欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2632-2651.doi: 10.3724/SP.J.1006.2025.51033

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦苗期耐低磷相关基因位点的挖掘与候选基因分析

曹志洋1(), 高丽锋2(), 姜东言1, 王曙光1, 杨进文1, 贾继增2, 李宁1,*(), 孙黛珍1,*()   

  1. 1山西农业大学农学院, 山西太谷 030801
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2025-03-27 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-22
  • 通讯作者: *孙黛珍, E-mail: sdz64@126.com;李宁, E-mail: 13159862006@163.com
  • 作者简介:曹志洋, E-mail: 18746122096@163.com;
    高丽锋, E-mail: gaolifeng@caas.cn
    **同等贡献
  • 基金资助:
    国家重点研发计划项目(2022YFD1200201);国家重点研发计划项目(2024YFD1201100);山西农业大学农学院育种工程专项计划项目(YZ2021-0)

Identification of genetic loci related to low phosphorus tolerance at the seedling stage in wheat and analysis of candidate genes

CAO Zhi-Yang1(), GAO Li-Feng2(), JIANG Dong-Yan1, WANG Shu-Guang1, YANG Jin-Wen1, JIA Ji-Zeng2, LI Ning1,*(), SUN Dai-Zhen1,*()   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2025-03-27 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-22
  • Contact: *E-mail: sdz64@126.com;E-mail: 13159862006@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key R&D Program of China(2022YFD1200201);National Key R&D Program of China(2024YFD1201100);Breeding Engineering Program of College of Agriculture, Shanxi Agricultural University(YZ2021-0)

摘要:

磷是作物生长发育所必需的大量元素之一, 土壤中只有少部分磷可被植物有效利用, 而长期施用磷肥又可能造成环境污染。因此筛选强耐低磷品种、挖掘耐低磷相关QTL与候选基因具有重要意义。本研究采用389份小麦品种组成的自然群体, 在正常磷(对照)和低磷条件下进行3年(2022—2024)的苗期水培试验, 测定苗高、主根长、根条数、茎叶干重、根干重、总根长、根面积、根直径和根尖数9个性状, 并计算每个性状的耐低磷系数和BLUP值, 然后根据耐低磷系数计算综合评价D值。基于3个环境下的BLUP值进行相关性分析, 发现低磷和对照条件下, 除根直径外, 大多数性状之间呈显著正相关。利用综合评价D值进行聚类分析显示, “丰德存麦1号”在4个环境(2022、2023、2024、BLUP)下均被鉴定为强耐低磷型品种。结合660K SNP芯片, 对4个环境下9个性状的耐低磷系数和D值进行全基因组关联分析, 共检测到1197个显著关联的SNP标记, 形成了464个QTL。其中在2个环境下重复检测到20个QTL, 在3个和4个环境下重复检测到7个QTL, 标记位点解释的贡献率R2范围为4.09%~10.58%。然后, 利用前人报道的转录组数据结合基因功能注释, 在这7个QTL区间内筛选到3个耐低磷相关候选基因, 其中TraesCS4D02G022900TraesCS4D02G023300编码F-box家族蛋白, 拟南芥的同源基因At5g21040编码一种同时含有WD40和F-box结构域的蛋白, 是磷饥饿响应的负调控因子; TraesCS6D02G154700编码的类受体蛋白激酶与植物的生长、发育、抗逆以及抗病有关。进一步分析这3个候选基因低磷胁迫下叶片和根系的表达模式, 发现均具有差异表达, 与前人的转录组结果一致。这些发现为选育耐低磷小麦品种, 解析低磷胁迫相关基因的功能和调控机制提供了基础。

关键词: 小麦, 低磷胁迫, 全基因组关联分析, SNP, 候选基因

Abstract:

Phosphorus (P) is an essential macronutrient for crop growth and development. However, only a small fraction of the phosphorus present in soil is effectively utilized by plants, and long-term application of P fertilizers can lead to environmental pollution. Therefore, it is of great significance to screen for varieties with strong tolerance to low-P conditions and to identify associated QTLs and candidate genes. In this study, a natural population consisting of 389 wheat varieties was used as experimental material. A three-year hydroponic experiment (2022, 2023, and 2024) was conducted under both normal-P (control) and low-P conditions at the wheat seedling stage. Nine traits were measured, including seedling height, main root length, root number, shoot dry weight, root dry weight, total root length, root surface area, root diameter, and number of root tips. For each trait, the low-P tolerance coefficient and BLUP values were calculated, and comprehensive evaluation D-values were derived based on these coefficients. Correlation analysis of BLUP values across the three environments revealed significantly positive correlations among most traits, except for root diameter, under both low-P and control conditions. Cluster analysis of the comprehensive D-values identified ‘Fengdecunmai 1' as a strongly low-P-tolerant variety across all four environments (2022, 2023, 2024, and BLUP). A genome-wide association study (GWAS) was carried out using low-P tolerance coefficients and D-values for the nine traits across the four environments, based on the 660K SNP chip. A total of 1,197 significant SNP markers were detected, forming 464 QTLs. Among these, 20 QTLs were repeatedly detected in two environments, and 7 QTLs were detected in three or four environments, with the phenotypic variance explained (R2) ranging from 4.09% to 10.58%. Based on previously published transcriptomic data and gene functional annotation, three candidate genes associated with low-P tolerance were identified within the regions of the seven QTLs. TraesCS4D02G022900 and TraesCS4D02G023300 encode F-box family proteins. Their Arabidopsis ortholog, At5g21040, encodes a protein containing both WD40 and F-box domains and functions as a negative regulator of the P starvation response. TraesCS6D02G154700 encodes a receptor-like protein kinase involved in plant growth, development, and responses to stress and disease. Further analysis of the expression patterns of these three candidate genes in both leaves and roots under low-P stress revealed differential expression consistent with previous transcriptomic results. These findings provide a solid foundation for the development of low-P-tolerant wheat cultivars and for elucidating the functions and regulatory mechanisms of genes associated with low-P stress.

