欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (12): 2950-2961.doi: 10.3724/SP.J.1006.2024.44057

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生种皮类黄酮物质的代谢组与转录组分析

金欣欣(), 苏俏, 宋亚辉, 杨永庆, 李玉荣, 王瑾()   

  1. 河北省农林科学院粮油作物研究所 / 河北省作物遗传育种重点实验室, 河北石家庄 050035
  • 收稿日期:2024-04-08 接受日期:2024-08-15 出版日期:2024-12-12 网络出版日期:2024-08-27
  • 通讯作者: *王瑾, E-mail: wangjinnky@163.com
  • 作者简介:E-mail: jinxinxin1984@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);河北省现代农业产业技术体系建设专项(HBCT2024040101);河北省现代农业产业技术体系建设专项(HBCT2024040204);河北省花生现代种业科技创新团队(21326316D);河北省农林科学院创新工程(2022KJCXZX-LYS-11)

Metabolome and transcriptome analysis of flavonoids in peanut testa

JIN Xin-Xin(), SU Qiao, SONG Ya-Hui, YANG Yong-Qing, LI Yu-Rong, WANG Jin()   

  1. Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang 050035, Hebei, China
  • Received:2024-04-08 Accepted:2024-08-15 Published:2024-12-12 Published online:2024-08-27
  • Contact: *E-mail: wangjinnky@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-13);Hebei Agriculture Research System(HBCT2024040101);Hebei Agriculture Research System(HBCT2024040204);Science and Technology Innovation Team of Modern Peanut Seed Industry(21326316D);Talents Construction Project of Science and Technology Innovation of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-LYS-11)

摘要:

为探究不同颜色花生种皮的类黄酮物质成分及花青素生物合成对种皮颜色形成的调控机制, 本研究利用粉色、红色、白色、黑色以及花斑色(红色和白色)共5种颜色差异明显的花生品种, 对种皮进行类黄酮代谢组和转录组分析, 明确种皮花青素合成相关的关键代谢物和关键基因。结果表明,5种花生种皮共鉴定到329种类黄酮代谢物, 其中黄酮醇类物质相对含量及种类最多。共检测到19种花青素色苷, 主要是矢车菊素色苷、飞燕草素色苷、矮牵牛素色苷, 多以葡萄糖苷、桑布苷、芸香苷、半乳糖苷等糖苷修饰。黑色种皮花青素含量约是其他皮色的22.60~66.72倍。黑色种皮中以矢车菊素-3-O-桑布双糖苷相对含量最高。4种有色种皮分别与白色种皮相比, 差异代谢物主要在花青素生物合成、类黄酮生物合成、黄酮和黄酮醇生物合成、异黄酮生物合成途径中显著富集。有色种皮中, 类黄酮和花青素生物合成途径结构基因的高表达水平, 是促进种皮花青素积累的主要原因。花青素还原酶(ANR)和糖基转移酶(UGT)是参与种皮色素沉着的候选基因, 两者的活性以及对底物花青素的竞争, 最终决定花生种皮的颜色模式。本研究解析了类黄酮物质对花生种皮颜色合成的调控机制, 可为特色花生品种培育以及营养价值利用提供重要参考。

关键词: 花生, 种皮, 类黄酮, 代谢组, 转录组

Abstract:

To explore the regulatory mechanisms of flavonoid components and anthocyanin biosynthesis in the color formation of peanut testa, we conducted a study using five peanut cultivars with different testa colors: pink, red, white, black, and speckled (red and white). The key metabolites and genes related to anthocyanin biosynthesis were identified using flavonoid metabolomics and transcriptomics. Our results revealed the identification of 329 flavonoid metabolites in peanut testa, with flavonols being the most abundant in both relative content and variety. We detected 19 types of anthocyanidins, including cyanidin, delphinidin, and petunidin. Most anthocyanidins were modified with glucoside, morbuside, rutin, galactoside, and other glycosides. Notably, the anthocyanin content in black testa was 22.60-66.72 times higher than that in other testa colors, with cyanidin-3-O-sambutin being the most prevalent in black testa. Different metabolites were significantly enriched in anthocyanin biosynthesis, flavonoid biosynthesis, flavone and flavonol biosynthesis, and isoflavone biosynthesis pathways in colored testa compared to white testa. The high expression levels of structural genes in the flavonoid and anthocyanin biosynthesis pathways promoted anthocyanin accumulation in colored testa. Anthocyanin reductase (ANR) and glycosyltransferase (UGT) emerged as candidate genes involved in testa pigmentation, with the competition and activity of UGT and ANR against substrate anthocyanin determining the color pattern of peanut testa. These findings elucidate the regulatory mechanisms of flavonoid substances in peanut testa color, providing valuable references for the breeding of special peanut varieties and the utilization of their nutritional value based on color differences.

