欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 425-439.doi: 10.3724/SP.J.1006.2024.32016

• 耕作栽培·生理生化 • 上一篇    下一篇

不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响

徐冉1,2,**(), 杨文叶3,**, 朱均林1, 陈松1, 徐春梅1, 刘元辉1, 章秀福1, 王丹英1, 褚光1,*()   

  1. 1中国水稻研究所 / 水稻生物育种全国重点实验室, 浙江杭州 311400
    2襄阳市农业科学院, 湖北襄阳 441057
    3杭州市农业技术推广中心, 浙江杭州 310000
  • 收稿日期:2023-04-26 接受日期:2023-09-13 出版日期:2024-02-12 网络出版日期:2023-10-07
  • 通讯作者: *褚光, E-mail: chuguang@caas.cn
  • 作者简介:徐冉, E-mail: 1037152516@qq.com
    **同等贡献
  • 基金资助:
    浙江省重点研发计划项目(2022C02034);国家自然科学基金项目(32101825);浙江省“万人计划”科技创新领军人才项目(2020R52035);国家水稻产业技术体系项目(CARS-01)

Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540

XU Ran1,2,**(), YANG Wen-Ye3,**, ZHU Jun-Lin1, CHEN Song1, XU Chun-Mei1, LIU Yuan-Hui1, ZHANG Xiu-Fu1, WANG Dan-Ying1, CHU Guang1,*()   

  1. 1State Key Laboratory of Rice Biology and breeding, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China
    2Xiangyang Academy of Agricultural Science, Xiangyang 441057, Hubei, China
    3Hangzhou Agrotechnology Extension Center, Hangzhou 310000, Zhejiang, China
  • Received:2023-04-26 Accepted:2023-09-13 Published:2024-02-12 Published online:2023-10-07
  • Contact: *E-mail: chuguang@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    Key Research and Development Program of Zhejiang Province(2022C02034);National Natural Science Foundation of China(32101825);Zhejiang Ten Thousand Talents Plan Science and Technology Innovation Leading Talent Project(2020R52035);National Rice Industry Technology System(CARS-01)

摘要:

旨在探讨不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响, 并阐明其相关生理基础。本研究以甬优1540为材料, 设置了3种灌溉模式, 即长淹灌溉(continuous flooding, CF)、轻度干湿交替灌溉(alternate wetting and moderate drying, AWMD)以及重度干湿交替灌溉(alternate wetting and severe drying, AWSD)。研究结果表明, 与CF相比, AWMD与AWSD均能显著提高水分利用效率, 增幅分别为22.6%~25.6%与18.2%~23.1%; AWMD可以显著提高水稻产量, 增幅为8.6%~10.0%, 而AWSD则显著降低水稻产量, 降幅为6.0%~7.5%。与CF相比, AWMD显著降低了拔节期水稻的茎蘖数、地上部干物质重、叶面积指数、移栽至齐穗期的光合势以及移栽至拔节期的作物生长速率, 但显著提高了茎蘖成穗率、拔节至齐穗期的作物生长速率、主要生育期水稻根长密度、深根比、比根长、根系总吸收表面积与活跃吸收表面积, 以及灌浆后2次土壤复水期的剑叶净光合速率、根系氧化力、根系与叶片中玉米素和玉米素核苷(Z+ZR)含量、籽粒中蔗糖-淀粉代谢途径关键酶活性等指标。以上结果表明, AWMD可以协同提高甬优1540产量与水分利用效率, 优化根-冠生长发育特征, 提高灌浆期植株生理活性, 实现高产与水分高效利用, 为本研究最佳水分管理模式。

关键词: 籼粳杂交稻, 干湿交替灌溉, 产量, 水分利用率, 根系形态与生理特征

Abstract:

