作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2950-2961.doi: 10.3724/SP.J.1006.2024.44057
金欣欣(), 苏俏, 宋亚辉, 杨永庆, 李玉荣, 王瑾()
JIN Xin-Xin(), SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin()
摘要:
为探究不同颜色花生种皮的类黄酮物质成分及花青素生物合成对种皮颜色形成的调控机制, 本研究利用粉色、红色、白色、黑色以及花斑色(红色和白色)共5种颜色差异明显的花生品种, 对种皮进行类黄酮代谢组和转录组分析, 明确种皮花青素合成相关的关键代谢物和关键基因。结果表明,5种花生种皮共鉴定到329种类黄酮代谢物, 其中黄酮醇类物质相对含量及种类最多。共检测到19种花青素色苷, 主要是矢车菊素色苷、飞燕草素色苷、矮牵牛素色苷, 多以葡萄糖苷、桑布苷、芸香苷、半乳糖苷等糖苷修饰。黑色种皮花青素含量约是其他皮色的22.60~66.72倍。黑色种皮中以矢车菊素-3-O-桑布双糖苷相对含量最高。4种有色种皮分别与白色种皮相比, 差异代谢物主要在花青素生物合成、类黄酮生物合成、黄酮和黄酮醇生物合成、异黄酮生物合成途径中显著富集。有色种皮中, 类黄酮和花青素生物合成途径结构基因的高表达水平, 是促进种皮花青素积累的主要原因。花青素还原酶(ANR)和糖基转移酶(UGT)是参与种皮色素沉着的候选基因, 两者的活性以及对底物花青素的竞争, 最终决定花生种皮的颜色模式。本研究解析了类黄酮物质对花生种皮颜色合成的调控机制, 可为特色花生品种培育以及营养价值利用提供重要参考。
[1] | Wang X, Liu Y, Ou-Yang L, Yao R N, He D L, Han Z K, Li W T, Ding Y B, Wang Z H, Kang Y P, Yan L Y, Chen Y N, Huai D X, Jiang H F, Lei Y, Liao B S. Metabolomics combined with transcriptomics analyses of mechanism regulating testa pigmentation in peanut. Front Plant Sci, 2022, 13: 1065049. |
[2] |
李佳伟, 马钰聪, 杨鑫雷, 王梅, 崔顺立, 侯名语, 刘立峰, 胡梦蝶, 蒋晓霞, 穆国俊. 花生种皮色素合成相关通路的转录组- 代谢组学联合分析. 植物遗传资源学报, 2022, 23: 240-254.
doi: 10.13430/j.cnki.jpgr.20210524001 |
Li J W, Ma Y C, Yang X L, Wang M, Cui S L, Hou M Y, Liu L F, Hu M D, Jiang X X, Mu G J. Transcriptomics-metabolomics combined analysis highlight the mechanism of testa pigment formation in peanut (Arachis hypogaea L.). J Plant Genet Resour, 2022, 23: 240-254 (in Chinese with English abstract). | |
[3] |
Zhang K, Yuan M, Xia H, He L Q, Ma J, Wang M X, Zhao H L, Hou L, Zhao S Z, Li P C, Tian R Z, Pan J W, Li G H, Thudi M, Ma C L, Wang X J, Zhao C Z. BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theor Appl Genet, 2022, 135: 1529-1540.
doi: 10.1007/s00122-022-04051-w pmid: 35166897 |
[4] | Chen L, Yan F F, Chen W B, Zhao L, Zhang J L, Lu Q, Liu R. Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145. Chem Biol Interact, 2018, 288: 12-23. |
[5] |
Zhu F. Anthocyanins in cereals: composition and health effects. Food Res Int, 2018, 109: 232-249.
doi: S0963-9969(18)30285-0 pmid: 29803446 |
[6] |
Tsuda T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res, 2012, 56: 159-170.
doi: 10.1002/mnfr.201100526 pmid: 22102523 |
[7] | Attree R, Du B, Xu B J. Distribution of phenolic compounds in seed coat and Cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind Crops Prod, 2015, 67: 448-456. |
[8] |
Alseekh S, de Souza L P, Benina M, Fernie A R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, 174: 112347.
doi: 10.1016/j.phytochem.2020.112347 pmid: 32203741 |
[9] |
Iwashina T. Flavonoid function and activity to plants and other organisms. Biol Sci Space, 2003, 17: 24-44.
doi: 10.2187/bss.17.24 pmid: 12897458 |
[10] |
Tanaka Y, Brugliera F, Chandler S. Recent progress of flower colour modification by biotechnology. Int J Mol Sci, 2009, 10: 5350-5369.
doi: 10.3390/ijms10125350 pmid: 20054474 |
[11] |
Wen W W, Alseekh S, Fernie A R. Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr Opin Plant Biol, 2020, 55: 100-108.