Key words: peanut, testa, flavonoids, metabolome, transcriptome

图1

5个花生种皮的表型差异 PT: 粉皮; WT: 白皮; RT: 红皮; CT: 花斑皮; BT: 黑皮。"

图2

花生种皮类黄酮代谢物种类(A)和相对含量(B) PT: 粉皮; WT: 白皮; RT: 红皮; CT: 花斑皮; BT: 黑皮。"

图3

不同花生种皮中花青素的相对含量 PT: 粉皮; WT: 白皮; RT: 红皮; CT: 花斑皮; BT: 黑皮。图中不同小写字母表示样品间有显著差异性(P < 0.05)。"

图4

不同比较组差异代谢物的数目(A)和差异表达基因的数目(B) PT: 粉皮; WT: 白皮; RT: 红皮; CT: 花斑皮; BT: 黑皮。"

图5

不同比较组差异代谢物(A)和差异基因(B)的KEGG富集通路 PT: 粉皮; WT: 白皮; RT: 红皮; CT: 花斑皮; BT: 黑皮。"

图6

类黄酮和花青素合成途径DEMs的含量热图(A)以及DEMs与DEGs的相关性热图(B) PT: 粉皮; WT: 白皮; RT: 红皮; CT: 花斑皮; BT: 黑皮。"

表1

类黄酮和花青素生物合成途径富集到差异表达基因的FPKM值"

酶种类
Enzyme class
差异表达基因
DEGs
黑皮
BT
花斑皮
CT
粉皮
PT
红皮
RT
白皮
WT
查尔酮合成酶
Chalcone synthase (CHS)
A01g004662 0.60 0.87 0.92 0.20 0.95
A03g016137 176.29 177.86 68.54 59.53 30.44
A05g024845 25.61 16.35 1.10 3.62 0.38
B01g052224 1.05 0.25 0.57 0.59 1.14
B03g067612 188.56 213.25 96.22 78.82 46.62
B05g078749 1.75 0.45 0.24 0.14 0
B05g078750 3.59 1.19 0.38 0.31 0.03
B06g084455 163.86 37.62 101.96 109.79 72.33
Scaffold6g107977 0.19 1.03 0.45 0.13 0.19
Scaffold6g107983 0.66 1.87 1.58 0.48 1.01
novel.4300 0.48 1.10 0.66 0.24 0.35
novel.4302 0.38 1.14 1.05 0.21 0.77
查尔酮异构酶
Chalcone isomerase (CHI)
A04g020659 1.73 1.35 2.09 1.76 0.03
A09g041790 0.32 0.47 0.60 0.38 0.22
A10g048771 46.61 27.58 23.76 15.80 12.38
B02g057981 3.31 1.62 3.35 7.69 4.10
B09g099540 21.24 13.24 10.51 9.67 4.56
B10g104123 67.03 47.14 36.85 32.85 20.07
novel.5812 0.79 0.31 0.73 2.07 0.70
黄烷酮羟化酶
Flavanone 3-hydroxylase (F3H)
A01g003995 81.12 59.87 14.24 10.71 1.85
novel.3235 52.47 47.26 14.83 10.56 1.32
类黄酮羟化酶
Flavonoid 3'-hydroxylase (F3'H)
A10g047831 56.48 26.57 12.05 7.12 4.27
B10g105286 146.62 49.23 34.29 15.90 3.87
二氢黄酮醇还原酶
Dihydroflavonol reductase (DFR)
B06g086139 135.00 130.73 26.27 28.59 19.30
黄酮醇合成酶
Flavonol synthetase (FLS)
A07g032578 5.63 27.24 13.56 16.49 12.47
B10g102931 1.79 2.23 3.64 1.65 1.69
无色花青素还原酶
Leucocyanidin reductase (LAR)
A05g022192 28.44 15.87 0.94 0.09 0.02
B05g076540 24.65 12.28 0.82 0.09 0
花青素合成酶
Anthocyanidin synthase (ANS)
B10g102589 0.22 0.30 0.59 0.36 0.95
Scaffold1g106620 26.42 17.92 6.72 3.46 0.18
花青素还原酶
Anthocyanin reductase (ANR)
A03g011741 5.71 1.73 6.06 0.36 0.11
A03g016167 0.82 0.06 0.39 0.10 0.34
A04g018753 6.46 3.74 3.46 4.53 3.07
B03g067636 4.05 0.81 1.97 0.96 1.64
novel.367 22.70 0.43 4.77 0.18 0.11
糖基转移酶
UDP-glycosyltransferases (UGT)
A03g015165 5.32 8.97 2.54 1.92 0.01
B10g101189 0 1.32 0 0.16 0.17

