欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2738-2749.doi: 10.3724/SP.J.1006.2025.55025

• 耕作栽培·生理生化 • 上一篇    下一篇

转基因大豆结合免耕平作实现东北地区大豆生产轻简化

李威1(), 朱玉鹏1(), 孙宾成2, 温有祥3, 吴宗声1, 徐一帆1, 宋雯雯1,*(), 徐彩龙1,*(), 吴存祥1,*()   

  1. 1中国农业科学院作物科学研究所 / 国家大豆产业技术研发中心, 北京 100081
    2呼伦贝尔市农牧科学研究院, 内蒙古呼伦贝尔 021000
    3扎兰屯市农牧业技术推广中心, 内蒙古呼伦贝尔 162650
  • 收稿日期:2025-03-27 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-16
  • 通讯作者: *吴存祥, E-mail: wucunxiang@caas.cn;徐彩龙, E-mail: xucailong@caas.cn;宋雯雯, E-mail: songwenwen@caas.cn
  • 作者简介:李威, E-mail: 2230689779@qq.com;
    朱玉鹏, E-mail: zhuyupeng@caas.cn
    **同等贡献
  • 基金资助:
    国家重点研发计划项目(2023YFE0105000);中国农业科学院科技创新工程和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-04)

Transgenic soybean combined with no-tillage flat planting promotes the simplification of soybean production in Northeast China

LI Wei1(), ZHU Yu-Peng1(), SUN Bin-Cheng2, WEN You-Xiang3, WU Zong-Sheng1, XU Yi-Fan1, SONG Wen-Wen1,*(), XU Cai-Long1,*(), WU Cun-Xiang1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Soybean Industrial Technology R & D Center, Beijing 100081, China
    2Hulun Buir Academy of Agriculture and Animal Husbandry Sciences, Hulun Buir 021000, Inner Mongolia, China
    3Zhalantun Agriculture and Animal Husbandry Technology Extension Center, Hulun Buir 162650, Inner Mongolia, China
  • Received:2025-03-27 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-16
  • Contact: *E-mail: wucunxiang@caas.cn;E-mail: xucailong@caas.cn;E-mail: songwenwen@caas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2023YFE0105000);Innovation Program of Chinese Academy of Agricultural Sciences, and the China Agriculture Research System of MOF and MARA(CARS-04)

摘要:

单产低、成本高、比较效益差是造成我国大豆产能不足的重要原因。东北地区是我国大豆生产的重要产区, 面积全国占比在60%以上, 优化该地区生产模式对于提高我国大豆产量和效益具有重要意义。本研究基于耐草甘膦转基因大豆品种, 设置了免耕秸秆还田(NTRS)、隔年深松秸秆还田(STRS)、垄作秸秆还田(DTRS)和旋耕秸秆不还田(RTR) 4个处理, 探究不同生产模式对耐草甘膦转基因大豆产量形成、杂草防控和经济效益的影响。结果表明, NTRS处理会提高大豆出苗期的土壤温度和土壤含水量, 适度增加耕层的土壤紧实度, 改善播种期间土壤墒情, 提高大豆出苗率和出苗速度, 相较于STRS、DTRS和RTR 3个处理, 出苗率分别提高了3.63%、2.72%和4.66%; NTRS处理显著降低了杂草数量和杂草优势度指数, 提高了杂草多样性指数, 杂草发生时间主要集中在大豆V2—V3期, 便于除草剂喷施和杂草防控, 显著降低了大豆R8期杂草干物重; 相较于RTR处理, NTRS、STRS和DTRS 3个处理降低了大豆底荚高度, 其中NTRS处理可显著增加大豆单株荚数和单株粒数, 提高大豆产量, 达到3603 kg hm-2, 有效提升5.12%~9.22%; 在经济效益方面, 通过优化生产模式, NTRS处理可以有效减少耕种环节, 降低人力投入, 生产成本投入明显减少, 实现经济效益的大幅提升。综上, 免耕平作栽培技术结合转基因大豆品种具有较好的增温保墒效果, 会显著提高大豆出苗率, 杂草易防控, 减少投入成本, 提高大豆产量, 促进大豆轻简化生产, 这种轻简化生产是实现东北地区大豆种植节本增效的重要途径之一。