The objective of this study is to understand how different irrigation regimes affected on grain yield and water use efficiency (WUE) of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases. In the present study, Yongyou 1540 was used and three irrigation regimes were set up during the whole growth period, including continuous flooding (CF), alternate wetting and moderate drying (AWMD), and alternate wetting and severe drying (AWSD). The results showed that compared with CF, both AWMD and AWSD significantly improved WUE, with the increase of 22.6%-25.6% and 18.2%-23.1%, respectively. AWMD significantly increased yield by 8.6%-10.0%, while AWSD significantly decreased yield by 6.0%-7.5%. Compared with CF, AWMD significantly reduced the number of tillers, shoot dry weight and leaf area index (LAI) at the jointing stage, and reduced leaf area duration (LAD) from transplanting to heading, and the crop growth rate (CGR) from transplanting to jointing. However, AWMD significantly increased the percentage of productive tillers, CGR from jointing to heading, root length density, deep root ratio, root to shoot ratio, specific root length, root total absorbing area, and activity absorbing area during the whole growth period, and increased the net photosynthetic rate of flag leaves, root oxidation activity, and Z+ZR content in both roots and leaves, key enzymes involved in sucrose-starch metabolism in grains at two soil re-watering stages at grain filling stage. In conclusion, these results indicated that AWMD could increase both grain yield and WUE, promote root and shoot growth, and improve plant physiological activity at grain filling stage, and achieve high yield and high WUE, which was the best irrigation regime in this study.

Key words: japonica-indica hybrid rice, alternate wetting and soil drying, grain yield, water use efficiency, root morphological and physiological traits

表1

试验地耕层土壤理化性状"

年度
Year
pH 全氮含量
Total N content
(g kg-1)
有机质含量
Organic matter content (g kg-1)
速效养分含量Available nutrients content (mg kg-1)
氮N 磷P 钾K
2021 6.02 2.55 57.2 211 21.3 65.7
2022 6.14 2.52 56.7 204 20.8 63.6

表2

水稻生长期降雨量、日照时长以及平均气温的变化"

年份/气象条件
Year/Meteorological condition
6月
June
7月
July
8月
August
9月
September
10
October
2021
降雨量Precipitation (mm) 221 317 315 125 68.6
日照时长Sunshine (h) 141 246 254 237 196
平均气温Temperature (°C) 26.6 29.3 28.6 26.8 20.0
2022
降雨量Precipitation (mm) 73.8 102 70.8 67.4 41.1
日照时长Sunshine (h) 145 264 266 160 158
平均气温Temperature (°C) 27.4 31.2 31.9 24.6 18.7

表3

不同灌溉模式对籼粳杂交稻甬优1540产量及其构成因素的影响"

年度/处理
Year/treatment
产量
Grain yield
(t hm-2)
穗数
No. of panicles
(×104 hm-2)
每穗粒数
Spikelets per
panicle
总颖花量
Total spikelets
(×106 hm-2)
结实率
Filled grains
(%)
粒重
Grain weight
(mg)
2021
CF 11.9 b 215 a 312 b 6.58 b 78.1 b 22.8 a
AWMD 13.1 a 214 a 325 a 6.96 a 83.2 a 22.7 a
AWSD 11.0 c 204 b 300 c 6.12 c 78.4 b 22.9 a
2022
CF 11.6 b 210 a 301 b 6.32 b 80.2 b 22.9 a
AWMD 12.6 a 208 ab 317 a 6.59 a 84.1 a 22.8 a
AWSD 10.9 c 204 b 287 c 5.85 c 81.4 b 22.9 a
方差分析 ANOVA
年份 Year (Y) NS NS NS NS NS NS
处理 Treatment (T) ** ** ** ** ** NS
年份×处理 Y × T NS NS NS NS NS NS

图1

不同灌溉模式对籼粳杂交稻甬优1540灌溉用水量(A, B)与灌溉水利用效率(C, D)的影响 CF: 长淹灌溉; AWMD: 轻度干湿交替灌溉; AWSD: 重度干湿交替灌溉。不同字母表示P < 0.05水平差异显著。"

表4

不同灌溉模式对籼粳杂交稻甬优1540茎蘖数与茎蘖成穗率的影响"