图7

花青素生物合成途径的表达模式"

[1] Wang X, Liu Y, Ou-Yang L, Yao R N, He D L, Han Z K, Li W T, Ding Y B, Wang Z H, Kang Y P, Yan L Y, Chen Y N, Huai D X, Jiang H F, Lei Y, Liao B S. Metabolomics combined with transcriptomics analyses of mechanism regulating testa pigmentation in peanut. Front Plant Sci, 2022, 13: 1065049.
[2] 李佳伟, 马钰聪, 杨鑫雷, 王梅, 崔顺立, 侯名语, 刘立峰, 胡梦蝶, 蒋晓霞, 穆国俊. 花生种皮色素合成相关通路的转录组- 代谢组学联合分析. 植物遗传资源学报, 2022, 23: 240-254.
doi: 10.13430/j.cnki.jpgr.20210524001
Li J W, Ma Y C, Yang X L, Wang M, Cui S L, Hou M Y, Liu L F, Hu M D, Jiang X X, Mu G J. Transcriptomics-metabolomics combined analysis highlight the mechanism of testa pigment formation in peanut (Arachis hypogaea L.). J Plant Genet Resour, 2022, 23: 240-254 (in Chinese with English abstract).
[3] Zhang K, Yuan M, Xia H, He L Q, Ma J, Wang M X, Zhao H L, Hou L, Zhao S Z, Li P C, Tian R Z, Pan J W, Li G H, Thudi M, Ma C L, Wang X J, Zhao C Z. BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theor Appl Genet, 2022, 135: 1529-1540.
doi: 10.1007/s00122-022-04051-w pmid: 35166897
[4] Chen L, Yan F F, Chen W B, Zhao L, Zhang J L, Lu Q, Liu R. Procyanidin from peanut skin induces antiproliferative effect in human prostate carcinoma cells DU145. Chem Biol Interact, 2018, 288: 12-23.
[5] Zhu F. Anthocyanins in cereals: composition and health effects. Food Res Int, 2018, 109: 232-249.
doi: S0963-9969(18)30285-0 pmid: 29803446
[6] Tsuda T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res, 2012, 56: 159-170.
doi: 10.1002/mnfr.201100526 pmid: 22102523
[7] Attree R, Du B, Xu B J. Distribution of phenolic compounds in seed coat and Cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind Crops Prod, 2015, 67: 448-456.
[8] Alseekh S, de Souza L P, Benina M, Fernie A R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, 174: 112347.
doi: 10.1016/j.phytochem.2020.112347 pmid: 32203741
[9] Iwashina T. Flavonoid function and activity to plants and other organisms. Biol Sci Space, 2003, 17: 24-44.
doi: 10.2187/bss.17.24 pmid: 12897458
[10] Tanaka Y, Brugliera F, Chandler S. Recent progress of flower colour modification by biotechnology. Int J Mol Sci, 2009, 10: 5350-5369.
doi: 10.3390/ijms10125350 pmid: 20054474
[11] Wen W W, Alseekh S, Fernie A R. Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr Opin Plant Biol, 2020, 55: 100-108.
doi: S1369-5266(20)30044-3 pmid: 32422532
[12] Wang X, Zhang X C, Hou H X, Ma X, Sun S L, Wang H W, Kong L R. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Res Int, 2020, 138: 109711.
[13] Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol, 2006, 57: 761-780.
pmid: 16669781
[14] Duan H R, Wang L R, Cui G X, Zhou X H, Duan X R, Yang H S. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biol, 2020, 20: 110.
[15] 吴紫萱, 薛其勤, 杨会, 刘风珍. 花生种皮颜色研究进展. 山东农业科学, 2022, 54(1): 152-156.
Wu Z X, Xue Q Q, Yang H, Liu F Z. Research progress on testa color of peanut. Shandong Agric Sci, 2022, 54(1): 152-156 (in Chinese with English abstract).
[16] Hu M D, Li J W, Hou M Y, Liu X Q, Cui S L, Yang X L, Liu L F, Jiang X X, Mu G J. Transcriptomic and metabolomic joint analysis reveals distinct flavonoid biosynthesis regulation for variegated testa color development in peanut (Arachis hypogaea L.). Sci Rep, 2021, 11: 10721.
[17] Huang J Y, Xing M H, Li Y, Cheng F, Gu H H, Yue C P, Zhang Y J. Comparative transcriptome analysis of the skin-specific accumulation of anthocyanins in black peanut (Arachis hypogaea L.). J Agric Food Chem, 2019, 67: 1312-1324.