Key words: wheat, low phosphorus stress, GWAS, SNP, candidate genes

表1

Hoagland营养液配方"

化学式
Chemical formula
浓度
Concentration (mmol L-1)
化学式
Chemical formula
浓度
Concentration (mmol L-1)
Ca(NO3)2·4H2O 1.0 H3BO3 0.00100
KH2PO4 对照组0.2, 低磷组0.005 CK 0.2, LP 0.005 Na2MOO4·2H2O 0.00015
MgSO4·7H2O 1.0 MnSO4·H2O 0.00100
KCl 1.5 ZnSO4·7H2O 0.00100
CaCl2 1.5 CuSO4·5H2O 0.00050
Fe-EDTA 0.1

表2

本研究所用引物"

引物名称Primer name 引物序列Primer sequence (5'-3')
TraesCS4D02G022900-F ACTGGAAAGGGGCGCTTT
TraesCS4D02G022900-R GAACCATTCATCTTGCCCCC
TraesCS4D02G023300-F GGGATGGAGGACTTCGACAA
TraesCS4D02G023300-R ACTGTAGGGGACGCAAGGAA
TraesCS6D02G154700-F ATATCGCGCACTGGACTCAC
TraesCS6D02G154700-R ATATCGCGCACTGGACTCAC
TaActin-F TGGTGTCATCAAGCCTGGTATGGT
TaActin-R ACTCATGGTGCATCTCAACGGACT

表3

不同磷处理条件下表型性状的统计分析"

性状
Trait
环境
Environment
对照处理
CK
低磷处理
Low-phosphorus
耐低磷系数
Low-phosphorus tolerance coefficient
平均值
Mean
标准差
SD
变异系数CV (%) 平均值
Mean
标准差
SD
变异系数CV (%) 平均值
Mean
标准差
SD
变异系数CV (%)
苗高
SH (cm)
E1 29.18 6.25 21.42 19.02 4.10 21.56 0.66 0.10 15.54
E2 27.64 4.91 17.75 18.43 2.84 15.41 0.68 0.11 16.70
E3 29.79 5.23 17.56 19.35 3.23 16.68 0.66 0.11 16.99
BLUP 28.94 3.94 13.61 19.01 2.27 11.96 0.66 0.07 10.70
主根长
MRL (cm)
E1 22.39 5.31 23.71 25.90 5.53 21.35 1.18 0.20 17.04
E2 22.79 5.40 23.68 25.71 5.31 20.64 1.15 0.21 18.47
E3 23.60 5.30 22.46 27.86 5.75 20.64 1.22 0.30 24.86
BLUP 22.84 3.18 13.94 26.42 3.36 12.71 1.17 0.15 12.64
根条数
RN
E1 5.96 1.30 21.83 4.93 0.93 18.79 0.84 0.14 16.80
E2 5.83 1.09 18.72 4.89 0.87 17.83 0.86 0.18 20.46
E3 6.52 1.31 20.15 5.25 1.04 19.86 0.83 0.21 25.70
BLUP 6.12 0.59 9.60 5.01 0.49 9.84 0.82 0.08 9.18
茎叶干重
SDW (g)
E1 0.043 0.017 41.08 0.023 0.008 33.33 0.58 0.17 29.30
E2 0.047 0.019 41.18 0.027 0.009 31.55 0.62 0.17 27.32
E3 0.058 0.025 43.13 0.026 0.010 40.92 0.51 0.28 55.81
BLUP 0.048 0.011 22.27 0.025 0.004 17.71 0.53 0.10 18.76
根干重
RDW(g)
E1 0.010 0.005 47.66 0.014 0.005 35.43 1.52 0.57 37.46
E2 0.010 0.005 49.06 0.016 0.005 33.84 1.73 0.75 43.16
E3 0.012 0.006 47.45 0.015 0.007 46.63 1.48 0.78 52.59
BLUP 0.011 0.002 21.08 0.015 0.003 20.93 1.37 0.28 20.55
总根长
TRL (cm)
E1 262.0 89.4 34.12 308.4 107.4 34.82 1.26 0.49 38.63
E2 254.4 124.9 49.10 312.9 118.8 37.96 1.43 0.71 49.92
E3 259.2 89.7 34.60 292.1 120.7 41.32 1.22 0.57 46.91
BLUP 255.9 34.6 13.52 309.0 36.3 11.76 1.22 0.18 14.71
根面积
RSA (cm2)
E1 17.37 8.07 46.46 20.15 7.03 34.87 1.33 0.59 44.62
E2 16.83 7.37 43.80 21.45 8.21 38.28 1.44 0.70 48.78
E3 18.35 5.74 31.30 20.93 7.86 37.54 1.22 0.53 43.02
BLUP 17.31 1.91 11.01 20.65 1.98 9.57 1.20 0.14 11.73
根直径
RD (mm)
E1 0.234 0.029 12.21 0.205 0.023 11.13 0.88 0.08 9.11
E2 0.224 0.032 14.28 0.200 0.029 14.62 0.90 0.11 12.26
E3 0.229 0.033 14.21 0.218 0.029 13.35 0.96 0.11 11.86
BLUP 0.229 0.016 7.07 0.208 0.012 5.89 0.91 0.05 5.20
根尖数
RTN
E1 465.2 255.8 54.99 531.0 257.8 48.54 1.34 0.74 54.89
E2 486.8 216.4 44.45 584.5 297.2 50.84 1.32 0.65 49.27
E3 469.9 227.1 48.33 616.4 300.7 48.77 1.54 0.94 61.33
BLUP 458.6 96.8 21.10 562.6 136.3 24.23 1.25 0.30 23.73

图1

4个环境下小麦苗期9个表型性状的频率分布直方图和箱线图 缩写同表3。CK: 对照; LP: 低磷处理。"

表4

表型性状成分和其他相关组分的方差分析"

性状Trait 处理Treatment (T) 基因型Genotype (G) 处理×基因型T×G
苗高SH *** *** ***
主根长MRL *** *** ***
根条数RN *** *** ***
茎叶干重SDW *** *** ***
根干重RDW *** *** ***
总根长TRL *** *** ***
根面积RSA *** *** ***
根直径RD ** *** ***
根尖数RTN *** *** ***

图2

小麦苗期9个表型性状BLUP值的相关性热图 缩写同表3。CK: 对照; LP: 低磷处理; LPTC: 耐低磷系数。A: 对照条件下BLUP值的相关性热图。B: 低磷条件下BLUP值的相关性热图。C: BLUP值的耐低磷系数和综合评价D值相关性热图。*、**、***分别表示在0.05、0.01、0.001水平相关性显著。"

图3

小麦苗期9个表型性状的综合评价D值聚类分析图 缩写同表3。图中编号1~389代表品种名称, 见附表1。SLPTT: 强耐低磷型; LPTT: 耐低磷型; IT: 中间型; RST: 较敏感型; ST: 敏感型。"

附表1

供试小麦材料"