年度/处理
Year/treatment
茎蘖数 Number of tillers and mail stems per m2 茎蘖成穗率
Productive tillers (%)
拔节期Jointing 齐穗期Heading 成熟期Maturity
2021
CF 271 a 222 a 215 a 79.3 c
AWMD 256 a 225 a 214 a 83.6 b
AWSD 237 b 210 b 204 b 86.1 a
2022
CF 267 a 220 a 210 a 78.7 c
AWMD 251 b 219 a 208 a 82.9 b
AWSD 236 c 207 b 204 b 86.4 a
方差分析 ANOVA
年份 Year (Y) NS NS NS NS
处理 Treatment (T) ** ** ** **
年份×处理 Y × T NS NS NS NS

表5

不同灌溉模式对籼粳杂交稻甬优1540叶面积指数的影响"

年度/处理
Year/treatment
拔节期
Jointing
齐穗期 Heading 成熟期
Maturity
总叶面积指数
Total leaf area index
有效叶面积指数
Productive tillers plus main stems
2021
CF 4.25 a 8.47 a 6.52 a 2.15 b
AWMD 3.78 b 7.85 b 6.45 a 2.75 a
AWSD 3.26 c 6.15 c 5.22 b 1.59 c
2022
CF 4.62 a 8.55 a 6.71 a 2.32 b
AWMD 4.05 b 7.55 b 6.57 a 2.85 a
AWSD 3.24 c 6.24 c 5.19 b 1.45 c
方差分析 ANOVA
年份 Year (Y) NS NS NS NS
处理 Treatment (T) ** ** ** **
年份×处理 Y × T NS NS NS NS

图2

不同灌溉模式对籼粳杂交稻甬优1540地上部干物重(A, B)、根干重(C, D)以及根冠比(E, F)的影响 CF: 长淹灌溉; AWMD: 轻度干湿交替灌溉; AWSD: 重度干湿交替灌溉; JT: 拔节期; HD: 齐穗期; MA: 成熟期; NS: 在0.05概率水平差异不显著。不同字母表示P < 0.05水平差异显著。"

图3

不同灌溉模式对籼粳杂交稻甬优1540光合势(A, B)与作物生长速率(C, D)的影响 CF: 长淹灌溉; AWMD: 轻度干湿交替灌溉; AWSD: 重度干湿交替灌溉; TR-JT: 移栽-拔节; JT-HD: 拔节-齐穗; HD-MA: 齐穗-成熟。不同字母表示P < 0.05水平差异显著。"

图4

不同灌溉模式对籼粳杂交稻甬优1540深根比(A, B)、根长密度(C, D)以及比根长(E, F)的影响 CF: 长淹灌溉; AWMD: 轻度干湿交替灌溉; AWSD: 重度干湿交替灌溉; JT: 拔节期; HD: 齐穗期; MA: 成熟期。不同字母表示P < 0.05水平差异显著。"

图5

不同灌溉模式对籼粳杂交稻甬优1540根系总吸收表面积(A, B)和根系活跃吸收表面积(C, D)的影响 CF: 长淹灌溉; AWMD: 轻度干湿交替灌溉; AWSD: 重度干湿交替灌溉; JT: 拔节期; HD: 齐穗期; MG: 灌浆中期。不同字母表示P < 0.05水平差异显著。"

图6

不同灌溉模式对籼粳杂交稻甬优1540根系氧化力(A, B)与剑叶净光合速率(C, D)的影响 CF: 长淹灌溉; AWMD: 轻度干湿交替灌溉; AWSD: 重度干湿交替灌溉; D1和D2分别对应灌浆期2次土壤落干期; W1和W2分别对应灌浆期2次土壤复水期。不同字母表示P < 0.05水平差异显著。"

图7

不同灌溉模式对籼粳杂交稻甬优1540根系中Z+ZR含量(A, B)与叶片中Z+ZR含量(C, D)的影响 CF: 长淹灌溉; AWMD: 轻度干湿交替灌溉; AWSD: 重度干湿交替灌溉; D1和D2分别对应灌浆期2次土壤落干期; W1和W2分别对应灌浆期2次土壤复水期。不同字母表示P < 0.05水平差异显著。"

表6

不同灌溉模式对籼粳杂交稻甬优1540籽粒中蔗糖-淀粉代谢途径关键酶活性的影响"