[18] Wan L Y, Li B, Lei Y, Yan L Y, Huai D X, Kang Y P, Jiang H F, Tan J Z, Liao B S. Transcriptomic profiling reveals pigment regulation during peanut testa development. Plant Physiol Biochem, 2018, 125: 116-125.
[19] Lou Q, Liu Y L, Qi Y Y, Jiao S Z, Tian F F, Jiang L, Wang Y J. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot, 2014, 65: 3157-3164.
doi: 10.1093/jxb/eru168 pmid: 24790110
[20] Wu Q, Wu J, Li S S, Zhang H J, Feng C Y, Yin D D, Wu R Y, Wang L S. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily. BMC Genomics, 2016, 17: 897.
pmid: 27829354
[21] Xia H, Zhu L, Zhao C Z, Li K, Shang C L, Hou L, Wang M X, Shi J, Fan S J, Wang X J. Comparative transcriptome analysis of anthocyanin synthesis in black and pink peanut. Plant Signal Behav, 2020, 15: 1721044.
[22] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci, 2005, 10: 236-242.
doi: 10.1016/j.tplants.2005.03.002 pmid: 15882656
[23] Labbé D, Provencal M, Lamy S, Boivin D, Gingras D, Béliveau R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr, 2009, 139: 646-652.
doi: 10.3945/jn.108.102616 pmid: 19244381
[24] Kuang Q J, Yu Y Y, Attree R, Xu B J. A comparative study on anthocyanin, saponin, and oil profiles of black and red seed coat peanut (Arachis hypogacea) grown in China. Int J Food Prop, 2017, 20: S131-S140.
[25] Nabavi S M, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J B, Giampieri F, Battino M, Sobarzo-Sanchez E, Nabavi S F, Yousefi B, Jeandet P, Xu S W, Shirooie S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol Adv, 2020, 38: 107316.
[26] Zhou C B, Mei X, Rothenberg D O, Yang Z B, Zhang W T, Wan S H, Yang H J, Zhang L Y. Metabolome and transcriptome analysis reveals putative genes involved in anthocyanin accumulation and coloration in white and pink tea (Camellia sinensis) flower. Molecules, 2020, 25: 190.
[27] Khlestkina E K, Shoeva O Y, Gordeeva E I. Flavonoid biosynthesis genes in wheat. Russ J Genet Appl Res, 2015, 5: 268-278.
[28] 苏俏, 金欣欣, 李玉荣, 程增书, 宋亚辉, 杨永庆, 王瑾. 影响多彩花生种皮颜色的关键代谢物及ANS基因分析. 华北农学报, 2022, 37(增刊): 19-25.
Su Q, Jin X X, Li Y R, Cheng Z S, Song Y H, Yang Y Q, Wang J. Analysis of key metabolites and ANS genes affecting seed testa color of peanut. Acta Agric Boreali-Sin, 2022, 37(S1): 19-25 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20193143
[29] Zhao Z L, Wu M, Zhan Y L, Zhan K H, Chang X L, Yang H S, Li Z M. Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography. J Chromatogr A, 2017, 1519: 74-82.
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[3] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[4] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[5] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[6] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[7] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[8] 秦娜, 叶珍言, 朱灿灿, 付森杰, 代书桃, 宋迎辉, 景雅, 王春义, 李君霞. 谷子籽粒类黄酮含量和粒色的QTL定位[J]. 作物学报, 2024, 50(7): 1719-1727.
[9] 赵娜, 刘宇曦, 张朝澍, 石瑛. 不同马铃薯淀粉含量差异的转录组学解析[J]. 作物学报, 2024, 50(6): 1503-1513.
[10] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[11] 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090.
[12] 宋梦媛, 郭中校, 苏禹霏, 邓昆鹏, 兰天娇, 程钰鑫, 包淑英, 王桂芳, 窦金光, 姜泽锴, 王明海, 徐宁. 一种绿豆柱头外露突变体的转录组分析[J]. 作物学报, 2024, 50(4): 957-968.
[13] 李阳阳, 吴丹, 许军红, 陈倬永, 徐昕媛, 徐金盼, 唐钟林, 张娅茹, 朱丽, 严卓立, 周清元, 李加纳, 刘列钊, 唐章林. 基于QTL和转录组测序鉴定甘蓝型油菜耐旱候选基因[J]. 作物学报, 2024, 50(4): 820-835.
[14] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
[15] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!