编号
Code
品种名称
Variety name
编号
Code
品种名称
Variety name
1 科农199 Kenong 199 196 晋麦31 Jinmai 31
2 晋麦2148 Jinmai 2148 197 临抗5027 Linkang 5027
3 山农205 Shannong 205 198 晋麦54 Jinmai 54
4 阿夫 Afu 199 晋麦47 Jinmai 47
5 博爱7023 Boai 7023 200 平阳181 Pingyang 181
6 郑麦9023 Zhengmai 9023 201 临麦4号 Linmai 4
7 郑州5号 Zhengzhou 5 202 临麦2号 Linmai 2
8 豫麦35 Yumai 35 203 矮抗58 Aikang 58
9 豫麦24 Yumai 24 204 平原50 Pingyuan 50
10 豫麦15 Yumai 15 205 百农3217 Bainong 3217
11 偃师4号 Yanshi 4 206 安阳一号 Anyang 1
12 中焦2号 Zhongjiao 2 207 矮粒多 Ailiduo
13 中洛08-2 Zhongluo 08-2 208 丰德存麦1号 Fengdecunmai 1
14 陕253 Shaan 253 209 百农791 Bainong 791
15 商洛81(2)4-19-23 Shangluo 81(2)4-19-23 210 藁优2018 Gaoyou 2018
16 咸农151 Xiannong 151 211 旱选3号 Hanxuan 3
17 小偃6号 Xiaoyan 6 212 旱选10号 Hanxuan 10
18 淮麦33 Huaimai 33 213 国麦301 Guomai 301
19 苏麦3号 Sumai 3 214 开麦21 Kaimai 21
20 生选3号 Shengxuan 3 215 焦麦266 Jiaomai 266
21 苏麦6号 Sumai 6 216 怀川916 Huaichuan 916
22 徐州21 Xuzhou 21 217 洛麦26 Luomai 26
23 扬麦13 Yangmai 13 218 洛麦23 Luomai 23
24 扬麦12 Yangmai 12 219 兰考90(6)52-24 Lankao 90(6)52-24
25 扬麦158 Yangmai 158 220 新麦16 Xinmai 16
26 扬麦17 Yangmai 17 221 温麦4号 Wenmai 4
27 扬麦4号 Yangmai 4 222 太学12 Taixue 12
28 扬麦2号 Yangmai 2 223 新乡9178 Xinxiang 9178
29 扬麦1号 Yangmai 1 224 新麦9号 Xinmai 9
30 镇麦168 Zhenmai 168 225 新麦26 Xinmai 26
31 扬麦5号 Yangmai 5 226 信阳12高 Xinyang 12 gao
32 安徽11 Anhui 11 227 信阳12矮 Xinyang 12 ai
33 龙辐91B-569 (龙辐10号)
Longfu 91B-569 (Longfu 10)
228 兴义4号 Xingyi 4
34 西昌76-9 Xichang 76-9 229 许科718 Xuke 718
35 川麦107 Chuanmai 107 230 许农7号 Xunong 7
36 川麦22 Chuanmai 22 231 偃893选 Yan 893xuan
37 繁6 Fan 6 232 偃展4110 Yanzhan 4110
38 绵麦1403 Mianmai 1403 233 豫麦10号 Yumai 10
39 绵麦37 Mianmai 37 234 豫麦13 Yumai 13
40 新春8号 Xinchun 8 235 豫麦16 Yumai 16
41 新春2号 Xinchun 2 236 豫麦18(矮早781) Yumai 18 (Aizao 781)
42 辽春10号 Liaochun 10 237 豫麦19 Yumai 19
43 辽春9号 Liaochun 9 238 豫麦25 Yumai 25
44 新春11号 Xinchun 11 239 豫麦2号 Yumai 2
45 宁春13 Ningchun 13 240 豫麦47 Yumai 47
46 宁春4号 Ningchun 4 241 豫麦70-36 Yumai 70-36
47 吉春1016 Jichun 1016 242 豫农949 Yunong 949
48 品春16 Pinchun 16 243 早穗30 Zaosui 30
49 青春5号 Qingchun 5 244 郑麦1308 (17河南) Zhengmai 1308 (17Henan)
50 绵麦48 Mianmai 48 245 郑麦379 Zhengmai 379
51 绵阳15 Mianyang 15 246 郑麦9201 Zhengmai 9201
52 绵阳26 Mianyang 26 247 郑州17 Zhengzhou 17
53 绵阳79-2 Mianyang 79-2 248 郑州24 Zhengzhou 24
54 内乡182 Neixiang 182 249 邢麦1号 Xingmai 1
55 内麦19 Neimai 19 250 新乡展示田取样(大穗方穗大粒)
Xinxiangzhanshitianquyang (dasuifangsuidali)
56 内江31 Neijiang 31 251 中焦1号 Zhongjiao 1
57 雅安早 Yaanzao 252 郑州8960 Zhengzhou 8960
58 镇麦6号 Zhenmai 6 253 郑州761 Zhengzhou 761
59 镇麦9号 Zhenmai 9 254 中洛08-1 Zhongluo 08-1
60 镇麦3号 Zhenmai 3 255 中焦3号 Zhongjiao 3
61 镇麦4号 Zhenmai 4 256 中优206 Zhongyou 206
62 镇麦5号 Zhenmai 5 257 中新78 Zhongxin 78
63 双吉4号 Shuangji 4 258 中育9398 Zhongyu 9398
64 皖麦31 Wanmai 31 259 中育12 Zhongyu 12
65 鄂麦11 Emai 11 260 中优9507 Zhongyou 9507
66 鄂麦12 Emai 12 261 周麦12 Zhoumai 12
67 鄂麦17 Emai 17 262 周8425B Zhou 8425B
68 鄂麦9号 Emai 9 263 中运1号 Zhongyun 1
69 鄂西84-1031 Exi 84-1031 264 周麦13 Zhoumai 13
70 荆州66 Jingzhou 66 265 周麦23 Zhoumai 23
71 察雅折达29 Chayazheda 29 266 周麦20 Zhoumai 20
72 滇662-525-2 Dian 662-525-2 267 周麦19 Zhoumai 19
73 黑宝 Heibao 268 周麦26 Zhoumai 26
74 甘肃96 Gansu 96 269 周麦25 Zhoumai 25
75 东3-6 Dong 3-6 270 周麦24 Zhoumai 24
76 北京10号 Beijing 10 271 周麦32 Zhoumai 32
77 北京0045 Beijing 0045 272 周麦28 Zhoumai 28
78 CA9722 273 周麦27 Zhoumai 27
79 昌乐5号 Changle 5 274 昌农339-5-1 Changnong 339-5-1
80 北京8号 Beijing 8 275 矮丰3号 Aifeng 3
81 北京837 Beijing 837 276 周麦9号 Zhoumai 9
82 丰抗8号 Fengkang 8 277 秦麦4号 Qinmai 4
83 丰抗7号 Fengkang 7 278 秦麦1号 Qinmai 1
84 东方红3号 Dongfanghong 3 279 泾阳60 Jingyang 60
85 京花2号 Jinghua 2 280 陕229 Shaan 229
86 京冬22 Jingdong 22 281 陕354 Shaan 354
87 京411 Jing 411 282 陕旱8675 Shaanhan 8675
88 轮选987 Lunxuan 987 283 陕合6号 Shaanhe 6
89 京双16 Jingshuang 16 284 陕麦150 Shaanmai 150
90 京农79-13 Jingnong 79-13 285 陕麦159 Shaanmai 159
91 农大1108 Nongda 1108 286 陕农1号 Shaannong 1
92 农大211 Nongda 211 287 陕农7859 Shaannong 7859
93 农大183 Nongda 183 288 陕优225 Shaanyou 225
94 品冬34 Pindong 34 289 渭麦4号 Weimai 4
95 农大139 Nongda 139 290 西安8号 Xi'an 8
96 农大36 Nongda 36 291 西北612 Xibei 612
97 农大311 Nongda 311 292 西农88 Xinong 88
98 中麦415 Zhongmai 415 293 咸农39 Xiannong 39