年度
Year
处理
Treatment
蔗糖合酶
SuSase (µmol g-1 DW min-1)
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase (µmol g-1 DW min-1)
D1 W1 D2 W2 D1 W1 D2 W2
2021 CF 42.3 a 42.0 b 26.9 a 27.0 b 29.1 a 28.4 b 16.6 a 17.3 b
AWMD 42.7 a 48.0 a 27.2 a 32.8 a 28.3 a 35.2 a 16.3 a 23.1 a
AWSD 35.8 b 41.2 b 22.3 b 27.8 b 22.4 b 28.0 b 13.2 b 16.9 b
2022 CF 41.8 a 41.2 b 28.7 a 27.8 b 27.6 a 26.6 b 17.1 a 16.4 b
AWMD 41.7 a 50.3 a 29.1 a 31.5 a 28.1 a 33.7 a 17.4 a 21.9 a
AWSD 34.8 b 40.5 b 22.0 b 26.3 b 21.5 b 26.2 b 12.3 b 16.9 b
方差分析 ANOVA
年份 Year (Y) NS NS NS NS NS NS NS NS
处理 Treatment (T) ** ** ** ** ** ** ** **
年份×处理 Y × T NS NS NS NS NS NS NS NS

表7

水稻根-冠部分生理指标的相关性"