关键词: 生产模式, 转基因大豆, 杂草, 经济效益, 产量

Abstract:

Low yield, high production costs, and limited profitability are major factors contributing to insufficient soybean production in China. The Northeast region, which accounts for over 60% of the national soybean planting area, plays a pivotal role in national soybean output. Therefore, optimizing production practices in this region is crucial for improving soybean yield and economic returns. In this study, based on the use of glyphosate-tolerant genetically modified soybean varieties, four tillage treatments were evaluated: no-tillage with straw returning (NTRS), deep ripping every two years with straw returning (STRS), ridge tillage with straw returning (DTRS), and rotary tillage without straw returning (RTR). The objective was to assess the effects of these production modes on yield formation, weed control, and economic benefits. Results showed that the NTRS treatment increased soil temperature and moisture at the emergence stage, moderately enhanced soil compaction in the tillage layer, improved soil moisture during sowing, and significantly enhanced both the emergence rate and speed. Compared with the STRS, DTRS, and RTR treatments, NTRS improved emergence rates by 3.63%, 2.72%, and 4.66%, respectively. NTRS also significantly reduced weed density and the weed dominance index while increasing weed diversity. Weed emergence was primarily concentrated in the V2-V3 growth stages, which facilitated timely herbicide application and effective weed suppression, ultimately reducing weed dry weight at the R8 stage. Compared with RTR, all three straw-returning treatments (NTRS, STRS, and DTRS) reduced the height of the lowest pods. Among them, NTRS significantly increased the number of pods and grains per plant, resulting in a yield of 3603 kg hm-2, representing a 5.12% to 9.22% increase over other treatments. In terms of economic benefits, the NTRS treatment minimized the need for intensive tillage, reduced labor costs, and significantly lowered production inputs, thereby improving both agricultural productivity and profitability. In conclusion, the no-tillage flat cultivation system combined with genetically modified soybean varieties improved soil thermal and moisture conditions, enhanced seedling emergence, facilitated weed management, reduced input costs, and increased yield. This simplified production system offers a promising approach for achieving low-cost, high-efficiency soybean cultivation in Northeast China.

Key words: production mode, genetically modified soybean, weeds, economic benefits, yield

表1

试验地点2023-2024年温度及降雨量"

月份
Month
2023 2024
月平均温度
Monthly mean temperature (℃)
降雨量
Precipitation (mm)
月平均温度
Monthly mean temperature (℃)
降雨量
Precipitation (mm)
1月 January -17.5 0 -15.5 0
2月 February -11.4 0 -12.4 0
3月 March 1.3 0 -2.3 0
4月 April 6.7 1.1 10.0 4.7
5月 May 15.7 55.8 15.3 35.0
6月 June 20.5 20.1 19.5 95.5
7月 July 21.2 246.4 23.9 86.6
8月 August 19.8 14.7 21.0 85.5
9月 September 15.1 55.7 14.6 12.9
10月 October 7.0 7.3 8.9 5.6
11月 November -7.8 0 -4.8 0
12月 December -16.4 0 -13.6 0

表2

不同生产模式的耕种措施"

