欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2750-2758.doi: 10.3724/SP.J.1006.2025.54031

• 耕作栽培·生理生化 • 上一篇    下一篇

不同代数脱毒果蔗田间表现分析

丁楚蔚1(), 吕永平1(), 汪一婷1,2, 毛玲荣3, 牟豪杰1, 李海营1, 陈剑平1,2,4, 陈志1,*()   

  1. 1浙江省农业科学院病毒学与生物技术研究所, 浙江杭州 310021
    2浙江省农业科学院绿色植保全省重点实验室, 浙江杭州 310021
    3温岭市农业农村和水利局, 浙江台州 317599
    4宁波大学植物病毒学研究所, 浙江宁波 315211
  • 收稿日期:2025-03-02 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-15
  • 通讯作者: *陈志, E-mail: czdmh@163.com
  • 作者简介:丁楚蔚, E-mail: 17857028304@163.com;
    吕永平, E-mail: lvyongp@163.com
    **同等贡献
  • 基金资助:
    植物组培工厂化生产成套装备研发与产业化应用基金项目(2024R30A24B02)

Comparative analysis of field traits among different generations of virus-free chewing cane

DING Chu-Wei1(), LYU Yong-Ping1(), WANG Yi-Ting1,2, MAO Ling-Rong3, MOU Hao-Jie1, LI Hai-Ying1, CHEN Jian-Ping1,2,4, CHEN Zhi1,*()   

  1. 1Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
    2Key Laboratory of Green Plant Protection, Zhejiang Province, P.R. China, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
    3Wenling Agriculture, Rural Affairs and Water Resources Bureau, Taizhou 317599, Zhejiang, China
    4Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China
  • Received:2025-03-02 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-15
  • Contact: *E-mail: czdmh@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Research and Development of Integrated Equipment System for Industrial-scale Plant Tissue Culture Production and Its Industrialization Application Fund(2024R30A24B02)

摘要:

为探究脱病毒种苗对果蔗的影响, 本研究以广东黄皮果蔗为试验材料, 进行了自留种、脱毒一代、脱毒二代果蔗种苗的田间性状和果汁品质的比较研究。结果表明, 3种材料中, 脱毒二代果蔗的田间生长状态最佳, 与自留种和脱毒一代相比, 其地上株高分别提高9.08%、5.80% (其中可食部分高度分别提高13.64%、7.19%), 茎粗分别提高13.98%、9.71%, 产量分别提高47.76%、63.72% (达到159.5 t hm-2), 出汁率分别提高3.64%、9.17%, 蔗汁的总糖含量分别下降10.14%、12.73%; 脱毒对果蔗蔗汁的密度、锤度和纤维含量无显著影响; 脱毒苗第一代果蔗与自留种的产量和蔗汁品质无显著差异, 脱毒组培苗作为第一代种苗可用于繁育脱毒果蔗种茎, 3—4月份适宜移栽。因此, 相对于一代组培苗, 采用脱毒第二代种苗(脱毒第一代种苗种植收获的果蔗种茎)进行商品蔗种植效果更好, 可促进果蔗田间生长, 显著提高果蔗的产量。

关键词: 果蔗, 脱毒种苗, 种茎, 田间性状, 产量

Abstract:

To investigate the effect of virus-free plantlets on chewing cane, a comparative analysis of field traits and juice quality was conducted using three types of planting materials: self-preserved cuttings, first-generation virus-free plantlets, and second-generation virus-free plantlets, with the chewing cane cultivar ‘Guangdong Huangpi' as the experimental material. The results showed that the second-generation virus-free chewing cane exhibited the best field performance among the three sources. Compared with the self-preserved and first-generation virus-free plantlets, the second-generation plantlets showed increases in plant height by 9.08% and 5.80%, respectively (with edible stalk height increasing by 13.64% and 7.19%); stalk diameter increased by 13.98% and 9.71%; and yield increased by 47.76% and 63.72%, reaching 159.5 t hm-2. Juice extractionrate increased by 3.64% and 9.17%, respectively, while total sugar content in the juice decreased by 10.14% and 12.73%. No significant differences were observed among the three treatments in terms of juice density, Brix, or fiber content. Additionally, there were no significant differences in yield or juice quality between the self-preserved and first-generation virus-free materials. These findings suggest that virus-free tissue-cultured seedlings can be used as first-generation seedcane for producing virus-free chewing cane, with optimal transplanting time between March and April. Overall, compared to first-generation virus-free seedlings, the second-generation virus-free chewing cane seedlings—derived from seedcane harvested from the first-generation—are more suitable for commercial cultivation due to their superior growth and yield performance.