99 中麦175 Zhongmai 175 294 小山2134 Xiaoshan 2134
100 原冬3号 Yuandong 3 295 小偃22 Xiaoyan 22
101 高优503 Gaoyou 503 296 小偃4号 Xiaoyan 4
102 中农28 Zhongnong 28 297 小偃759 Xiaoyan 759
103 中麦9号 Zhongmai 9 298 淮麦20 Huaimai 20
104 华北187 Huabei 187 299 淮麦22 Huaimai 22
105 邯99-6143 Han 99-6143 300 连麦2号 Lianmai 2
106 邯6172 Han 6172 301 南大2419 Nanda 2419
107 冀5265 Ji 5265 302 宛原-66 Wanyuan-66
108 冀麦15 Jimai 15 303 宛7107 Wan 7107
109 冀麦19 Jimai 19 304 潍麦8号 Weimai 8
110 冀麦1号 Jimai 1 305 潍麦6号 Weimai 6
111 冀麦20 Jimai 20 306 万年2号 Wannian 2
112 冀麦22 Jimai 22 307 徐州24 Xuzhou 24
113 冀麦23 Jimai 23 308 徐州14 Xuzhou 14
114 冀麦24 Jimai 24 309 徐州8号 Xuzhou 8
115 冀麦26 Jimai 26 310 徐州438 Xuzhou 438
116 冀麦36 Jimai 36 311 徐州25 Xuzhou 25
117 冀麦37 Jimai 37 312 扬麦14 Yangmai 14
118 冀麦38新系 Jimai 38 xinxi 313 扬麦18 Yangmai 18
119 冀麦3号 Jimai 3 314 扬麦16 Yangmai 16
120 冀麦6号(衡水714) Jimai 6 (Hengshui 714) 315 浙麦1号 Zhemai 1
121 冀麦7号 Jimai 7 316 宁麦13 Ningmai 13
122 津丰1号 Jinfeng 1 317 宁麦14 Ningmai 14
123 科红1号 Kehong 1 318 宁麦15 Ningmai 15
124 科信9号 Kexin 9 319 宁麦9 Ningmai 9
125 科遗26 Keyi 26 320 宁糯麦1号 Ningnuomai 1
126 莱州953 Laizhou 953 321 川麦36 Chuanmai 36
127 师栾02-1 Shiluan 02-1 322 川麦42 Chuanmai 42
128 石11-045(史) Shi 11-045 (Shi) 323 川麦8号 Chuanmai 8
129 石11-045(王) Shi 11-045 (Wang) 324 川育20 Chuanyu 20
130 石11-5139(史) Shi 11-5139 (Shi) 325 川育6号 Chuanyu 6
131 石11-5139(王) Shi 11-5139 (Wang) 326 绵麦39 Mianmai 39
132 石12-4025(史大) Shi 12-4025 (Shida) 327 绵麦41 Mianmai 41
133 石12-4025(王) Shi 12-4025 (Wang) 328 绵麦45 Mianmai 45
134 石14-5628(13-4365)(史)
Shi 14-5628 (13-4365) (Shi)
329 绵阳11 Mianyang 11
135 石14-5628(王) Shi 14-5628 (Wang) 330 绵阳19 Mianyang 19
136 石4056(17石) Shi 4056 (17Shi) 331 绵阳20 Mianyang 20
137 石-4185 Shi-4185 332 绵阳38 Mianyang 38
138 石4056-3(17石) Shi 4056-3 (17Shi) 333 绵阳86-11 Mianyang 86-11
139 石4056-1(17石) Shi 4056-1 (17Shi) 334 内乡5号 Neixiang 5
140 石麦12 Shimai 12 335 内乡188 Neixiang 188
141 石家庄54 Shijiazhuang 54 336 内乡185 Neixiang 185
142 石家庄407 Shijiazhuang 407 337 克丰3号 Kefeng 3
143 石麦19 Shimai 19 338 克全 Kequan
144 石麦18 Shimai 18 339 皖麦19 Wanmai 19
145 石麦15 Shimai 15 340 马场2号 Machang 2
146 矮孟牛Ⅳ Aimengniu Ⅳ 341 皖麦50 Wanmai 50
147 石优20 Shiyou 20 342 皖麦33 Wanmai 33
148 石优17号 Shiyou 17 343 鄂恩1号 E'en 1
149 济麦19号 Jimai 19 344 鄂麦15 Emai 15
150 蒿城9411(c02667) Haocheng 9411(c02667) 345 鄂麦16 Emai 16
151 矮孟牛Ⅴ Aimengniu Ⅴ 346 鄂麦19 Emai 19
152 济麦20号 Jimai 20 347 鄂麦6号 Emai 6
153 济南13 Jinan 13 348 抗辉县红 Kanghuixianhong
154 济麦22号 Jimai 22 349 碧蚂4号 Bima 4
155 济麦21号 Jimai 21 350 长丰6号 Changfeng 6
156 济南4号 Jinan 4 351 东1-23 Dong 1-23
157 济南2号 Jinan 2 352 东1-32 Dong 1-32
158 济南16 Jinan 16 353 东2-23 Dong 2-23
159 济宁12 Jining 12 354 东2-8 Dong 2-8
160 济南9号 Jinan 9 355 高38 Gao 38
161 济南8号 Jinan 8 356 高原602(青602) Gaoyuan 602(Qing 602)
162 良星66 Liangxing 66 357 天平3号 Tianping 3
163 济宁16号 Jining 16 358 黑辐84S1378 Heifu 84S1378
164 济宁13 Jining 13 359 有芒红7号 Youmanghong 7
165 鲁麦11号 Lumai 11 360 新冬2号 Xindong 2
166 鲁215953 Lu 215953 361 新冬20 Xindong 20
167 聊麦16号 Liaomai 16 362 中任2号 Zhongren 2
168 鲁麦12 Lumai 12 363 丰产3号 Fengchan 3
169 鲁麦14(烟中1604) Lumai 14 (Yanzhong 1604) 364 波他姆S70 BotamuS 70
170 鲁麦15 Lumai 15 365 合作2号 Hezuo 2
171 鲁麦21 Lumai 21 366 松花江1号 Songhuajiang 1
172 鲁麦3号 Lumai 3 367 克丰2号 Kefeng 2
173 鲁麦5号 Lumai 5 368 克丰6号 Kefeng 6
174 鲁麦7号 Lumai 7 369 克旱7号 Kehan 7
175 鲁原301 Luyuan 301 370 克旱10号 Kehan 10
176 山农12号 Shannong 12 371 克强 Keqiang
177 山农15 Shannong 15 372 克壮 Kezhuang
178 山农辐63 Shannongfu 63 373 垦九10号 Kenjiu 10
179 泰农18 Tainong 18 374 龙麦26 Longmai 26
180 泰山1号 Taishan 1 375 龙麦33 Longmai 33
181 泰山23 Taishan 23 376 宁麦12 Ningmai 12
182 泰山4号 Taishan 4 377 定西24 Dingxi 24
183 泰山5号 Taishan 5 378 咸83(104)-11中“s” Xian 83(104)-11zhong “s”
184 泰山9818 Taishan 9818 379 川84-7045 Chuan 84-7045
185 腾S15 TengS 15 380 绵麦40 Mianmai 40
186 汶农六号 Wennong 6 381 绵麦43 Mianmai 43
187 烟农15 Yannong 15 382 绵麦46 Mianmai 46
188 烟农19号 Yannong 19 383 大头黄 Datouhuang
189 烟农22号 Yannong 22 384 鄂麦18 Emai 18
190 烟农23号 Yannong 23 385 南大96co76 Nanda 96co76
191 烟农24号 Yannong 24 386 长丰4号 Changfeng 4
192 洲元9369 Zhouyuan 9369 387 克旱13 Kehan 13
193 淄麦12号 Zimai 12 388 垦红14 Kenhong 14
194 晋麦21 Jinmai 21 389 合作4号 Hezuo 4
195 晋麦30 Jinmai 30