耕作方式
Tillage method
具体信息
Detailed information
免耕秸秆还田
NTRS
秸秆全部粉碎(15-20 cm)还田, 免耕平播, 喷施草甘膦除草剂除草
Straw was crushed (15-20 cm) and returned to the field; flat planting with no-tillage; glyphosate for weed control
隔年深松秸秆还田
STRS
秸秆全部粉碎(15-20 cm)还田, 隔年深松(30 cm)整地, 平播, 喷施草甘膦除草剂除草
Straw was crushed (15-20 cm) and returned to the field; deep ripping (30 cm) per two year; flat planting;
glyphosate for weed control
垄作秸秆还田
DTRS
秸秆全部粉碎(15-20 cm)还田, 翻耕(30 cm)起垄整地, 垄播, 2次中耕, 喷施草甘膦除草剂除草
Straw was crushed (15-20 cm) and returned to the field; plough (30 cm) and ridging; ridge sowing; twice
intertillage weeding; glyphosate for weed control
旋耕秸秆不还田
RTR
秸秆不还田, 旋耕(15 cm)平播, 2次中耕, 喷施常规除草剂除草
Straw removing; flat planting with rotary tillage (15 cm); twice intertillage weeding; conventional herbicide for weed control

图1

不同生产模式耕种流程图 处理同表2。"

表3

不同生产模式对大豆产量及产量构成因素的影响"

年份
Year
处理
Treatment
产量
Yield
(kg hm-2)
底荚高度
Lowest pod height
(cm)
单株荚数
Pod number per plant
单株粒数
Seed number per plant
百粒重
Hundred-grain weight
(g)
收获密度
Harvest density
(×104 plants hm-2)
2023 NTRS 3570±6.94 a 13.1±0.45 b 40.2±1.16 a 109±3.46 a 17.7±0.17 ab 29.9±0.31 a
STRS 3225±34.05 cd 13.0±0.21 b 35.2±0.58 bc 90±3.20 b 17.6±0.10 b 29.0±0.15 b
DTRS 3332±33.77 b 13.6±0.91 b 37.4±0.87 b 102±3.49 a 17.8±0.22 ab 29.2±0.15 ab
RTR 3248±14.96 c 21.2±1.62 a 35.0±1.00 bc 85±2.62 b 18.1±0.02 a 28.6±0.23 b
2024 NTRS 3636±54.78 a 22.2±0.69 b 48.8±2.33 a 116±5.36 a 17.1±0.21 a 30.2±0.37 a
STRS 3374±11.02 bc 19.2±0.63 b 42.1±1.41 bc 105±2.82 b 17.4±0.17 a 28.7±0.30 b
DTRS 3523±62.70 ab 20.7±1.08 b 45.0±2.25 ab 111±5.58 ab 17.0±0.14 a 29.1±0.23 b
RTR 3358±56.55 c 29.9±1.18 a 38.2±1.45 c 94±3.76 c 17.1±0.28 a 28.5±0.39 b
年份Year (Y) ** ** ** ns ** ns
处理Treatment (T) ** ** ** ** ns **
年份×处理 Y×T ns ** ns ns ns ns

图2

不同生产模式对大豆出苗期土壤温度的影响 处理同表2。"

图3

不同生产模式对大豆出苗期土壤含水量的影响 处理同表2。小写字母按照图例处理顺序进行标注, 不同小写字母表示同一土层处理间差异显著(P < 0.05)。"

图4

不同生产模式对土壤紧实度的影响 处理同表2。"

图5

不同生产模式对大豆出苗率和出苗速度的影响 处理同表2。“Amt.”表示数量; 图C为播种后第11天的出苗情况。不同小写字母表示处理间差异显著(P < 0.05)。"

图6

不同生产模式对各时期杂草数量和R8期杂草干物重的影响 处理同表2。“Amt.”表示数量; 图C为大豆V4期杂草的发生情况。不同小写字母表示处理间差异显著(P < 0.05)。"

图7

不同生产模式对杂草物种多样性的影响 处理同表2。不同小写字母表示处理间差异显著(P < 0.05)。"

表4

不同生产模式下的经济效益分析"