Key words: chewing cane, virus-free seedlings, seedcane, field traits, yield

表1

不同种植时间对脱毒果蔗组培苗一代种茎的影响"

种植时间
Planting time (month-day)
株高
Plant height (cm)
茎长
Stalk length (cm)
茎粗
Stalk thickness (mm)
每茎节间数
Internodes per stalk
每丛茎数
Stalk per clump
03-15 306.17±14.69 a 251.44±15.07 a 37.43±2.25 a 19.67±1.57 a 4.61±0.61 a
04-01 302.50±25.24 ab 248.17±24.72 a 38.84±1.52 a 20.50±1.93 a 5.00±1.48 a
04-16 288.08±17.48 b 235.58±18.87 a 37.15±3.57 a 20.08±1.44 a 5.00±1.71 a
05-01 260.21±25.09 c 207.36±25.46 b 38.25±3.45 a 18.00±2.25 b 4.29±1.38 a

图1

不同种源果蔗的生长速度"

表2

不同种源对果蔗田间生长性状的影响"

年份
Year
种源
Seed source
株高
Plant height
(cm)
茎粗
Stalk thickness (mm)
每茎节间数
Internodes stalk-1
节间长
Internode length (cm)
可食茎长
Length of edible stalk (cm)
可食茎鲜质量
Fresh mass of edible stalk (kg)
2022 自留种
Self preserved seedcane
311.75±14.82 c 35.80±2.62 c 26.00±1.82 a 10.10±0.71 b 262.81±12.38 c 2.36±0.08 b
脱毒一代
First generation of virus- free seedcane
327.31±13.42 b 37.87±2.67 b 22.00±1.09 c 12.31±0.45 a 272.31±13.78 b 2.15±0.47 b
脱毒二代
Second generation of virus-free seedcane
341.75±9.19 a 43.31±2.16 a 24.00±1.45 b 11.99±0.65 a 288.56±9.39 a 3.52±0.39 a
2023 自留种
Self preserved seedcane
314.50±9.42 b 37.54±1.89 b 18.25±1.06 c 13.40±0.58 a 244.17±9.87 c 2.52±0.24 b
脱毒一代
First generation of virus- free seedcane
318.42±12.18 b 38.23±1.54 b 21.17±3.04 b 12.67±1.39 ab 264.58±10.87 b 2.25±0.46 b
脱毒二代
Second generation of virus-free seedcane
341.33±16.43 a 40.16±2.62 a 23.25±1.36 a 12.35±0.70 b 286.83±19.87 a 3.67±0.05 a

图2

不同种源果蔗苗及后期生长状态 A: 第一代脱毒组培果蔗种苗; B: 第一代脱毒果蔗的种茎培育获得的萌芽种苗; C: 收获期果蔗。"

图3

不同种源果蔗的产量 不同小写字母表示差异显著(P < 0.05)。"

表3

不同种源对蔗汁品质的影响"

