作物学报 ›› 2024, Vol. 50 ›› Issue (4): 897-813.doi: 10.3724/SP.J.1006.2024.31046
王添宁1(), 冯雅岚2, 琚吉浩1, 吴毅1, 张均1, 马超1,*()
WANG Tian-Ning1(), FENG Ya-Lan2, JU Ji-Hao1, WU Yi1, ZHANG Jun1, MA Chao1,*()
摘要:
生长调控因子(growth-regulating factor, GRF)在植物的生长发育、逆境响应和激素信号转导中起着重要的调控作用。系统分析小麦及其祖先物种GRF转录因子家族成员在基因组上的分布、结构、进化以及表达特性, 对于深入研究GRF家族的生物学功能和小麦的进化具有重要的意义。本研究利用生物信息学方法, 对乌拉尔图小麦、拟斯卑尔脱山羊草、粗山羊草、栽培二粒小麦和普通小麦5个物种的GRF成员进行全基因组鉴定, 并对其理化性质、系统发育关系、基因结构、启动子顺式作用元件以及表达特性进行了分析。结果表明, 乌拉尔图小麦、拟斯卑尔脱山羊草、粗山羊草、栽培二粒小麦和普通小麦中分别有15、12、19、29和53个GRF成员, 通过种间共线性分析发现, TtGRFs分别有18个和29个成员与TuGRFs和AesGRFs具有共线性, TaGRFs分别有36个和37个成员与TtGRFs和AetGRFs具有共线性。启动子顺式作用元件预测发现GRF基因具有基本的转录元件以及一些与生长发育和逆境响应的结合元件。RT-qPCR分析表明, 多数GRF基因在外源IAA、GA和干旱胁迫条件下呈上调表达趋势, 而在高温胁迫条件下呈下调表达趋势, 表明GRF家族成员在响应激素和逆境胁迫中有重要作用。系统进化分析表明, 小麦与其祖先物种之间的GRF成员存在保守且复杂的进化关系。上述结果为GRF转录因子家族的进化及其功能研究提供了理论基础。
[1] |
Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[2] |
Claus S, Michael B. The regulation of transcription factor activity in plants. Trends Plant Sci, 1998, 3: 378-383.
doi: 10.1016/S1360-1385(98)01302-8 |
[3] |
Karam B S, Rhonda C F, Luis O. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430-436.
doi: 10.1016/s1369-5266(02)00289-3 pmid: 12183182 |
[4] |
Du W X, Yang J F, Li Q, Su Q, Yi D X, Pang Y Z. Genome-wide identification and characterization of growth regulatory factor family genes in Medicago. Int J Mol Sci, 2022, 23: 6905.
doi: 10.3390/ijms23136905 |
[5] |
Wang F D, Qiu N W, Ding Q, Li J J, Zhang Y H, Li H Y, Gao J W. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genom, 2014, 15: 807.
doi: 10.1186/1471-2164-15-807 |
[6] |
van der Knaap, Kim J H, Kende H. A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol, 2000, 122: 695-704.
doi: 10.1104/pp.122.3.695 pmid: 10712532 |
[7] |
Kim J H, Choi D, Kende H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J, 2003, 36: 94-104.
doi: 10.1046/j.1365-313X.2003.01862.x |
[8] |
Zhang D F, Li B, Jia G Q, Zhang T F, Dai J R, Li J S, Wang S C. Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.). Plant Sci, 2008, 175: 809-817.
doi: 10.1016/j.plantsci.2008.08.002 |
[9] |
Choi D, Kim J H, Kende H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol, 2004, 45: 897-904.
doi: 10.1093/pcp/pch098 |
[10] |
Huang W D, He Y Q, Yang L, Lu C, Zhu Y X, Sun C, Ma D F, Yin J L. Genome-wide analysis of growth-regulating factors (GRFs) in Triticum aestivum. PeerJ, 2021, 9: e10701.