年份
Year
处理
Treatment
投入Cost 收入
Income
利益
Profit
种子
Seed
肥料
Fertilizer
除草剂
Herbicide
农机具
Agricultural implements
人工
Labour
2023 NTRS 786 a 1425 a 189 b 495 d 1245 c 17,923 a 13,783 a
STRS 786 a 1425 a 189 b 1170 c 1665 b 16,188 c 10,953 b
DTRS 786 a 1425 a 189 b 2250 a 1245 c 16,728 b 10,833 b
RTR 786 a 1425 a 261 a 1860 b 2085 a 16,303 c 9886 c
2024 NTRS 786 a 1425 a 189 b 495 d 1415 b 18,254 a 13,863 a
STRS 786 a 1425 a 189 b 885 c 1748 a 16,936 c 11,903 b
DTRS 786 a 1425 a 189 b 2250 a 1665 a 17,686 ab 11,371 bc
RTR 786 a 1425 a 261 a 1860 b 1748 a 16,855 c 10,775 c
[1] Kong W S, Wei M, Khan N, Liang J, Han D Q, Zhang H J. Assessing sustainable future of import-independent domestic soybean production in China: policy implications and projections for 2030. Front Sustain Food Syst, 2024, 8: 1387609.
[2] Li B G, Liu Z, Huang F, Yang X G, Liu Z J, Wan W, Wang J K, Xu Y D, Li Z Z, Ren T S. Ensuring national food security by strengthening high-productivity black soil granary in Northeast China. BCAS, 2021, 36: 1184-1193.
[3] Zhao J, Li N, Yang X G, Sun Z X. For the protection of black soils. Nat Food, 2025, 6: 119-120.
doi: 10.1038/s43016-025-01126-x pmid: 39948395
[4] Triplett G B Jr, Dick W A. No-tillage crop production: a revolution in agriculture! Agron J, 2008, 100: 153-165.
[5] Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res, 2004, 79: 7-31.
[6] Hansen N C, Allen B L, Baumhardt R L, Lyon D J. Research achievements and adoption of no-till, dryland cropping in the semi-arid U.S. Great Plains. Field Crops Res, 2012, 132: 196-203.
[7] de Freitas Seben G Jr, Corá J E, Lal R. The effects of land use and soil management on the physical properties of an Oxisol in Southeast Brazil. Rev Bras Ciênc Solo, 2014, 38: 1245-1255.
[8] Jacobs A A, Evans R S, Allison J K, Garner E R, Kingery W L, McCulley R L. Cover crops and no-tillage reduce crop production costs and soil loss, compensating for lack of short-term soil quality improvement in a maize and soybean production system. Soil Tillage Res, 2022, 218: 105310.
[9] Derpsch R, Friedrich T, Kassam A, Li H W. Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng, 2010, 3: 1-25.
[10] Reddy C. A study on crop weed competition in field crops. J Pharm Phytochem, 2018, 7: 3235-3240.
[11] Duke S O, Powles S B. Glyphosate: a once-in-a-century herbicide. Pest Manag Sci, 2008, 64: 319-325.
doi: 10.1002/ps.1518 pmid: 18273882
[12] Hungria M, Mendes I C, Nakatani A S, dos Reis-Junior F B, Morais J Z, de Oliveira M C N, Fernandes M F. Effects of the glyphosate-resistance gene and herbicides on soybean: field trials monitoring biological nitrogen fixation and yield. Field Crops Res, 2014, 158: 43-54.
[13] Sun M, Li S Z, Yang W Z, Zhao B W, Wang Y H, Liu X Q. Commercial genetically modified corn and soybean are poised following pilot planting in China. Mol Plant, 2024, 17: 519-521.
[14] Calado J M G, Basch G, de Carvalho M. Weed management in no-till winter wheat (Triticum aestivum L.). Crop Prot, 2010, 29: 1-6.
[15] Clements D R, Benoit D L, Murphy S D, Swanton C J. Tillage effects on weed seed return and seedbank composition. Weed Sci, 1996, 44: 314-322.
[16] Ranaldo M, Carlesi S, Costanzo A, Bàrberi P. Functional diversity of cover crop mixtures enhances biomass yield and weed suppression in a Mediterranean agroecosystem. Weed Res, 2020, 60: 96-108.
doi: 10.1111/wre.12388
[17] Colbach N, Busset H, Roger-Estrade J, Caneill J. Predictive modelling of weed seed movement in response to superficial tillage tools. Soil Tillage Res, 2014, 138: 1-8.