年份
Year
种源
Seed sources
出汁率
Juice rate
(%)
密度
Density
(g mL-1)
锤度
Brix
(°Bx)
总糖含量
Total sugar content (%)
蔗糖含量Sucrose content (%) 果糖含量Fructose content (%) 葡萄糖含量
Glucose content (%)
粗纤维含量
Crude fiber content (%)
2022 自留种
Self preserved seedcane
65.67±1.85 ab 1.04±0.01 a 12.37±0.35 a 9.66±0.54 a 7.20±1.18 a 1.58±0.74 a 0.88±0.10 a 2.20±0.44 a
脱毒一代
First generation of virus-free seedcane
63.22±1.99 b 1.04±0.00 a 12.13±0.42 a 9.95±0.31 a 8.13±0.32 a 0.85±0.04 ab 0.97±0.03 a 2.13±0.32 a
脱毒二代
Second generation of virus-free
seedcane
67.62±0.97 a 1.04±0.00 a 12.10±0.26 a 8.68±0.28 b 7.13±0.50 a 0.67±0.12 b 0.87±0.13 a 2.53±0.06 a
2023 自留种
Self preserved seedcane
64.27±3.24 ab 1.03±0.01 a 11.67±0.31 a 10.41±0.09 a 8.57±1.35 a 0.97±0.32 a 0.87±0.20 a 2.13±0.15 a
脱毒一代
First generation of virus-free seedcane
60.19±3.65 b 1.04±0.01a 12.63±0.25 a 10.03±0.54 a 8.30±0.70 a 0.77±0.04 a 0.97±0.13 a 2.13±0.12 a
脱毒二代
Second generation of virus-free
seedcane
67.03±0.74 a 1.04±0.00 a 12.87±0.23 a 10.04±0.32 a 8.13±0.31 a 0.87±0.06 a 1.03±0.06 a 2.30±0.10 a
[1] Tripathy S K, Ithape D M. High-throughput in vitro culture system targeting genetic transformation in sugarcane. J Crop Sci Biotechnol, 2020, 23: 325-335.
[2] 王敬湧, 谢洒洒, 盖倞尧, 王梓廷. 花叶病胁迫下甘蔗叶片叶绿素含量的高光谱预测模型. 光谱学与光谱分析, 2023, 43: 2885-2893.
Wang J Y, Xie S S, Gai J Y, Wang Z T. Hyperspectral prediction model of chlorophyll content in sugarcane leaves under stress of mosaic. Spectrosc Spectr Analy, 2023, 43: 2885-2893 (in Chinese with English abstract).
[3] Kamat D N, Krushalini J S, Singh R. Assessment of regenerative response of early sugarcane varieties under in vitro condition. Int J Environ Clim Change, 2023, 13: 625-631.
[4] Lin X R, Yang D, Zhu Y, Qin Y L, Liang T, Yang S D, Tan H W. Changes in root metabolites and soil microbial community structures in rhizospheres of sugarcanes under different propagation methods. Microb Biotechnol, 2024, 17: e14372.
[5] 钱永兰, 匡昭敏, 赵晓凤, 张艳红, 何延波, 李祎君, 王纯枝. 世界甘蔗种植及蔗糖生产流通演变. 甘蔗糖业, 2024, 53(2): 68-81.
Qian Y L, Kuang Z M, Zhao X F, Zhang Y H, He Y B, Li Y J, Wang C Z. Evolution of global sugarcane planting and cane sugar production and circulation. Sugar Canesugar, 2024, 53(2): 68-81 (in Chinese with English abstract).
[6] 张跃彬, 赵培方, 胡朝晖, 阙友雄. 近年我国甘蔗品种的育种成就与发展趋势. 中国糖料, 2024, 46(1): 87-92.
Zhang Y B, Zhao P F, Hu Z H, Que Y X. The recent achievements and development trends of sugarcane improvement in China. Sugar Crops China, 2024, 46(1): 87-92 (in Chinese with English abstract).
[7] 肖祎, 吕达, 陈道德. 我国果蔗研究新进展. 中国糖料, 2018, 40(1): 62-67.
Xiao Y, Lyu D, Chen D D. The latest research progress of chewing-cane in China. Sugar Crops China, 2018, 40(1): 62-67 (in Chinese with English abstract).
[8] 李鸿博, 严卓晟, 邓权清, 颜静婷, 吴佳, 钟坚文, 沈万宽. 超声波处理对果蔗产量品质及生理特性的影响. 华中农业大学学报, 2019, 38(3): 7-12.
Li H B, Yan Z S, Deng Q Q, Yan J T, Wu J, Zhong J W, Shen W K. Effects of ultrasonic treatment on yield, quality and physiological characteristics of chewing cane. J Huazhong Agric Univ, 2019, 38(3): 7-12 (in Chinese with English abstract).
[9] 张莉娟, 吴凤, 李今朝, 罗义灿, 单彬, 林垠孚. 中国糖料蔗和果蔗品种发展历史. 农业研究与应用, 2023, 36(6): 79-86.
Zhang L J, Wu F, Li J Z, Luo Y C, Shan B, Lin Y F. Development history of industrial cane and chewing cane varieties in China. J Agric Res Appl, 2023, 36(6): 79-86 (in Chinese with English abstract).