图4

强耐低磷型品种“丰德存麦1号”和敏感型品种“旱选3号”、“信阳12高”在对照与低磷之间的表型差异 缩写同表3。CK: 对照; LP: 低磷处理; FDCM 1: 丰德存麦1号; HX 3: 旱选3号; XY 12G: 信阳12高。*、**、***分别表示在P < 0.05、P < 0.01、P < 0.001水平差异显著, ns表示不存在显著性差异。"

图5

4个环境下9个表型性状的耐低磷系数和D值的曼哈顿图和Quantile-Quantile (Q-Q)图 缩写同表3。"

表5

耐低磷相关性状显著关联的SNP标记"

环境
Environment
SNP数量
Number of SNP
染色体
Chromosome
P
-log10P
贡献率
R2 (%)
QTL数量
Number of QTL
E1 477 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, 7D 9.99E-05-1.12E-09 4.01-10.57 90
E2 163 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, 7D 9.94E-05-3.15E-08 4.32-9.77 86
E3 378 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B, 7D 9.99E-05-3.45E-07 4.02-8.04 215
BLUP 179 1A, 1B, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 5D, 6A, 6B, 6D, 7A, 7B 9.99E-05-2.50E-09 4.02-10.58 73

表6

耐低磷相关性状显著关联的QTL"

位点
Loci
置信区间
Confidence interval (bp)
性状
Trait
染色体
Chromosome
峰值SNP
Peak SNP
物理位置
Position (bp)
P
-log10P
贡献率
R2 (%)
LLPTT2A.1 172,021,064-173,698,784 E1-SH 2A AX-111275849 172,859,924 1.00E-05 5.90
E2-RD 2A AX-111275849 172,859,924 4.69E-06 7.70
E2-RTN 2A AX-111275849 172,859,924 2.01E-06 7.91
LLPTT2A.2 651,505,509-653,078,373 E1-SH 2A AX-109458041 652,291,941 3.57E-09 7.71
E3-MRL 2A AX-109458041 652,291,941 7.11E-05 4.20
E3-RTN 2A AX-109458041 652,291,941 7.03E-05 4.20
BLUP-SH 2A AX-109458041 652,291,941 3.61E-05 4.55
BLUP-RN 2A AX-109458041 652,291,941 2.42E-05 4.74
LLPTT2D.1 605,713,612-606,915,404 E3-SDW 2D AX-110533652 606,693,178 6.71E-05 4.28
BLUP-SDW 2D AX-110361781 605,852,678 2.99E-05 5.50
LLPTT3A.1 522,400,434-528,592,728 E1-RTN 3A AX-109854803 523,151,974 5.00E-05 5.11
E3-RD 3A AX-109039518 527,907,394 3.82E-05 5.49
LLPTT3A.2 528,596,882-532,633,996 E1-RTN 3A AX-110185182 530,627,769 6.00E-05 4.34
E3-RD 3A AX-109381718 530,590,416 2.40E-05 5.68
LLPTT3A.3 556,676,504-567,980,595 E1-RTN 3A AX-110939649 567,143,453 1.00E-04 4.09
E3-RD 3A AX-109505161 561,734,860 2.42E-05 5.97
LLPTT3B.1 708,368,449-719,084,208 E3-RN 3B AX-94583652 717,304,474 4.11E-05 4.97
BLUP-RN 3B AX-94583652 717,304,474 9.21E-05 4.38
LLPTT4A.1 564,593,256-566,270,976 E1-RSA 4A AX-94925936 565,432,116 5.00E-05 4.79
E1-RTN 4A AX-94925936 565,432,116 1.58E-08 9.27
E1-TRL 4A AX-94925936 565,432,116 5.00E-05 4.77
E2-SH 4A AX-94925936 565,432,116 3.15E-08 9.51
LLPTT4B.1 142,811,405-172,520,416 E2-RD 4B AX-108833248 145,374,185 4.20E-05 6.72
BLUP-MRL 4B AX-108833248 145,374,185 7.63E-05 5.16
LLPTT4D.1 7,036,268-8,713,990 E1-RSA 4D AX-109557110 7,875,129 1.20E-06 7.47
E2-SH 4D AX-109557110 7,875,129 1.33E-06 8.20
LLPTT4D.2 9,410,565-11,088,287 E1-RSA 4D AX-109005677 10,249,426 8.00E-05 5.22
E1-RTN 4D AX-109005677 10,249,426 4.00E-05 5.97
E2-SH 4D AX-109005677 10,249,426 1.01E-07 9.77
BLUP-SH 4D AX-109005677 10,249,426 1.78E-05 6.28
LLPTT5A.1 564,494,504-565,403,678 E1-RSA 5A AX-109951485 564,534,428 6.00E-05 5.15
E2-SH 5A AX-110511778 564,660,778 6.67E-05 4.77
LLPTT5A.2 667,361,083-669,563,683 E1-SH 5A AX-108955444 668,223,726 3.00E-05 5.00
BLUP-SDW 5A AX-108955444 668,223,726 9.38E-05 4.29
LLPTT5A.3 669,585,870-670,535,062 E1-SH 5A AX-108803792 669,800,485 4.00E-05 4.68
E2-RDW 5A AX-109879786 669,900,461 5.65E-05 5.36
E3-RD 5A AX-109350840 669,733,200 8.51E-05 5.24
BLUP-SDW 5A AX-110502745 669,624,184 7.53E-06 5.59
LLPTT5B.1 78,288,597-82,206,709 E1-SH 5B AX-112289745 78,708,029 1.12E-09 10.57
E3-MRL 5B AX-112289745 78,708,029 9.37E-05 4.37
E3-RD 5B AX-111043315 81,787,277 7.04E-05 5.41
BLUP-SH 5B AX-112289745 78,708,029 3.47E-07 7.24
LLPTT5B.2 288,485,939-315,413,719 E2-RSA 5B AX-111507396 308,618,491 5.82E-05 5.59
E3-RD 5B AX-109867936 309,385,307 8.07E-05 5.01
LLPTT5B.3 403,717,589-407,635,520 E3-RD 5B AX-109499442 404,998,534 6.77E-05 5.12
BLUP-RD 5B AX-111557664 405,724,930 6.10E-05 4.26
LLPTT5B.4 489,841,220-490,759,761 E2-RD 5B AX-108955618 490,738,277 4.08E-06 6.39
BLUP-RD 5B AX-110507901 489,987,304 1.02E-05 5.95
LLPTT5D.1 224,743,268-226,420,990 E1-SH 5D AX-111190797 225,582,129 3.57E-09 10.55
E3-SH 5D AX-111190797 225,582,129 2.50E-05 5.05
BLUP-SH 5D AX-111190797 225,582,129 2.50E-09 10.58
LLPTT5D.2 496,086,888-497,869,466 E3-MRL 5D AX-89451602 496,978,177 4.28E-05 5.02
BLUP-MRL 5D AX-89451602 496,978,177 7.69E-06 6.00
LLPTT6A.1 522,639,187-526,115,905 E1-MRL 6A AX-111198037 524,832,883 1.00E-05 5.18
E3-RD 6A AX-111056482 525,033,540 4.99E-05 5.37
LLPTT6B.1 526,476,834-534,466,335 E2-MRL 6B AX-109512103 533,765,104 8.33E-05 4.49
E3-RD 6B AX-110046271 529,767,951 9.87E-05 5.05
LLPTT6D.1 128,190,014-129,867,736 E1-SH 6D AX-110373854 129,028,875 8.72E-07 6.72
E2-RTN 6D AX-110373854 129,028,875 8.41E-06 6.18
E3-MRL 6D AX-110373854 129,028,875 4.29E-05 4.66
BLUP-SH 6D AX-110373854 129,028,875 2.66E-05 4.80
BLUP-RN 6D AX-110373854 129,028,875 4.23E-05 4.59
LLPTT6D.2 266,362,121-268,039,843 E1-SH 6D AX-94503640 267,200,982 3.69E-09 9.66
E2-RD 6D AX-94503640 267,200,982 2.68E-06 6.68
E2-RTN 6D AX-94503640 267,200,982 7.77E-08 8.92
E3-SH 6D AX-94503640 267,200,982 6.63E-05 4.36
E3-MRL 6D AX-94503640 267,200,982 4.12E-05 4.80
BLUP-SH 6D AX-94503640 267,200,982 4.18E-08 8.35
BLUP-RN 6D AX-94503640 267,200,982 1.87E-05 5.23
BLUP-RDW 6D AX-94503640 267,200,982 7.49E-05 4.33
LLPTT6D.3 428,891,281-428,923,196 E1-RTN 6D AX-108961753 428,891,281 6.00E-05 4.99
E2-SH 6D AX-108961753 428,891,281 7.70E-06 6.43
LLPTT7A.1 130,292,122-178,902,926 E3-RD 7A AX-108941925 154,061,783 5.62E-05 5.32
BLUP-RTN 7A AX-111767484 143,715,554 7.34E-05 4.24
LLPTT7A.2 681,702,374-685,505,945 E3-RN 7A AX-111065932 681,754,446 5.86E-05 4.61
BLUP-RN 7A AX-110533724 681,915,668 2.91E-05 4.83