[18] Zamljen S A, Rovanšek A, Leskovšek R. Weed seed bank response during the early conversion period to less intensive tillage systems. Soil Tillage Res, 2024, 242: 106164.
[19] Bomfim N C P, Silva M S, Camargos L S, Martins A R. Ultrastructural and histochemical changes in glyphosate-tolerant soybean leaves exposed to glyphosate. J Agric Sci, 2019, 11: 243.
[20] Acharya B S, Dodla S, Gaston L A, Darapuneni M, Wang J J, Sepat S, Bohara H. Winter cover crops effect on soil moisture and soybean growth and yield under different tillage systems. Soil Tillage Res, 2019, 195: 104430.
[21] Wang H F, Wang L, Ren T S. Long-term no tillage alleviates subsoil compaction and drought-induced mechanical impedance. Int Agrophys, 2022, 36: 297-308.
[22] Cui X J, Wang Z W, Zhuang T F, Sun J Q, Song Y H. Improving wheat seedling quality through deep ploughing and soil compaction at sowing in lime concretion black soil. PLoS One, 2023, 18: e0288459.
[23] De Vita P, Di Paolo E, Fecondo G, Di Fonzo N, Pisante M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in Southern Italy. Soil Tillage Res, 2007, 92: 69-78.
[24] Alsajri F A, Wijewardana C, Bheemanahalli R, Irby J T, Krutz J, Golden B, Reddy V R, Reddy K R. Morpho-physiological, yield, and transgenerational seed germination responses of soybean to temperature. Front Plant Sci, 2022, 13: 839270.
[25] Li F J, Zhang X B, Xu D Y, Ma Q, Le T, Zhu M, Li C Y, Zhu X K, Guo W S, Ding J F. No-tillage promotes wheat seedling growth and grain yield compared with plow-rotary tillage in a rice-wheat rotation in the high rainfall region in China. Agronomy, 2022, 12: 865.
[26] dos Santos H P, Fontaneli R S, Silva S R, Santi A, Verdi A C, Vargas A M. Long-term effects of four tillage systems and weather conditions on soybean yield and agronomic characteristics in Brazil. Crop Sci, 2015, 9: 445-452.
[27] Jamil C, de Oliveira Rubem S E R, Eliezer A G, Denis F B, Guilherme B P B, Fernanda W, Hudson K T. Prevention of yield losses caused by glyphosate in soybeans with biostimulant. Afr J Agric Res, 2016, 11: 1601-1607.
[28] Panneerselvam S, Lourduraj A C. Weed spectrum and effect of crop weed competition in soybean [Glycine max (L.) Merrill]-a review. Agric Rev, 2000, 21: 121-124.
[29] Nail E, Young D, Schillinger W. Diesel and glyphosate price changes benefit the economics of conservation tillage versus traditional tillage. Soil Tillage Res, 2007, 94: 321-327.
[30] Calcante A, Oberti R. A technical-economic comparison between conventional tillage and conservative techniques in paddy-rice production practice in northern Italy. Agronomy, 2019, 9: 886.
[31] Vincent-Caboud L, Peigné J, Casagrande M, Silva E. Overview of organic cover crop-based No-tillage technique in Europe: farmers' practices and research challenges. Agriculture, 2017, 7: 42.
[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[3] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[4] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[5] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[6] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[7] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[8] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[9] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[10] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[11] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[12] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[13] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[14] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[15] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!