doi: 10.7717/peerj.10701 |
[11] |
Yi W, Luan A P, Liu C Y, Wu J, Zhang W, Zhong Z Q, Wang Z P, Yang M Z, Chen C J, He Y H. Genome-wide identification, phylogeny, and expression analysis of GRF transcription factors in pineapple (Ananas comosus). Front Plant Sci, 2023, 14: 1159223.
doi: 10.3389/fpls.2023.1159223 |
[12] |
Zan T, Zhang L, Xie T T, Li L Q. Genome-Wide identification and analysis of the growth-regulating factor (GRF) gene family and GRF-Interacting factor family in Triticum aestivum L. Biochem Genet, 2020, 58: 1-20.
doi: 10.1007/s10528-019-09927-z |
[13] |
Kim J H, Kende H. A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 13374-13379.
doi: 10.1073/pnas.0405450101 |
[14] |
Kim J H. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants. BMB Rep, 2019, 52: 227-238.
pmid: 30885290 |
[15] |
Liang G, He H, Li Y, Wang F, Yu D Q. Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol, 2014, 164: 249-258.
doi: 10.1104/pp.113.225144 pmid: 24285851 |
[16] |
Liu X, Guo L X, Jin L F, Liu Y Z, Liu T, Fan Y H, Peng S A. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development. Mol Biol Rep, 2016, 43: 1059-1067.
doi: 10.1007/s11033-016-4048-1 pmid: 27491940 |
[17] |
Kuijt S J H, Greco R, Agalou A, Shao J, Hoen C C J, Overnäs E, Osnato M, Curiale S, Meynard D, van Gulik R, de Faria M S, Atallah M, de Kam R J, Lamers G E M, Guiderdoni E, Rossini L, Meijer A H, Ouwerkerk P B F. Interaction between the growth-regulating factor and knotted1-like homeobox families of transcription factors. Plant Physiol, 2014, 164: 1952-1966.
doi: 10.1104/pp.113.222836 pmid: 24532604 |
[18] |
Li S C, Gao F Y, Xie K L, Zeng X H, Cao Y, Zeng J, He Z S, Ren Y, Li W B, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J, 2016, 14: 2134-2146.
doi: 10.1111/pbi.12569 pmid: 27107174 |
[19] |
Wang P, Xiao Y, Yan M, Yan Y, Lei X J, Di P, Wang Y P. Whole- genome identification and expression profiling of growth- regulating factor (GRF) and GRF-interacting factor (GIF) gene families in Panax ginseng. BMC Genom, 2023, 24: 334.
doi: 10.1186/s12864-023-09435-w |
[20] |
Zhang S W, Li G G, Wang Y D, Anwar A, He B, Zhang J W, Chen C M, Hao Y W, Chen R Y, Song S W. Genome-wide identification of BcGRF genes in flowering Chinese cabbage and preliminary functional analysis of BcGRF8 in nitrogen metabolism. Front Plant Sci, 2023, 14: 1144748.
doi: 10.3389/fpls.2023.1144748 |
[21] |
Yarra R, Krysan P J. GRF-GIF duo and GRF-GIF-BBM: novel transformation methodologies for enhancing regeneration efficiency of genome-edited recalcitrant crops. Planta, 2023, 257: 60.
doi: 10.1007/s00425-023-04096-1 pmid: 36801980 |
[22] |
Liu Y T, Guo P, Wang J, Xu Z Y. Growth-regulating factors: conserved and divergent roles in plant growth and development and potential value for crop improvement. Plant J, 2022, 113: 1122-1145.
doi: 10.1111/tpj.v113.6 |
[23] |
Daniela L, Javier F P. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol, 2020, 53: 31-42.
doi: S1369-5266(19)30077-9 pmid: 31726426 |
[24] |
Montenegro J D, Golicz A A, Bayer P E, Hurgobin B, Lee H, Chan C K, Visendi P, Lai K, Doležel J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. Plant J, 2017, 90: 1007-1013.
