y L, Ma W, Ding Z S, Li C F, Zhao M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Acta Agron Sin, 2021, 47: 1843-1853 (in Chinese with English abstract).
[7] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明. 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019, 52: 1501-1517.
doi: 10.3864/j.issn.0578-1752.2019.09.003
Zhou B Y, Ma W, Sun X F, Gao Z H, Ding Z S, Li C F, Zhao M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Sci Agric Sin, 2019, 52: 1501-1517 (in Chinese with English abstract).
[8] 任冠怡. 我国玉米主要产区生产效率分析. 河南农业大学硕士学位论文,河南郑州, 2019.
Ren G Y. The Analysis of Corn Productivity in China Major Production Areas. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2019 (in Chinese with English abstract).
[9] 许海涛, 王友华, 许波, 王成业, 张海申. 黄淮海区玉米生产发展现状、存在问题及对策. 玉米科学, 2007, 15(增刊1): 160-162.
Xu H T, Wang Y H, Xu B, Wang C Y, Zhang H S. Present situation and problem in the development of corn production in Huang-Huai-Hai Valley and its countermeasure. J Maize Sci, 2007, 15(S1): 160-162 (in Chinese with English abstract).
[10] Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E D, Liu Q, Martre P, Müller C, Peng S S, Peñuelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA, 2017, 114: 9326-9331.
doi: 10.1073/pnas.1701762114 pmid: 28811375
[11] 刘万才, 刘振东, 黄冲, 陆明红, 刘杰, 杨清坡. 近10年农作物主要病虫害发生危害情况的统计和分析. 植物保护, 2016, 42(5): 1-9.
Liu W C, Liu Z D, Huang C, Lu M H, Liu J, Yang Q P. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Prot, 2016, 42(5): 1-9 (in Chinese with English abstract).
[12] 高俊, 汪慧泉, 顾东祥, 张斯梅, 张传辉, 顾克军. 秸秆还田对土壤生态及农作物生长发育影响的研究进展. 中国农学通报, 2023, 39(30): 87-93.
doi: 10.11924/j.issn.1000-6850.casb2022-0897
Gao J, Wang H Q, Gu D X, Zhang S M, Zhang C H, Gu K J. Effects of straw returning on soil ecology and crop growth and development. Chin Agric Sci Bull, 2023, 39(30): 87-93 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb2022-0897
[13] 范非. 浅析农村土地规模化经营现状: 以山东省济南市为例. 中国统计, 2019, (4): 72-74.
Fan F. A brief analysis of the current situation of large-scale management of rural land: taking Jinan city of Shandong province as an example. China Stat, 2019, (4): 72-74 (in Chinese).
[14] 王琳颖. 乡村振兴战略下农村土地经营权流转的法律规制. 现代农业研究, 2022, 28(3): 30-32.
Wang L Y. Legal regulation of rural land management right transfer under the strategy of rural revitalization. Mod Agric Res, 2022, 28(3): 30-32 (in Chinese with English abstract).
[15] 韩占兵. 农业生产规模化经营现状、障碍与政策支持. 农村经济与科技, 2018, 29(7): 1-2.
Han Z B. Current situation, obstacles and policy support of large-scale operation of agricultural production. Rural Econ Sci Technol, 2018, 29(7): 1-2 (in Chinese).
[16] 祖祎祎. 玉米单粒播种子质量标准即将实施. 农民日报, 2021-10-26 (007).
Zu W W. The quality standard of maize single-seed sowing will be implemented soon. Farmers’ Daily, 2021-10-26 (007) (in Chinese).
[17] 孙海全, 邓奥严, 姜业成, 王立春, 尤丽娜. 玉米生产全程机械化现状和存在的问题及发展趋势. 农机科技推广, 2024, (5): 4-8.
Sun H Q, Deng A Y, Jiang Y C, Wang L C, You L N. Present situation, existing problems and development trend of corn production mechanization. Agric Mach Technol Ext, 2024, (5): 4-8 (in Chinese).
[18] 辛尚龙, 赵武云, 曲浩, 杨天, 史瑞杰, 闫治斌, 马海军. 玉米机械化收获技术现状分析及发展趋势. 农机化研究, 2024, 46(10): 9-14.
Xin S L, Zhao W Y, Qu H, Yang T, Shi R J, Yan Z B, Ma H J. Current situation analysis and development trend of maize mechanized harvesting technology. J Agric Mech Res, 2024, 46(10): 9-14 (in Chinese with English abstract).