表7

预测的候选基因及其功能注释"

QTL 候选基因ID
Candidate gene ID
基因位置
Gene position (bp)
基因功能注释
Gene function
LLPTT2A.2 TraesCS2A02G397700 651,504,966-651,510,544 组蛋白H1 Histone H1
TraesCS2A02G398500 651,801,546-651,803,391 Gag多聚蛋白 Gag polyprotein
TraesCS2A02G399900 652,999,871-653,002,090 解毒蛋白 Protein DETOXIFICATION
LLPTT4D.2 TraesCS4D02G022900 9,591,823-9,593,712 F-box家族蛋白 F-box family protein
TraesCS4D02G023300 10,010,190-10,010,960 F-box家族蛋白 F-box family protein
TraesCS4D02G025500 10,991,060-10,993,177 整合膜HPP家族蛋白 Integral membrane HPP family protein
LLPTT5B.1 TraesCS5B02G069300 79,081,294-79,082,277 HVA22-like蛋白 HVA22-like protein
LLPTT6D.1 TraesCS6D02G154700 129,785,419-129,791,207 类受体蛋白激酶 Receptor-like protein kinase
LLPTT6D.2 TraesCS6D02G193100 267,236,634-267,237,837 高亲和性硝酸盐转运蛋白 High affinity nitrate transporter
TraesCS6D02G193200 267,514,716-267,515,174 高亲和性硝酸盐转运蛋白 High affinity nitrate transporter

图6

候选基因的差异表达热图 A: Luo等[32]转录组数据与本研究重合候选基因的差异表达热图。B: Li等[33]转录组数据与本研究重合候选基因的差异表达热图。LPT: 耐低磷型小麦品种; LPS: 低磷敏感型小麦品种; LP: 低磷; NP: 正常磷。"

附图1

LLPTT4D.2和LLPTT6D.1的局部曼哈顿图 E1: 2022; E2: 2023; E3: 2024; BLUP: 最佳线性无偏预测值。SH: 苗高; MRL: 主根长; RN: 根条数; RSA: 根面积; RTN: 根尖数。"

图7

关键候选基因在小麦叶片和根系中的表达模式分析 L: 叶片; R: 根系; SLPTT: 强耐低磷型; ST: 敏感型。不同小写字母表示不同时间点表达量存在显著差异(P < 0.05)。"