doi: 10.1111/tpj.2017.90.issue-5 |
[25] |
Etienne P, Pierre S, Jérôme S, Cyrille S, Frédéric C, Philippe L, Abraham K, Monika M, Shahryar K, Wolfgang S, Evans L, Daryl S, Andrzej K, Michael A, Sonia V, Hélène B, Kellye E, Rudi A, Jan S, Hana S, Jaroslav D, Michel B, Catherine F. A physical map of the 1-Gigabase bread wheat chromosome 3B. Science, 2008, 322: 101-104.
doi: 10.1126/science.1161847 pmid: 18832645 |
[26] |
Zhang M, Qiu X B. Genetic basis of genome size variation of wheat. Funct Integr Genomic, 2023, 23: 285-285.
doi: 10.1007/s10142-023-01194-x pmid: 37648783 |
[27] |
El B M, Murat F, Veyssiere M, Molinier M, Flores R, Burlot L, Alaux M, Quesneville H, Pont C, Salse J. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). New Phytol, 2017, 213: 1477-1486.
doi: 10.1111/nph.14113 pmid: 27551821 |
[28] | 魏益民. 中国小麦的起源、传播及进化. 麦类作物学报, 2021, 41: 305-309. |
Wei Y M. Origin, spread and evolution of wheat in China. J Triticeae Crops, 2021, 41: 305-309. (in Chinese with English abstract) | |
[29] |
Chen F, Yang Y Z, Luo X F, Zhou W G, Dai Y J, Zheng C, Liu W G, Yang W Y, Shu K. Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biol, 2019, 19: 1-13.
doi: 10.1186/s12870-018-1600-2 |
[30] |
Chen H L, Ge W N. Identification, molecular characteristics, and evolution of GRF gene family in foxtail millet (Setaria italica L.). Front Genet, 2022, 12: 727674.
doi: 10.3389/fgene.2021.727674 |
[31] |
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022-3027.
doi: 10.1093/molbev/msab120 pmid: 33892491 |
[32] |
Chen C J, Chen H, Zhang Y, Thomas H R, Margaret H F, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[33] |
Li C, Li Q G, Dunwell J M, Zhang Y M. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots. Mol Biol Evol, 2012, 29: 3227-3236.
pmid: 22586327 |
[34] | Timothy L B, Charles E. Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers. Menlo Park, California: AAAI Press, 1994. pp 28-36. |
[35] |
Wang Y P, Tang H B, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012, 40: e49.
doi: 10.1093/nar/gkr1293 |
[36] |
Khadiza K, Arif H K R, Park J, Ujjal K N, Chang K K, Ki-Byung L, Ill S N, Mi-Young C, Hikmet B. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones. Int J Mol Sci, 2017, 18: 1056.
doi: 10.3390/ijms18051056 |
[37] |
Noon J B, Hewezi T, Baum T J. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections. J Exp Bot, 2019, 70: 1653-1668.
doi: 10.1093/jxb/erz022 pmid: 30715445 |
[38] | 张立全, 张浩林, 李丛丛, 姚磊, 魏建华, 张杰伟. 谷子GRF基因家族鉴定与分析. 西南农业学报, 2021, 34: 2340-2347. |
Zhang L Q, Zhang H L, Li C C, Yao L, Wei J H, Zhang J W. Genome-wide analysis and identification of GRF gene family in foxtail millet (Setaria italica). Southwest China J Agric Sci, 2021, 34: 2340-2347. (in Chinese with English abstract) | |
[39] |
时丕彪, 何冰, 费月跃, 王军, 王伟义, 魏福友, 吕远大, 顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析. 作物学报, 2019, 45: 1841-1850.
doi: 10.3724/SP.J.1006.2019.94049 |
Shi P B, He B, Fei Y Y, Wang J, Wang W Y, Wei F Y, Lyu Y D, Gu M F. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa. Acta Agron Sin, 2019, 45: 1841-1850. (in Chinese with English abstract) | |
[40] |
马超, 宋鹏, 尚申申, 杨夏夏, 杨金华, 韩群威, 李记民, 冯雅岚. 二穗短柄草GRFs基因家族的鉴定及表达模式分析. 核农学报, 2020, 34: 1152-1162.