[19] Miu P. Combine Harvesters:Theory, Modeling, and Design. BocaTaton: CRC Press Inc., 2015. pp 3-25.
[20] 王克如, 李璐璐, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张国强, 侯梁宇, 李少昆. 中国玉米机械粒收质量主要指标分析. 作物学报, 2021, 47: 2440-2449.
doi: 10.3724/SP.J.1006.2021.03046
Wang K R, Li L L, Gao S, Wang Y Z, Huang Z F, Xie R Z, Ming B, Hou P, Xue J, Zhang G Q, Hou L Y, Li S K. Analysis of main quality index of corn harvesting with combine in China. Acta Agron Sin, 2021, 47: 2440-2449 (in Chinese with English abstract).
[21] 胥丽艳. 玉米机械化收获损失影响因素分析. 农机使用与维修, 2023, (10): 79-81.
Xu L Y. Analysis of factors influencing losses in mechanized corn harvesting. Agric Mach Using Maint, 2023, (10): 79-81 (in Chinese with English abstract).
[22] Wu Y R, Messing J. RNA interference can rebalance the nitrogen sink of maize seeds without losing hard endosperm. PLoS One, 2012, 7: e32850.
[23] Vasal S K, Villegas E, Bjarnason M, Gelaw B, Goertz P. Genetic modifiers and breeding strategies in developing hard endosperm opaque-2 materials. Proceedings of the Improvement of Quality Traits of Maize for Grain and Silage Use, 1980. pp37-73.
[24] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势. 作物学报, 2023, 49: 2064-2076.
doi: 10.3724/SP.J.1006.2023.23067
Bai Y, Gao T T, Lu S, Zheng S B, Lu M. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020. Acta Agron Sin, 2023, 49: 2064-2076 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23067
[25] Mansfield B D, Mumm R H. Survey of plant density tolerance in U.S. maize germplasm. Crop Sci, 2014, 54: 157-173.
[26] Wang Y B, Bao J X, Wei X, Wu S W, Fang C W, Li Z W, Qi Y C, Gao Y X, Dong Z Y, Wan X Y. Genetic structure and molecular mechanisms underlying the formation of tassel, anther, and pollen in the male inflorescence of maize (Zea mays L.). Cells, 2022, 11: 1753.
[27] 任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016, 42: 1864-1872.
doi: 10.3724/SP.J.1006.2016.01864
Ren B Z, Li L L, Dong S T, Liu P, Zhao B, Yang J S, Wang D B, Zhang J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Acta Agron Sin, 2016, 42: 1864-1872 (in Chinese with English abstract).
[28] Wang H H, Huang Y C, Xiao Q, Huang X, Li C S, Gao X Y, Wang Q, Xiang X L, Zhu Y D, Wang J C, Wang W Q, Larkins B A, Wu Y R. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun, 2020, 11: 5346.
doi: 10.1038/s41467-020-19196-9 pmid: 33093471
[29] Wang H Q, Wang K, Du Q G, Wang Y F, Fu Z Y, Guo Z Y, Kang D M, Li W X, Tang J H. Maize Urb2 protein is required for kernel development and vegetative growth by affecting pre-ribosomal RNA processing. New Phytol, 2018, 218: 1233-1246.
doi: 10.1111/nph.15057 pmid: 29479724
[30] Wang H C, Sayyed A, Liu X Y, Yang Y Z, Sun F, Wang Y, Wang M D, Tan B C. SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. J Integr Plant Biol, 2020, 62: 777-792.
[31] Huang Y C, Wang H H, Huang X, Wang Q, Wang J C, An D, Li J Q, Wang W Q, Wu Y R. Maize VKS1 regulates mitosis and cytokinesis during early endosperm development. Plant Cell, 2019, 31: 1238-1256.
[32] Zhang S S, Zhan J P, Yadegari R. Maize opaque mutants are no longer so opaque. Plant Reprod, 2018, 31: 319-326.
doi: 10.1007/s00497-018-0344-3 pmid: 29978299
[33] Chen G S, Zhang B, Ding J Q, Wang H Z, Deng C, Wang J L, Yang Q H, Pi Q Y, Zhang R Y, Zhai H Y, Dong J F, Huang J S, Hou J B, Wu J H, Que J M, Zhang F, Li W Q, Min H X, Tabor G, Li B L, Liu X G, Zhao J R, Yan J B, Lai Z B. Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora. Nat Commun, 2022, 13: 4392.