[10] 周慧文, 范业赓, 黄杏, 陈荣发, 杨柳, 卢星高, 吴建明, 丘立杭, 李杨瑞. 甘蔗健康种苗原苗提前移栽对田间繁育的影响. 中国糖料, 2019, 41(3): 23-27.
Zhou H W, Fan Y G, Huang X, Chen R F, Yang L, Lu X G, Wu J M, Qiu L H, Li Y R. Effects of early transplanting on the growth and developments of virus-free sugarcane seedlings. Sugar Crops China, 2019, 41(3): 23-27 (in Chinese with English abstract).
[11] Yang D, Lin X R, Wei Y F, Li Z J, Zhang H D, Liang T, Yang S D, Tan H W. Can endophytic microbial compositions in cane roots be shaped by different propagation methods. PLoS One, 2023, 18: e0290167.
[12] Tayade A S, Geetha P, Anusha S. Standardizing planting agro- techniques for sugarcane tissue culture plantlets and bud chip settlings. Sugar Tech, 2021, 23: 1097-1104.
[13] Lu J J, Ali A, He E Q, Yan G Q, Arak T U, Gao S J. Establishment of an open, sugar-free tissue culture system for sugarcane micropropagation. Sugar Tech, 2020, 22: 8-14.
[14] Wang K L, Deng Q Q, Chen J W, Shen W K. Physiological and molecular mechanisms governing the effect of virus-free chewing cane seedlings on yield and quality. Sci Rep, 2020, 10: 10306.
[15] Saptari R T, Aksa A A, Riyadi I, Prasetyo M E R B, Lindawati S, Setiawati Y, Minarsih H, Sinta M M, Sumaryono S. Genetic stability analysis of the temporary immersion bioreactors-derived sugarcane seedlings with simple sequence repeat (SSR) markers. Plant Cell Tissue Organ Cult, 2023, 156: 22.
[16] Abide M, Kidanemariam D, Yimam T, Worku Y, Kebede M, Abraham A. Protocol optimization for elimination of sugarcane bacilliform virus and rapid propagation of virus-free sugarcane using meristem tip culture. Trop Plant Pathol, 2022, 47: 693-697.
[17] Salokhe S. Development of an efficient protocol for tissue culture of sugarcane. Plant Cell Biotechnol Mol Biol, 2021, 22: 9-21.
[18] 林丽丽. “黄皮果蔗”脱毒苗配套栽培技术. 福建热作科技, 2024, 49(2): 34-36.
Lin L L. Healthy virus-free seedling and its cultivation technology of “yellow peel chewing cane”. Fujian Sci Technol Trop Crops, 2024, 49(2): 34-36 (in Chinese with English abstract).
[19] 吴转娣, 赵培方, 杨洪昌, 昝逢刚, 覃伟, 杨立凡, 郭家文. 高糖新品种云蔗1640花叶病原的检测与脱毒种苗生产. 中国糖料, 2024, 46(2): 1-8.
Wu Z D, Zhao P F, Yang H C, Zan F G, Qin W, Yang L F, Guo J W.Detection of mosaic disease and propagation of virus-free seedlings for high sugar new sugarcane variety Yunzhe 1640. Sugar Crops China, 2024, 46(2): 1-8 (in Chinese with English abstract).
[20] 周慧文, 覃兴云, 陈荣发, 范业赓, 韦素, 闫海锋, 丘立杭, 吴建明, 李杨瑞. 甘蔗健康种苗一代种茎生产力分析. 广西糖业, 2021, (3): 15-19.
Zhou H W, Qin X Y, Chen R F, Fan Y G, Wei S, Yan H F, Qiu L H, Wu J M, Li Y R. Study on production performance of first generation stem of sugarcane virus-free plantlets. Guangxi Sugar Ind, 2021, (3): 15-19 (in Chinese with English abstract).
[21] 劳方业, 何慧怡, 樊丽娜, 陈勇生, 黄俊坚, 齐永文. 果蔗脱毒种苗主要经济性状表现分析. 甘蔗糖业, 2021, 50(3): 37-42.
Lao F Y, He H Y, Fan L N, Chen Y S, Huang J J, Qi Y W. Analysis of the main economic characters of chewing cane virus-free seedlings. Sugar Canesugar, 2021, 50(3): 37-42 (in Chinese with English abstract).
[22] 刘红坚, 梁文燊, 何为中, 叶权, 刘丽敏, 何毅波, 卢曼曼, 刘俊仙, 李松, 林善海. 桂果蔗1号不同级数健康种苗生长特征及性状变异. 南方农业学报, 2021, 52(2): 288-296.
Liu H J, Liang W S, He W Z, Ye Q, Liu L M, He Y B, Lu M M, Liu J X, Li S, Lin S H. Growth characters and properties variation of different generations of chewing cane Guiguozhe 1 seedlings. J South Agric, 2021, 52(2): 288-296 (in Chinese with English abstract).