doi: S1369-5266(20)30044-3 pmid: 32422532 |
[12] | Wang X, Zhang X C, Hou H X, Ma X, Sun S L, Wang H W, Kong L R. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res Int, 2020, 138: 109711. |
[13] |
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 2006, 57: 761-780.
pmid: 16669781 |
[14] | Duan H R, Wang L R, Cui G X, Zhou X H, Duan X R, Yang H S. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biol, 2020, 20: 110. |
[15] | 吴紫萱, 薛其勤, 杨会, 刘风珍. 花生种皮颜色研究进展. 山东农业科学, 2022, 54(1): 152-156. |
Wu Z X, Xue Q Q, Yang H, Liu F Z. Research progress on testa color of peanut. Shandong Agric Sci, 2022, 54(1): 152-156 (in Chinese with English abstract). | |
[16] | Hu M D, Li J W, Hou M Y, Liu X Q, Cui S L, Yang X L, Liu L F, Jiang X X, Mu G J. Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Sci Rep, 2021, 11: 10721. |
[17] | Huang J Y, Xing M H, Li Y, Cheng F, Gu H H, Yue C P, Zhang Y J. Comparative transcriptome analysis of the skin-specific accumulation of anthocyanins in black peanut (Arachis hypogaea L.). J Agric Food Chem, 2019, 67: 1312-1324. |
[18] | Wan L Y, Li B, Lei Y, Yan L Y, Huai D X, Kang Y P, Jiang H F, Tan J Z, Liao B S. Transcriptomic profiling reveals pigment regulation during peanut testa development. Plant Physiol Biochem, 2018, 125: 116-125. |
[19] |
Lou Q, Liu Y L, Qi Y Y, Jiao S Z, Tian F F, Jiang L, Wang Y J. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot, 2014, 65: 3157-3164.
doi: 10.1093/jxb/eru168 pmid: 24790110 |
[20] |
Wu Q, Wu J, Li S S, Zhang H J, Feng C Y, Yin D D, Wu R Y, Wang L S. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics, 2016, 17: 897.
pmid: 27829354 |
[21] | Xia H, Zhu L, Zhao C Z, Li K, Shang C L, Hou L, Wang M X, Shi J, Fan S J, Wang X J. Comparative transcriptome analysis of anthocyanin synthesis in black and pink peanut. Plant Signal Behav, 2020, 15: 1721044. |
[22] |
Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005, 10: 236-242.
doi: 10.1016/j.tplants.2005.03.002 pmid: 15882656 |
[23] |
Labbé D, Provencal M, Lamy S, Boivin D, Gingras D, Béliveau R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr, 2009, 139: 646-652.
doi: 10.3945/jn.108.102616 pmid: 19244381 |
[24] | Kuang Q J, Yu Y Y, Attree R, Xu B J. A comparative study on anthocyanin, saponin, and oil profiles of black and red seed coat peanut (Arachis hypogacea) grown in China. Int J Food Prop, 2017, 20: S131-S140. |
[25] | Nabavi S M, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J B, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi S F, Yousefi B, Jeandet P, Xu S W, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv, 2020, 38: 107316. |
[26] | Zhou C B, Mei X, Rothenberg D O, Yang Z B, Zhang W T, Wan S H, Yang H J, Zhang L Y. Metabolome and transcriptome analysis reveals putative genes involved in anthocyanin accumulation and coloration in white and pink tea (Camellia sinensis) flower. Molecules, 2020, 25: 190. |
[27] | Khlestkina E K, Shoeva O Y, Gordeeva E I. Flavonoid biosynthesis genes in wheat. Russ J Genet Appl Res, 2015, 5: 268-278. |
[28] | 苏俏, 金欣欣, 李玉荣, 程增书, 宋亚辉, 杨永庆, 王瑾. 影响多彩花生种皮颜色的关键代谢物及ANS基因分析. 华北农学报, 2022, 37(增刊): 19-25. |
Su Q, Jin X X, Li Y R, Cheng Z S, Song Y H, Yang Y Q, Wang J. Analysis of key metabolites and ANS genes affecting seed testa color of peanut. Acta Agric Boreali-Sin, 2022, 37(S1): 19-25 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20193143 |
|
[29] | Zhao Z L, Wu M, Zhan Y L, Zhan K H, Chang X L, Yang H S, Li Z M. Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography. J Chromatogr A, 2017, 1519: 74-82. |
[1] | 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296. |
[2] | 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206. |
[3] | 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166. |
[4] | 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121. |
[5] | 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156. |
[6] | 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906. |
[7] | 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854. |
[8] | 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727. |
[9] | 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513. |
[10] | 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146. |
[11] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[12] | 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968. |
[13] | 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835. |
[14] | 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943. |
[15] | 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956. |
|