[1] Niu Y N, Xie G D, Xiao Y, Liu J Y, Zou H X, Qin K Y, Wang Y Y, Huang M D. The story of grain self-sufficiency: China's food security and food for thought. Food Energy Secur, 2022, 11: e344.
[2] Zhang C, Tian H Q, Liu J Y, Wang S Q, Liu M L, Pan S F, Shi X Z. Pools and distributions of soil phosphorus in China. Glob Biogeochem Cycles, 2005, 19: 2004GB002296.
[3] 戈应同, 王宇蕴, 徐翔, 李兰, 高江飞, 徐智. 有机肥增强植物磷素吸收利用机制研究进展. 中国土壤与肥料, 2024, (7): 228-235.
Ge Y T, Wang Y Y, Xu X, Li L, Gao J F, Xu Z. Research progress on the mechanism of phosphorus absorption and utilization enhanced by organic fertilizer. Soil Fert Sci China, 2024, (7): 228-235 (in Chinese with English abstract).
[4] Wang D, Lyu S L, Jiang P, Li Y X. Roles, regulation, and agricultural application of plant phosphate transporters. Front Plant Sci, 2017, 8: 817.
doi: 10.3389/fpls.2017.00817 pmid: 28572810
[5] Liu C H, Yan H H, Wang W Y, Han R F, Li Z Y, Lin X, Wang D. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation. Soil Tillage Res, 2023, 225: 105546.
[6] Hari-Gowthem G, Kaur S, Sekhon B S, Sharma P, Chhuneja P. Genetic variation for phosphorus-use efficiency in diverse wheat germplasm. J Crop Improv, 2019, 33: 536-550.
[7] Li X, Chen Y L, Xu Y Z, Sun H Y, Gao Y M, Yan P, Song Q L, Li S Q, Zhan A. Genotypic variability in root morphology in a diverse wheat genotypes under drought and low phosphorus stress. Plants, 2024, 13: 3361.
[8] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 等. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57: 831-845.
doi: 10.3864/j.issn.0578-1752.2024.05.001
Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, et al. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831-845 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.05.001
[9] Yang M J, Wang C R, Hassan M A, Li F J, Xia X C, Shi S B, Xiao Y G, He Z H. QTL mapping of root traits in wheat under different phosphorus levels using hydroponic culture. BMC Genomics, 2021, 22: 174.
doi: 10.1186/s12864-021-07425-4 pmid: 33706703
[10] Yuan Y, Zhang M, Zheng H, Kong F, Guo Y, Zhao Y, An Y. Detection of QTL for phosphorus efficiency and biomass traits at the seedling stage in wheat. Cereal Res Commun, 2020, 48: 517-524.
doi: 10.1007/s42976-020-00067-4
[11] Dai Y, Li J F, Shi J T, Gao Y J, Ma H G, Wang Y G, Ma H X. Molecular characterization and marker development of the HMW-GS gene from Thinopyrum elongatum for improving wheat quality. Int J Mol Sci, 2023, 24: 11072.
[12] Lin X L, Xu Y X, Wang D Z, Yang Y M, Zhang X Y, Bie X M, Gui L X, Chen Z X, Ding Y L, Mao L, et al. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. Mol Plant, 2024, 17: 438-459.
[13] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析. 作物学报, 2024, 50: 2742-2753.
doi: 10.3724/SP.J.1006.2024.41007
Li Y X, Zhang S T, Hou W W, Zhang X J. Drought resistance identification and SNP association analysis of wheat germplasm introduced by ICARDA at seedling stage. Acta Agron Sin, 2024, 50: 2742-2753 (in Chinese with English abstract).
[14] Seren Ü, Vilhjálmsson B J, Horton M W, Meng D Z, Forai P, Huang Y S, Long Q, Segura V, Nordborg M. GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell, 2012, 24: 4793-4805.
[15] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选. 作物学报, 2022, 48: 1813-1821.
doi: 10.3724/SP.J.1006.2022.12047
Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813-1821 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12047
[16] Chao Z F, Chen Y Y, Ji C, Wang Y L, Huang X, Zhang C Y, Yang J, Song T, Wu J C, Guo L X, et al. A genome-wide association study identifies a transporter for zinc uploading to maize kernels. EMBO Rep, 2023, 24: e55542.
[17] Duan Z B, Zhang M, Zhang Z F, Liang S, Fan L, Yang X, Yuan Y Q, Pan Y, Zhou G A, Liu S L, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean. Plant Biotechnol J, 2022, 20: 1807-1818.
doi: 10.1111/pbi.13865 pmid: 35642379
[18] Wang Q S, Tian F, Pan Y C, Buckler E S, Zhang Z W. A SUPER powerful method for genome wide association study. PLoS One, 2014, 9: e107684.
[19] Lin Y, Chen G D, Hu H Y, Yang X L, Zhang Z L, Jiang X J, Wu F K, Shi H R, Wang Q, Zhou K Y, et al. Phenotypic and genetic variation in phosphorous-deficiency-tolerance traits in Chinese wheat landraces. BMC Plant Biol, 2020, 20: 330.
doi: 10.1186/s12870-020-02492-3 pmid: 32660424
[20] Dharmateja P, Yadav R, Kumar M, Babu P, Jain N, Mandal P K, Pandey R, Shrivastava M, Gaikwad K B, Bainsla N K, et al. Genome-wide association studies reveal putative QTLs for physiological traits under contrasting phosphorus conditions in wheat (Triticum aestivum L.). Front Genet, 2022, 13: 984720.
[21] Maqbool S, Saeed F, Maqbool A, Khan M I, Ali M, Rasheed A, Xia X C, He Z H. Genome-wide association study for phosphate responsive root hair length and density in bread wheat. Curr Plant Biol, 2023, 35: 100290.
[22] 周思远, 毕惠惠, 程西永, 张旭睿, 闰永行, 王航辉, 毛培钧, 李海霞, 许海霞. 小麦耐低磷相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21: 431-445.
doi: 10.13430/j.cnki.jpgr.20190509001
Zhou S Y, Bi H H, Cheng X Y, Zhang X R, Run Y H, Wang H H, Mao P J, Li H X, Xu H X. Genome-wide association study of low-phosphorus tolerance related traits in wheat. J Plant Genet Resour, 2020, 21: 431-445 (in Chinese with English abstract).
[23] Yang B, Qiao L, Zheng X W, Zheng J, Wu B B, Li X H, Zhao J J. Quantitative trait loci mapping of heading date in wheat under phosphorus stress conditions. Genes, 2024, 15: 1150.
[24] Tao R R, Ding J F, Li C Y, Zhu X K, Guo W S, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tolerance in wheat at the seedling stage. Front Plant Sci, 2021, 12: 646175.
[25] Shi H W, Chen M, Gao L F, Wang Y X, Bai Y M, Yan H S, Xu C J, Zhou Y B, Xu Z S, Chen J, et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor Appl Genet, 2022, 135: 4289-4302.
[26] 郑金凤, 米少艳, 婧姣姣, 白志英, 李存东. 小麦代换系耐低磷生理性状的主成分分析及综合评价. 中国农业科学, 2013, 46: 1984-1993.
doi: 10.3864/j.issn.0578-1752.2013.10.003