[23] Snyman S J, Shezi S N, Ramburan S. Field assessment of in vitro micropropagated NovaCane sugarcane (Saccharum spp. hybrids). Sugar Tech, 2018, 20: 609-612.
[24] Shezi S N, Ramburan S. Agronomic comparisons of sugarcane varieties derived from tissue culture (NovaCane) and conventional propagation under rainfed conditions. J Crop Improv, 2018, 32: 705-716.
[25] 陆耀邦. 组培蔗在无性世代中农艺性状表现. 广西农学院学报, 1989, 8(3): 8-12.
Lu Y B. The expression of main agronomical characters in callus derived sugarcane in agamobiums. Genom Appl Biol, 1989, 8(3): 8-12 (in Chinese with English abstract).
[26] 陈引芝. 甘蔗腋芽组培苗与原种茎性能比较试验简报. 广西农学报, 1997, 12(2): 5-8.
Chen Y Z. A brief report on the comparision experiment between the characteristics of the tissue culture seedling of sugarcane axillary and the original sugarcane stem. J Guanxi Agric, 1997, 12(2): 5-8 (in Chinese with English abstract).
[27] 杨华春. 甘蔗芽培苗、组培苗和种茎苗的种性比较. 甘蔗, 2001, (4): 30-31.
Yang C H. Comparison of seed characteristics among sugarcane sprouts, tissue culture seedlings, and stem seedlings. Sugarcane, 2001, (4): 30-31 (in Chinese).
[28] 李松, 游建华, 余坤兴, 刘丽敏, 谭芳, 刘红坚, 淡明, 戴友铭. 黑皮果蔗茎尖脱毒不同代数种茎苗商品性能研究. 热带作物学报, 2010, 31(2): 176-181.
Li S, You J H, Yu K X, Liu L M, Tan F, Liu H J, Dan M, Dai Y M. Commercial performances of seedcanes in different generations of virus-free chewing cane (badila) from shoot apices. Chin J Trop Crops, 2010, 31(2): 176-181 (in Chinese with English abstract).
[29] 韦海球, 唐利球, 黄珍玲, 何洪良, 秦昌鲜, 江清梅, 罗晟昇. 甘蔗组培苗田间种植效果初探. 中国热带农业, 2017, (4): 63-64.
Wei H Q, Tang L Q, Huang Z L, He H L, Qin C X, Jiang Q M, Luo S S. Preliminary study on field planting effect of sugarcane tissue culture seedlings. China Trop Agric, 2017, (4): 63-64 (in Chinese).
[30] 欧丽萍. 新台糖22号脱毒苗在百色蔗区快繁试验初报. 广西蔗糖, 2013, (1): 3-7.
Ou L P. A primary study on the rapid breeding experiment of the “new-tai sugar NO.22” virus-free seeding in baise sugarcane area. Guangxi Sugar Ind, 2013, (1): 3-7 (in Chinese with English abstract).
[31] 宿翠翠, 毋玲玲, 赵玺, 施志国, 周彦芳, 魏玉杰. 种植时间对甘肃引黄灌区红花生长发育、品质及产量的影响. 作物杂志, 2023, (1): 176-183.
Su C C, Wu L L, Zhao X, Shi Z G, Zhou Y F, Wei Y J. Effects of sowing date on the growth, quality and yield of safflower in Gansu yellow river irrigation area. Crops, 2023, (1): 176-183 (in Chinese with English abstract).
[32] 杨本鹏, 张树珍, 蔡文伟, 张洪溢, 龚康达, 王永壮, 冯翠莲, 王俊刚, 杨学. 甘蔗健康种苗田间栽培主要农艺性状比较. 热带作物学报, 2010, 31(2): 171-175.
Yang B P, Zhang S Z, Cai W W, Zhang H Y, Gong K D, Wang Y Z, Feng C L, Wang J G, Yang X. Agronomic characters of virus-free sugarcane seedlings. Chin J Trop Crops, 2010, 31(2): 171-175 (in Chinese with English abstract).
[33] 符策, 赵静. 甘蔗组培苗不同假植时期移栽效果比较. 农业研究与应用, 2014, 27(1): 21-23.
Fu C, Zhao J. Comparison of transplanting effects of sugarcane tissue culture seedlings in different heel in periods. Agric Res Appl, 2014, 27(1): 21-23 (in Chinese).
[34] Devarumath R M, Doule R B, Kawar P G, Naikebawane S B, Nerkar Y S. Field performance and RAPD analysis to evaluate genetic fidelity of tissue culture raised plantsvis-à-vis conventional setts derived plants of sugarcane. Sugar Tech, 2007, 9: 17-22.
[35] 吴松海, 李海明, 郑家祯, 林加根, 林一心. 不同代数黑皮果蔗脱毒种茎苗生产性状比较. 福建农业学报, 2014, 29: 1088-1091.