[34] Deng C, Leonard A, Cahill J, Lv M, Li Y R, Thatcher S, Li X Y, Zhao X D, Du W J, Li Z, Li H M, Llaca V, Fengler K, Marshall L, Harris C, Tabor G, Li Z M, Tian Z Q, Yang Q H, Chen Y H, Tang J H, Wang X T, Hao J J, Yan J B, Lai Z B, Fei X H, Song W B, Lai J S, Zhang X C, Shu G P, Wang Y B, Chang Y X, Zhu W L, Xiong W, Sun J, Li B L, Ding J Q. The RppC-AvrRppC NLR-effector interaction mediates the resistance to southern corn rust in maize. Mol Plant, 2022, 15: 904-912.
[35] Mu X H, Dai Z Z, Guo Z Y, Zhang H, Yang J P, Gan X K, Li J K, Liu Z H, Tang J H, Gou M Y. Systematic dissection of disease resistance to southern corn rust by bulked-segregant and transcriptome analysis. Crop J, 2022, 10: 426-435.
doi: 10.1016/j.cj.2021.07.001
[36] Ren W, Zhao L F, Liang J X, Wang L F, Chen L M, Li P C, Liu Z G, Li X J, Zhang Z H, Li J P, He K H, Zhao Z, Ali F, Mi G H, Yan J B, Zhang F S, Chen F J, Yuan L X, Pan Q C. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nat Plants, 2022, 8: 1408-1422.
doi: 10.1038/s41477-022-01274-z pmid: 36396706
[37] 霍治国, 张海燕, 李春晖, 孔瑞, 江梦圆. 中国玉米高温热害研究进展. 应用气象学报, 2023, 34: 1-14.
Huo Z G, Zhang H Y, Li C H, Kong R, Jiang M Y. Review on high temperature heat damage of maize in China. J Appl Meteor Sci, 2023, 34: 1-14 (in Chinese with English abstract).
[38] 降志兵, 陶洪斌, 吴拓, 王璞, 宋庆芳. 高温对玉米花粉活力的影响. 中国农业大学学报, 2016, 21(3): 25-29.
Jiang Z B, Tao H B, Wu T, Wang P, Song Q F. Effects of high temperature on maize pollen viability. J China Agric Univ, 2016, 21(3): 25-29 (in Chinese with English abstract).
[39] 杨国虎. 玉米花粉花丝耐热性研究进展. 种子, 2005, 24(2): 47-51.
Yang G H. The progress of pollens and silks thermotolerance in Maize. Seed, 2005, 24(2): 47-51 (in Chinese).
[40] Djalovic I, Kundu S, Bahuguna R N, Pareek A, Raza A, Singla-Pareek S L, Prasad P V V, Varshney R K. Maize and heat stress: physiological, genetic, and molecular insights. Plant Genome, 2024, 17: e20378.
[41] Zenda T, Wang N, Dong A Y, Zhou Y Z, Duan H J. Reproductive-stage heat stress in cereals: impact, plant responses and strategies for tolerance improvement. Int J Mol Sci, 2022, 23: 6929.
[42] 穆心愿, 马智艳, 卢良涛, 吕姗姗, 刘天学, 胡秀丽, 李树岩, 蒋寒涛, 范艳萍, 赵霞, 唐保军, 夏来坤. 授粉期高温胁迫对夏玉米植株形态、叶片光合及产量的影响. 中国生态农业学报(中英文), 2024, 32: 106-118.
Mu X Y, Ma Z Y, Lu L T, Lyu S S, Liu T X, Hu X L, Li S Y, Jiang H T, Fan Y P, Zhao X, Tang B J, Xia L K. Effects of high temperature stress during pollination on plant morphology, leaf photosynthetic characteristics and yield of summer maize. Chin J Eco-Agric, 2024, 32: 106-118 (in Chinese with English abstract).
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[3] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[4] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[5] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[6] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[7] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[8] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[9] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[10] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[11] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[12] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[13] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[14] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
[15] 田红丽, 杨扬, 范亚明, 易红梅, 王蕊, 金石桥, 晋芳, 张云龙, 刘亚维, 王凤格, 赵久然. 用于玉米品种真实性鉴定的最优核心SNP位点集的研发[J]. 作物学报, 2024, 50(5): 1115-1123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!