指标
Trait
叶片中Z+ZR含量
Z+ZR content in leaves
剑叶净光合速率
Flag leaf photosynthetic rate
蔗糖合酶
SuSase
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase
2021
根系氧化力 ROA 0.72** 0.75** 0.81** 0.80**
根系中Z+ZR含量 Z+ZR in roots 0.80** 0.83** 0.84** 0.87**
2022
根系氧化力 ROA 0.78** 0.74** 0.79** 0.81**
根系中Z+ZR含量 Z+ZR in roots 0.81** 0.76** 0.75** 0.76**
[1] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301-1321.
doi: 10.3864/j.issn.0578-1752.2021.07.001
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation in China. Sci Agric Sin, 2021, 54: 1301-1321 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.001
[2] 李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响. 中国水稻科学, 2019, 33: 293-302.
doi: 10.16819/j.1001-7216.2019.8116
Li T T, Feng Y F, Zhu A, Huang J, Wang H, Li S Y, Liu K, Peng R M, Zhang. H L, Liu L J. Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots. Chin J Rice Sci, 2019, 33: 293-302 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8116
[3] 吴汉, 柯健, 何海兵, 尤翠翠, 时光宇, 武立权. 不同间歇时间灌溉对水稻产量及水分利用效率的影响. 灌溉排水学报, 2020, 39: 37-44.
Wu H, Ke J, He H B, You C C, Shi G Y, Wu L Q. Experimental study on the effects of different intermittent irrigations on yield and water use efficiency of rice. J Irrig Drain, 2020, 39: 37-44 (in Chinese with English abstract).
[4] 李俊峰, 杨建昌. 水分与氮素及其互作对水稻产量和水肥利用效率的影响研究进展. 中国水稻科学, 2017, 31: 327-334.
doi: 10.16819/j.1001-7216.2017.6078 327
Li J F, Yang J C. Research advances in the effects of water, nitrogen and their interaction on the yield, water and nitrogen use efficiencies of rice. Chin J Rice Sci, 2017, 31: 327-334 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6078 327
[5] Zhang Y N, Liu M J, Saiz G, Dannenmann M, Guo L, Tao Y Y, Shi J C, Zuo Q, Butterbach K, Li G Y, Lin S. Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Res, 2017, 213: 186-193.
doi: 10.1016/j.fcr.2017.08.008
[6] Liang K M, Zhong X H, Huang R R, Lampayan R M, Pan J F, Tian K, Liu Y. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agric Water Manage, 2016, 163: 319-331.
doi: 10.1016/j.agwat.2015.10.015
[7] Zhang Y, Yu J, Tai A P K, Feng J F, Li Z J, Zhu X C, Chen J, Zhang J, Song Z W, Deng A X, Lal R, Zhang W J. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Enviro Res Lett, 2019, 14: 114020.
[8] Yao F X, Huang J L, Cui K H, Nie L X, Xiang J, Liu X J, Wu W, Chen M X, Peng S B. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res, 2011, 126: 16-22.
doi: 10.1016/j.fcr.2011.09.018
[9] 林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016, 49: 207-218.
doi: 10.3864/j.issn.0578-1752.2016.02.002
Lin J R, Song X W, Wu M G, Cheng S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Sci Agric Sin, 2016, 49: 207-218 (in Chinese with English abstract).
[10] Zhang G Q. Prospects of utilization of inter-subspecific heterosis between indica and japonica rice. J Integr Agric, 2020, 19: 1-10.
doi: 10.1016/S2095-3119(19)62843-1
[11] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t hm-2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t hm-2). Acta Agron Sin, 2014, 40: 2149-2159 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.02149
[12] 胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳杂交稻甬优 2640 钵苗机插超高产群体若干特征探讨. 作物学报, 2014, 40: 2016-2027.
doi: 10.3724/SP.J.1006.2014.02016
Hu Y J, Zhu D W, Qian H J, Cao W W, Xing Z P, Zhang H C, Wei H Y, Zhou Y Y, Chen H C, Wang H Y, Dai Q G, Huo Z Y, Xu K, Guo B W. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica-japonica hybrid rice Yongyou 2640. Acta Agron Sin, 2014, 40: 2016-2027 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.02016
[13] Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2018, 218: 88-96.
doi: 10.1016/j.fcr.2018.01.012
[14] Wei H H, Meng T Y, Li C, Xu K, Huo Z Y, Wei H Y, Guo B W, Zhang H C, Dai Q G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res, 2017, 204: 101-109.
doi: 10.1016/j.fcr.2017.01.001
[15] Wei H Y, Zhang H C, Blumwald E, Li H L, Cheng J Q, Dai Q G, Huo Z Y, Xu M, Guo B W. Different characteristics of high yield formation between inbred japonica super rice and inter-sub- specific hybrid super rice. Field Crops Res, 2016, 198: 179-187.
doi: 10.1016/j.fcr.2016.09.009
[16] Meng T Y, Wei H H, Li X Y, Dai Q G, Huo Z Y. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res, 2018, 228: 135-146.
doi: 10.1016/j.fcr.2018.08.024
[17] 周磊, 刘秋员, 田晋钰, 朱梦华, 程爽, 车阳, 王志杰, 邢志鹏, 胡雅杰, 刘国栋, 魏海燕, 张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异. 作物学报, 2020, 46: 772-786.