Zheng J F, Mi S Y, Jing J J, Bai Z Y, Li C D. Principal component analysis and comprehensive evaluation on physiological traits of tolerance to low phosphorus stress in wheat substitution. Sci Agric Sin, 2013, 46: 1984-1993 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2013.10.003
[27] Bates D, Mächler M, Bolker B, Walker S.Fitting linear mixed-effects models Usinglme4. J Stat Soft, 2015, 67: 1-48.
[28] Yu J M, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[29] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959.
doi: 10.1093/genetics/155.2.945 pmid: 10835412
[30] Turner S D. qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. J Open Source Softw, 2018, 3: 731.
[31] 李龙.小麦根系形态及抗旱相关生理性状的遗传解析. 中国农业科学院博士学位论文, 北京, 2017.
Li L. Genetic Dissection of Root Morphology and Drought- tolerant Related Physiological Traits in Wheat (Triticum aestivum L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).
[32] Luo D Z, Usman M, Pang F, Zhang W J, Qin Y, Li Q, Li Y R, Xing Y X, Dong D F. Comparative transcriptomic and physiological analyses unravel wheat source root adaptation to phosphorous deficiency. Sci Rep, 2024, 14: 11050.
[33] Li P C, Ma X L, Wang J C, Yao L R, Li B C, Meng Y X, Si E J, Yang K, Shang X W, Zhang X Y, et al. Integrated analysis of metabolome and transcriptome reveals insights for low phosphorus tolerance in wheat seedling. Int J Mol Sci, 2023, 24: 14840.
[34] Khan F, Siddique A B, Shabala S, Zhou M X, Zhao C C. Phosphorus plays key roles in regulating plants' physiological responses to abiotic stresses. Plants, 2023, 12: 2861.
[35] Fadiji A E, Yadav A N, Santoyo G, Babalola O O. Understanding the plant-microbe interactions in environments exposed to abiotic stresses: an overview. Microbiol Res, 2023, 271: 127368.
[36] Niu Y F, Chai R S, Jin G L, Wang H, Tang C X, Zhang Y S. Responses of root architecture development to low phosphorus availability: a review. Ann Bot, 2013, 112: 391-408.
[37] Soumya P R, Burridge A J, Singh N, Batra R, Pandey R, Kalia S, Rai V, Edwards K J. Population structure and genome-wide association studies in bread wheat for phosphorus efficiency traits using 35 K Wheat Breeder's Affymetrix array. Sci Rep, 2021, 11: 7601.
[38] 杨文博, 程云, 张艳, 林德立, 李雪, 邢国珍, 许君, 郑文明. 不同基因型小麦耐低磷生理机制研究. 河南农业科学, 2014, 43(5): 24-29.
Yang W B, Cheng Y, Zhang Y, Lin D L, Li X, Xing G Z, Xu J, Zheng W M. Physiological features of different wheat genotypes exposed to low phosphate under hydroponic culture. J Henan Agric Sci, 2014, 43(5): 24-29 (in Chinese with English abstract).
[39] 郑继周, 张廷封, 杨文涛, 郑天存. 国审小麦新品种: 丰德存麦1号. 麦类作物学报, 2017, 37: 855.
Zheng J Z, Zhang T F, Yang W T, Zheng T C. A new wheat variety - Fengdecunmai 1 No. J Triticeaae Crops, 2017, 37: 855 (in Chinese with English abstract).
[40] Sun C W, Dong Z D, Zhao L, Ren Y, Zhang N, Chen F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnol J, 2020, 18: 1354-1360.
[41] Liu B, Xu W Y, Niu Y X, Li Q Y, Cao B L, Qi J Y, Zhao Y D, Zhou Y L, Song L, Cui D K, et al. TaTCP6is required for efficient and balanced utilization of nitrate and phosphorus in wheat. Nat Commun, 2025, 16: 1683.
[42] Han Y C, Liu N, Li C, Wang S W, Jia L H, Zhang R, Li H, Tan J F, Xue H W, Zheng W M. TaMADS2-3D, a MADS transcription factor gene, regulates phosphate starvation responses in plants. Crop J, 2022, 10: 243-253.
[43] Guo C J, Zhao X L, Liu X M, Zhang L J, Gu J T, Li X J, Lu W J, Xiao K. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta, 2013, 237: 1163-1178.
[44] Wu F K, Yang X L, Wang Z Q, Deng M, Ma J, Chen G Y, Wei Y M, Liu Y X. Identification of major quantitative trait loci for root diameter in synthetic hexaploid wheat under phosphorus-deficient conditions. J Appl Genet, 2017, 58: 437-447.
doi: 10.1007/s13353-017-0406-5 pmid: 28887804
[45] Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins everywhere. Curr Opin Plant Biol, 2006, 9: 631-638.
doi: 10.1016/j.pbi.2006.09.003 pmid: 17005440
[46] Chen Z H, Jenkins G I, Nimmo H G. Identification of an F-box protein that negatively regulates P(i) starvation responses. Plant Cell Physiol, 2008, 49: 1902-1906.
[47] Akash, Parida A P, Srivastava A, Mathur S, Sharma A K, Kumar R. Identification, evolutionary profiling, and expression analysis of F-box superfamily genes under phosphate deficiency in tomato. Plant Physiol Biochem, 2021, 162: 349-362.
[48] Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor-like kinase OsSIK1improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62: 316-329.
[49] Jose J, Ghantasala S, Roy Choudhury S. Arabidopsis transmembrane receptor-like kinases (RLKs): a bridge between extracellular signal and intracellular regulatory machinery. Int J Mol Sci, 2020, 21: 4000.
[50] Shi J C, Zhao B Y, Jin R, Hou L, Zhang X W, Dai H L, Yu N, Wang E T. A phosphate starvation response-regulated receptor-like kinase, OsADK1, is required for mycorrhizal symbiosis and phosphate starvation responses. New Phytol, 2022, 236: 2282-2293.
doi: 10.1111/nph.18546 pmid: 36254112
[1] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[2] 杨颖聪, 张俊豪, 唐一哲, 乔唱唱, 王鹏博, 黄明, 徐国伟, 王贺正. 秸秆还田和施磷量对旱地小麦籽粒淀粉及其合成相关酶活性的影响[J]. 作物学报, 2025, 51(9): 2467-2484.
[3] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[4] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[5] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[6] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[7] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[8] 王曜阔, 王文政, 张敏, 刘希伟, 杨敏, 李昊昱, 张灵鑫, 闫彦菲, 蔡瑞国. 水氮运筹对冬小麦籽粒GMP合成和面粉加工品质的影响[J]. 作物学报, 2025, 51(8): 2176-2189.
[9] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[10] 姜朋, 吴磊, 黄倩楠, 李畅, 王化敦, 何漪, 张鹏, 张旭. 矮秆基因Rht-D1在长江中下游麦区的育种利用探索[J]. 作物学报, 2025, 51(8): 2077-2086.
[11] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[12] 张飞飞, 何万龙, 焦文娟, 白斌, 耿洪伟, 程宇坤. 小麦抗条锈病相关性状元分析及候选基因分析[J]. 作物学报, 2025, 51(8): 2111-2127.
[13] 宋改利, 王璐倩, 屈柯飞, 唐建卫, 董纯豪, 黄振朴, 高艳, 牛吉山, 殷贵鸿, 李巧云. Bipolaris sorokiniana黑胚病对中筋小麦淀粉含量、粒度分布与糊化特性的影响[J]. 作物学报, 2025, 51(8): 2164-2175.
[14] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[15] 鲁向前, 付玉洁, 赵俊恒, 郑楠楠, 孙楠楠, 张国平, 叶玲珍. 小麦花药培养最佳取样时期穗部形态特征鉴定与高培养力基因型筛选[J]. 作物学报, 2025, 51(8): 2033-2047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!