Wu S H, Li H M, Zheng J Z, Lin J G, Lin Y X. Comparing growth characters of detoxified seedling in different generations of chewing-cane ‘badila'. Fujian J Agric Sci, 2014, 29: 1088-1091 (in Chinese with English abstract).
[36] 李恒锐. 甘蔗脱毒与非脱毒种苗田间比较试验. 中国糖料, 2014, 36(1): 42-43.
Li H R. Comparative trial between virus-free and non-virus free sugarcane seedling. Sugar Crops China, 2014, 36(1): 42-43 (in Chinese with English abstract).
[37] 叶燕平, 李杨瑞, 苏俊波, 黄诚梅, 唐军, 黄学. 果蔗脱毒健康种苗试验初报. 作物杂志, 2003, (6): 21-22.
Ye Y P, Li Y R, Su J B, Huang C M, Tang J, Huang X. Preliminary report on the experiment of virus-free healthy seedlings of fruit cane. Crops, 2003, (6): 21-22 (in Chinese with English abstract).
[38] 陈月桂, 谭嘉娜, 罗剑飘, 罗青文, 谢静, 杨俊贤, 李奇伟. 粤糖60号与新台糖22号健康种苗假植与田间对比试验. 广东农业科学, 2014, 41(18): 24-27.
Chen Y G, Tan J N, Luo J P, Luo Q W, Xie J, Yang J X, Li Q W.Temporary planting and field contrast experiments for sugarcane healthy seedings of Yuetang 60 and Roc 22. Guangdong Agric Sci, 2014, 41(18): 24-27 (in Chinese with English abstract).
[39] 邓万超, 胡朝仁, 陆丽英. 宁明县新台糖22号脱毒健康种苗田间试验初报. 广西糖业, 2015, 35(5): 11-14.
Deng W C, Hu C R, Lu L Y. Report on the field test of virus-free ROC22 seedlings in Ningming. Guangxi Sugar Ind, 2015, 35(5): 11-14 (in Chinese with English abstract).
[40] 谢静, 常海龙, 刘壮, 张垂明, 王勤南, 吴建涛. 果蔗脱毒种茎苗对农艺性状和品质的影响. 分子植物育种, 网络首发[2024-06-04],http://kns.cnki.net/kcms/detail/46.1068.S.20240604.1032.008.html.
Xie J, Chang H L, Liu Z, Zhang C M, Wang Q N, Wu J T. Effects of virus-free seedling of chewing cane on agronomic traits and quality. Mol Plant Breed, Published online [2024-06-04], http://kns.cnki.net/kcms/detail/46.1068.S.20240604.1032.008.html (in Chinese with English abstract).
[41] 邓展云, 刘海斌, 方锋学, 贤武, 唐仕云, 王伦旺, 刘晓静, 李鸣, 陆建勋, 徐林. 几个甘蔗新品种的健康种苗对比试验. 中国糖料, 2010, 32(4): 19-20.
Deng Z Y, Liu H B, Fang F X, Xian W, Tang S Y, Wang L W, Liu X J, Li M, Lu J X, Xu L. Comparison test of healthy seedcane on new sugarcane varieties. Sugar Crops China, 2010, 32(4): 19-20 (in Chinese with English abstract).
[42] 吴松海, 李海明, 张树河, 李瑞美, 林一心. 果蔗脱毒与常规种茎苗生产性状比较. 福建农业学报, 2012, 27: 821-825.
Wu S H, Li H M, Zhang S H, Li R M, Lin Y X. Growth differences between seedcanes of pathogen-free chewing and conventional sugarcanes. Fujian J Agric Sci, 2012, 27: 821-825 (in Chinese with English abstract).
[43] 李复琴, 李文风, 杨华. 关于还原糖作为甘蔗品种选育重要指标的探讨. 中国糖料, 2009, 31(2): 43-44.
Li F Q, Li W F, Yang H. Discussion on reducing sugar as important standard in sugarcane breeding. Sugar Crops China, 2009, 31(2): 43-44 (in Chinese with English abstract).
[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[3] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[4] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[5] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[6] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[7] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[8] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[9] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[10] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[11] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[12] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[13] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[14] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[15] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!