doi: 10.3724/SP.J.1006.2020.92051
Zhou L, Liu Q Y, Tian J Y, Zhu M H, Cheng S, Che Y, Wang Z J, Xing Z P, Hu Y J, Liu G D, Wei H Y, Zhang H C. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series. Acta Agron Sin, 2020, 46: 772-786 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.92051
[18] Chu G, Xu R, Chen S, Xu C M, Liu Y H, Abliz B, Zhang X F, Wang D Y. Root morphological-physiological traits for japonica/indica hybrid rice with better yield performance under low N conditions. Food Energy Security, 2022, 11: e355.
doi: 10.1002/fes3.v11.2
[19] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制. 作物学报, 2023, 49: 1630-1642.
doi: 10.3724/SP.J.1006.2023.22040
Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y, Chu G. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases. Acta Agron Sin, 2023, 49: 1630-1642 (in Chinese with English abstract).
[20] 朱安, 高捷, 黄健, 汪浩, 陈云, 刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展. 作物杂志, 2020, (2): 1-8.
Zhu A, Huang J, Huang J, Wang H, Chen Y, Liu L J. Advances in morphology and physiology of root and their relationships with grain quality in rice. Crops, 2020, (2): 1-8 (in Chinese with English abstract).
[21] 陈云, 刘昆, 李婷婷, 李思宇, 李国明, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 结实期干湿交替灌溉对水稻根系、产量和土壤的影响. 中国水稻科学, 2022, 36: 269-277.
doi: 10.16819/j.1001-7216.2022.210309
Chen Y, Liu K, Li T T, Li S Y, Li G M, Zhang W Y, Zhang H, Gu J F, Liu L J, Yang J C. Effects of alternate wetting and moderate soil drying irrigation on root traits, grain yield and soil properties in rice, Chin J Rice Sci, 2022, 36: 269-277 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.210309
[22] 褚光, 徐冉, 陈松, 徐春梅, 王丹英, 章秀福. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础. 中国农业科学, 2021, 54: 1499-1511.
doi: 10.3864/j.issn.0578-1752.2021.07.014
Chu G, Xu R, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of alternate wetting and soil drying on the grain yield and water use efficiency of indica-japonica hybrid rice and its physiological bases. Sci Agric Sin, 2021, 54: 1499-1511 (in Chinese with English abstract).
[23] 张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003. pp 38-39.
Zhang Z L, Qu W J. Plant Physiology Test Guide. Beijing: Higher Education Press, 2003. pp 38-39 (in Chinese).
[24] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108-119.
doi: 10.1016/j.fcr.2013.11.006
[25] Pan X Q, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high performance liquid chromatography-mass spectrometry. Nat Prot, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37
[26] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81.
doi: 10.1016/S0378-4290(02)00214-9
[27] Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[28] 赵喜辉, 李雨阳, 郝威名, 江孟孟, 徐国伟. 干湿交替灌溉与施磷量耦合对水稻根系生长、产量与磷肥利用的影响. 植物生理学报, 2023, 59: 641-652.
Zhao X H, Li Y Y, Hao W M, Jiang M M, Xu G W. Effect of alternate wetting and drying irrigation and phosphorus rates interaction on rice root system, grain yield and phosphorus utilization, Plant Physiol J, 2023, 59: 641-652 (in Chinese with English abstract).
[29] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032
[30] Carrijo D R, Lundy M E, Linquist B A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
doi: 10.1016/j.fcr.2016.12.002
[31] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016, 42: 1026-1036 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01026
[32] 侯丹平, 谭金松, 毕庆宇, 张安宁, 刘毅, 王飞名, 刘国兰, 余新桥, 毕俊国, 罗利军. 水分胁迫对节水抗旱稻产量形成和根系形态生理特性的影响. 中国水稻科学, 2021, 35: 27-37.
doi: 10.16819/j.1001-7216.2021.0507
Hou D P, Tan J S, Bi Q Y, Zhang A N, Liu Y, Wang F M, Liu G L, Yu X Q, Bi J G, Luo L J. Effects of water stress on yield formation and root morphological and physiological characteristics of water-saving and drought-resistant rice. Chin J Rice Sci, 2021, 35: 27-37 (in Chinese with English abstract).
[33] Zhou Q, Ju C X, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric, 2017, 16: 1028-1043.
doi: 10.1016/S2095-3119(16)61506-X
[34] Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61: 3177-3189.
doi: 10.1093/jxb/erq112 pmid: 20421195
[35] Boyer J S, Westgate M E. Grain yields with limited water. J Exp Bot, 2004, 55: 2385-2394.
pmid: 15286147
[36] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展. 作物学报, 2023, 49: 585-596.
doi: 10.3724/SP.J.1006.2023.22035
Liu L J, Zhou S Q, Liu K, Zhang W Y, Yang J C. Research progress on the formation of large panicles in rice and its regulation. Acta Agron Sin, 2023, 49: 585-596 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22035