doi: 10.11869/j.issn.100-8551.2020.06.1152 |
Ma C, Song P, Shang S S, Yang X X, Yang J H, Han Q W, Li J M, Feng Y L. Whole genome identification and analysis of GRFs gene family in Brachypodium distachyon. Acta Agric Nucl Sci, 2020, 34: 1152-1162. (in Chinese with English abstract) | |
[41] |
Jiao Y N, Wickett N J, Ayyampalayam S, Chanderbali A S, Landherr L, Ralph P E, Tomsho L P, Hu Y, Liang H Y, Soltis P S, Soltis D E, Clifton S W, Schlarbaum S E, Schuster S C, Ma H, Leebens-Mack J, de Pamphilis C W. Ancestral polyploidy in seed plants and angiosperms. Nature, 2011, 473: 97-100.
doi: 10.1038/nature09916 |
[42] |
赵旭博, 李爱丽, 毛龙. 植物多倍化过程中小分子RNA调控基因表达机制研究进展. 作物学报, 2013, 39: 1331-1338.
doi: 10.3724/SP.J.1006.2013.01331 |
Zhao X B, Li A L, Mao L. Progress on gene regulatory mechanisms by small RNAs during plant poly-ploidization. Acta Agron Sin, 2013, 39: 1331-1338. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01331 |
|
[43] |
Panchy N, Lehti-Shiu M, Shiu S H. Evolution of gene duplication in plants. Plant Physiol, 2016, 171: 2294-2316.
doi: 10.1104/pp.16.00523 pmid: 27288366 |
[44] |
Kong F L, Wang J, Cheng L, Liu S Y, Wu J, Peng Z, Lu G. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene, 2012, 499: 108-120.
doi: 10.1016/j.gene.2012.01.048 |
[45] |
Tao Y, Wang F T, Jia D M, Li J T, Zhang Y M, Jia C G, Wang D P, Pan H Y. Cloning and functional analysis of the promoter of a stress-inducible gene (ZmRXO1) in maize. Plant Mol Biol Rep, 2015, 33: 200-208.
doi: 10.1007/s11105-014-0741-1 |
[46] |
Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol, 2013, 56: 115-121.
doi: 10.1007/s12374-012-0377-3 |
[47] |
Lee S J, Lee B H, Jung J H, Park S K, Song J T, Kim J H. Growth- regulating factor and GRF-interacting factor specify meristematic cells of gynoecia and anthers. Plant Physiol, 2018, 176: 717-729.
doi: 10.1104/pp.17.00960 |
[1] | 陆汝华, 王文轩, 曹强, 田永超, 朱艳, 曹卫星, 刘小军. 稻麦复种模式下氮肥与稻秸互作对小麦产量和N2O排放影响及推荐施肥研究[J]. 作物学报, 2024, 50(5): 1300-1311. |
[2] | 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 冯瑞云, 畅志坚, 乔麟轶. 小麦芽期和苗期耐盐鉴定方法的适用性评价[J]. 作物学报, 2024, 50(5): 1193-1206. |
[3] | 齐学礼, 李莹, 李春盈, 韩留鹏, 赵明忠, 张建周. 基于转录组探究外源水杨酸对条锈菌侵染小麦幼苗的缓解效应及差异表达基因分析[J]. 作物学报, 2024, 50(4): 1080-1090. |
[4] | 张振, 赵俊晔, 石玉, 张永丽, 于振文. 不同播幅对小麦花后叶片光合特性和产量的影响[J]. 作物学报, 2024, 50(4): 981-990. |
[5] | 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943. |
[6] | 许乃银, 金石桥, 晋芳, 刘丽华, 徐剑文, 刘丰泽, 任雪贞, 孙全, 许栩, 庞斌双. 基于SNP标记的小麦品种遗传相似度及其检测准确度分析[J]. 作物学报, 2024, 50(4): 887-896. |
[7] | 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003. |
[8] | 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792. |
[9] | 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589. |
[10] | 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602. |
[11] | 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733. |
[12] | 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477. |
[13] | 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513. |
[14] | 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353. |
[15] | 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450. |
|