[37] Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. J Plant Growth Regul, 2007, 26: 318-328.
doi: 10.1007/s00344-007-9013-8
[38] González-Navarro O E, Griffiths S, Molero G, Reynolds M P, Slafer G A. Dynamics of floret development determining differences in spike fertility in an elite population of wheat. Field Crops Res, 2015, 172: 21-31.
doi: 10.1016/j.fcr.2014.12.001
[39] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用. 作物学报, 2021, 47: 894-903.
doi: 10.3724/SP.J.1006.2021.02048
Yao J Y, Yu J X, Wang Z Q, Liu L J, Zhou J, Zhang W Y, Yang J C. Response of endogenous brassinosteroids to nitrogen rates and its regulatory effect on spikelet degeneration in rice. Acta Agron Sin, 2021, 47: 894-903 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02048
[40] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018, 63: 2932-2943.
Yang J C, Zhang J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin Sci Bull, 2018, 63: 2932-2943 (in Chinese with English abstract).
doi: 10.1360/N972018-00577
[41] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-59.
doi: 10.1016/j.fcr.2015.02.007
[42] Chu G, Chen S, Xu C M, Wang D Y, Zhang X F. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res, 2019, 243: 107625.
doi: 10.1016/j.fcr.2019.107625
[43] Chen M, Chen G, Di D W, Kronzucker H J, Shi W M. Higher nitrogen use efficiency (NUE) in hybrid “super rice” links to improved morphological and physiological traits in seedling roots. J Plant Physiol, 2020, 251: 153191.
doi: 10.1016/j.jplph.2020.153191
[44] Liu K, Chen Y, Li S Y, Wang W L, Zhang W Y, Zhang H, Gu J F, Yang J C, Liu L J. Differing responses of root morphology and physiology to nitrogen application rates and their relationships with grain yield in rice. Crop J, 2023, 11: 618-627.
doi: 10.1016/j.cj.2022.07.019
[45] 徐国伟, 赵喜辉, 江孟孟, 陆大克, 陈明灿. 轻度干湿交替灌溉协调水稻根冠生长、提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27: 1388-1396.
Xu G W, Zhao X H, Jiang M M, Lu D K, Chen M C. Alternate wetting and moderate drying irrigation harmonize rice root and shoot growth, improves grain yield and nitrogen use efficiency. Plant Nutr Fert Sci, 2021, 27: 1388-1396 (in Chinese with English abstract).
[46] Yang J C, Zhang H, Zhang J H. Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012, 11: 920-926.
doi: 10.1016/S2095-3119(12)60082-3
[47] Xu G W, Lu D K, Wang H Z, Li Y J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manage, 2018, 203: 385-394.
doi: 10.1016/j.agwat.2018.02.033
[48] 卞金龙, 蒋玉兰, 刘艳阳, 冯咏芳, 刘贺, 夏仕明, 刘立军. 干湿交替灌溉对抗旱性不同水稻品种产量的影响及其生理原因分析. 中国水稻科学, 2017, 31: 379-390.
doi: 10.16819/j.1001-7216.2017.7006 379
Bian J L, Jiang Y L, Liu Y Y, Feng Y F, Liu H, Xia S M, Liu L J. Effects of alternate wetting and drying irrigation on grain yield in rice cultivars with different drought resistance and its physiological mechanism. Chin J Rice Sci, 2017, 31: 379-390 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.7006 379
[49] 褚光, 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响. 中国水稻科学, 2021, 35: 586-594.
doi: 10.16819/j.1001-7216.2021.201213
Chu G, Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y. Effects of improved crop management on growth characteristic of root and shoot, water and nitrogen use efficiency, and grain yield in rice. Chin J Rice Sci, 2021, 35: 586-594 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2021.201213
[1] 贺佳奇, 白羿雄, 姚晓华, 姚有华, 安立昆, 王玉琴, 王小萍, 李新, 崔永梅, 吴昆仑. 刈割对青稞恢复特性及籽粒和秸秆产量品质特性的影响[J]. 作物学报, 2024, 50(3): 747-755.
[2] 李博洋, 叶茵, 楚睿雯, 井苗, 张岁岐, 严加坤. 施加生物炭对谷子干物质积累、转运、分配和土壤理化性质的影响[J]. 作物学报, 2024, 50(3): 695-708.
[3] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694.
[4] 韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响[J]. 作物学报, 2024, 50(3): 734-746.
[5] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[6] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[7] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[8] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J]. 作物学报, 2024, 50(2): 478-492.
[9] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[10] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[11] 邵扬, 郭延平, 周丙月, 张峰, 张兴民, 王玉萍. 蚕豆产量组分的基因型与环境互作及稳定性分析[J]. 作物学报, 2024, 50(1): 149-160.
[12] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[13] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[14] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[15] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .