欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (5): 1230-1247.doi: 10.3724/SP.J.1006.2025.41072

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

高、低Cd积累小麦对Cd胁迫的转录组学响应差异

王青(), 王伊秀, 李越男, 吕永辉, 张海波, 刘娜*(), 程红艳*()   

  1. 山西农业大学资源环境学院, 山西太谷 030801
  • 收稿日期:2024-10-27 接受日期:2025-01-23 出版日期:2025-05-12 网络出版日期:2025-02-11
  • 通讯作者: *刘娜, E-mail: liuna@sxau.edu.cn; 程红艳, E-mail: ndchenghy@163.com
  • 作者简介:E-mail: wangqing20240805@163.com
  • 基金资助:
    国家自然科学基金项目(42107044);山西农业大学杰青优青培育工程项目(2022YQPYGC07);来晋工作奖励基金(SXBYKY2021038);山西省科技重大专项计划“揭榜挂帅”项目“特优食用菌产业关键技术研究与应用示范”(202301140601015);山西农业大学“特”“优”高质量发展科技支撑工程项目(TYGC24-03)

Differences in transcriptomic responses to cadmium stress in high/low-Cd- accumulation wheat

WANG Qing(), WANG Yi-Xiu, LI Yue-Nan, LYU Yong-Hui, ZHANG Hai-Bo, LIU Na*(), CHENG Hong-Yan*()   

  1. College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2024-10-27 Accepted:2025-01-23 Published:2025-05-12 Published online:2025-02-11
  • Contact: *E-mail: liuna@sxau.edu.cn; E-mail: ndchenghy@163.com
  • Supported by:
    National Natural Science Foundation of China(42107044);Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University(2022YQPYGC07);Shanxi Province Excellent Doctor Award Fund(SXBYKY2021038);Shanxi Province Major Science and Technology Special Plan “Rank-Listed Project” titled “Research and Application Demonstration of Key Technologies in the Super Quality Edible Mushroom Industry”(202301140601015);Shanxi Agricultural University “Special” and “Excellent” Agricultural High Quality Development Science and Technology Support Project(TYGC24-03)

摘要:

镉(Cd)极易被小麦吸收并对人体健康构成威胁, 且小麦响应Cd胁迫的分子机制尚不清楚。探究小麦Cd积累的分子机制对于通过遗传改良培育低Cd积累小麦至关重要。本试验采用营养液培养法, 利用转录组学测序技术研究不同Cd积累特性小麦(济麦22和周麦32)在0、0.05和0.10 mmol L-1 Cd胁迫下基因调控网络变化。京都基因与基因组百科全书(KEGG)、基因本体(GO)和蛋白-蛋白相互作用网络分析(PPI)表明, Cd胁迫诱导防御相关基因表达, 内质网蛋白质加工途径是0.05 mmol L-1 Cd胁迫下济麦22最显著富集的上调途径之一, 苯并噁嗪生物合成途径是0.10 mmol L-1 Cd胁迫下济麦22富集程度较高的上调途径之一。此外, Cd胁迫下核糖体蛋白uL13家族为PPI中主要节点, 这表明核糖体蛋白uL13家族在Cd胁迫下维持核糖体正常功能起重要作用。转运体相关基因TaNRAMP1TaNRAMP2TaNRAMP5TaZIP6TaABCG36在小麦Cd吸收和积累中起关键作用。Cd胁迫下WRKY、MYB、bHLH、bZIP转录因子表达量上调, 有助于缓解Cd胁迫造成的损伤。加权基因共表达网络和可视化分析表明, LOC123168319LOC123145825可能是与Cd积累相关的潜在候选基因。本研究筛选出的差异基因和代谢通路, 可利用CRISPR/Cas9等基因编辑技术, 对小麦进行遗传改良, 降低其对Cd的吸收和积累能力, 为小麦抗Cd机制深入研究及后续培育低Cd积累小麦品种提供参考。

关键词: Cd胁迫, 小麦, 差异表达基因, 蛋白-蛋白相互作用, 加权基因共表达网络

Abstract:

Cadmium (Cd) is readily absorbed by wheat, posing a significant threat to human health. However, the molecular mechanisms underlying wheat’s response to Cd stress remain poorly understood. Investigating these mechanisms is essential for developing low-Cd-accumulating wheat varieties through genetic improvement. In this study, hydroponic culture combined with transcriptome sequencing was used to analyze gene regulatory network changes in two wheat varieties with differing Cd accumulation capacities (Jimai 22 and Zhoumai 32) under Cd stress at concentrations of 0, 0.05 mmol L-1, and 0.10 mmol L-1. Functional enrichment analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Protein-Protein Interaction (PPI) networks revealed that Cd stress induced the expression of defense-related genes. The endoplasmic reticulum protein processing pathway was the most significantly enriched upregulated pathway in Jimai 22 under 0.05 mmol L-1 Cd stress, while the benzoxazinoid biosynthesis pathway was highly enriched in Jimai 22 under 0.10 mmol L-1 Cd stress. Additionally, the ribosomal protein uL13 family was identified as a central hub in the PPI network under Cd stress, highlighting its importance in maintaining ribosomal function. Key transporters, including TaNRAMP1, TaNRAMP2, TaNRAMP5, TaZIP6, and TaABCG36, were found to play pivotal roles in Cd uptake and accumulation. Moreover, transcription factors such as WRKY, MYB, bHLH, and bZIP were upregulated under Cd stress, contributing to the alleviation of Cd-induced damage. Weighted gene co-expression network analysis (WGCNA) identified LOC123168319 and LOC123145825 as potential candidate genes associated with Cd accumulation. The differentially expressed genes and metabolic pathways identified in this study provide valuable resources for genetic improvement of wheat. Technologies such as CRISPR/Cas9 can be employed to reduce Cd absorption and accumulation, offering insights into wheat’s Cd resistance mechanisms and supporting the breeding of low-Cd wheat varieties.

Key words: Cd stress, wheat, differentially expressed gene, protein-protein interaction, weighted gene co-expression network

附表1

Cd胁迫对不同小麦品种根和地上长度和生物量的影响"

品种
Variety
Cd浓度
Cd concentration
(mmol L-1)
株高
Plant height
(cm)
根长
Root length
(cm)
地上部干重
Dry weight of the
aboveground parts (g)
根干重
Dry weight of the roots
(g)
济麦22 Jimai 22 0 22.4 Aa 27.3 Aa 2.42 Aa 1.01 Aa
泰山24 Taishan 24 0 21.0 Aab 26.8 Aa 2.11 Aab 0.92 Aa
周麦27 Zhoumai 27 0 19.2 Ab 26.6 Aa 1.90 Ab 0.89 Aa
周麦32 Zhoumai 32 0 20.7 Aab 26.2 Aa 1.95 Ab 0.91 Aa
济麦22 Jimai 22 0.05 17.2 Ba 25.5 Aa 1.18 Ba 0.43 Ba
泰山24 Taishan 24 0.05 16.2 Ba 22.8 Bab 1.15 Bab 0.43 Bab
周麦27 Zhoumai 27 0.05 12.4 Bb 23.5 Bab 1.06 Bbc 0.41 Bab
周麦 32 Zhoumai 32 0.05 13.9 Bb 22.2 Bb 0.95 Bc 0.40 Bb
济麦22 Jimai 22 0.10 13.0 Ba 21.2 Ba 0.83 Ca 0.36 Ba
泰山24 Taishan 24 0.10 11.6 Cab 20.3 Bab 0.78 Ca 0.35 Cab
周麦27 Zhoumai 27 0.10 9.9 Cc 18.3 Cab 0.66 Cb 0.31 Cc
周麦32 Zhoumai 32 0.10 10.5 Cbc 16.9 Bb 0.63 Cb 0.32 Cbc

附图1

不同浓度Cd胁迫下不同小麦品种抗氧化酶活性 A~D分别为丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)活性。不同小写字母表示差异显著(Tukey检验; P < 0.05)。"

附图2

不同浓度Cd胁迫下不同小麦品种巯基物质含量 A~C分别为谷胱甘肽(GSH)、非蛋白巯基(NPT)、植物螯合肽(PCs)含量。不同小写字母表示差异显著(Tukey检验; P < 0.05)。"

图1

不同浓度Cd胁迫下不同小麦品种地上部(A)和根部(B) Cd含量 不同小写字母表示同浓度不同品种间差异显著。"

图2

不同浓度 Cd 胁迫下济麦22和周麦32差异表达基因(DEG)和主成分分析(PCA)图 A: Cd胁迫下济麦22和周麦32 DEG的PCA图, Cd-22和Cd-32分别表示小麦品种济麦22和周麦32, 0、0.05和0.10分别表示Cd胁迫为 0、0.05和0.10 mmol L-1; B~D: 在CK、0.05和0.10 mmol L-1 Cd胁迫下DEG的火山图(以周麦32为对照)。X轴为基因在2个样本间的表达差异倍数, Y轴为基因表达量变化差异的统计学检验值即P值。FC表示差异表达倍数, 蓝点表示差异不显著, 绿点和红点分别表示下调和上调的基因。"

图3

不同浓度Cd胁迫下济麦22和周麦32地上部分DEG的GO和KEGG富集分析 A、B分别为CK组济麦22和周麦32 DEG的GO和KEGG富集分析; C、D分别为0.05 mmol L-1 Cd胁迫下济麦22和周麦32 DEG的GO和KEGG富集分析; E、F分别为0.10 mmol L-1 Cd胁迫下济麦22和周麦32 DEG的GO和KEGG富集分析。图中纵坐标表示pathway条目, 横坐标为注释在该条目中的DEG在注释到该条目所有DEG数的比例; 圆点的大小代表该通路中富集的DEG数, 圆点越大数目越多; 圆的颜色代表超几何检验的P值, P值越接近0, 颜色越接近红色, 富集越显著。"

图4

不同浓度Cd胁迫下Cd转运蛋白相关的DEG热图"

图5

不同浓度Cd胁迫下蛋白互作网络分析(PPI) 差异蛋白互作网络图中圆圈表示差异蛋白, 圆的颜色深度代表连接度高低, 颜色越深表示连接度越高。"

图6

不同浓度Cd胁迫下转录因子(TF)家族统计"

表1

显著性代谢通路基因统计"

通路名称
Pathway name
基因名称
Gene name
描述
Description
差异表达倍数
Fold change
内质网蛋白质加工
Protein processing in the endoplasmic reticulum
LOC123076941 16.9 kD class I heat shock protein 1-like 255.3
LOC123146971 144.6
LOC123065008 17.5 kD class II heat shock protein-like 115.1
LOC123145125 93.4
LOC123047559 70.1
LOC123045683 Uncharacterized LOC123045683, transcript variant X11 20.7
LOC123092591 Heat shock cognate 70 kD protein 2-like 13.9
LOC123088499 11.9
LOC123144151 8.0
LOC732706 Small heat shock protein, chloroplastic-like 7.9
苯并噁嗪生物合成
Benzoxazine
biosynthesis
LOC123117220 248.9
LOC123101970 Indolin-2-one monooxygenase-like 43.6
LOC123119086 Indolin-2-one monooxygenase-like 36.4
LOC123043330 DIBOA-glucoside dioxygenase BX6-like 34.7
LOC123110087 Indolin-2-one monooxygenase-like 11.5
LOC123046742 9.0
LOC123150283 7.4
LOC123147887 6.2
LOC123064487 Indole-3-glycerol phosphate lyase, chloroplastic-like 2.8
LOC100682422 DIMBOA UDP-glucosyltransferase BX8 2.6
0.05 mmol L-1 Cd胁迫蛋白-蛋白相互作用
Protein-protein
interaction under
0.05 mmol L-1
Cd stress
LOC123143519 2008.9
LOC123083701 1397.5
LOC123154376 V-type proton ATPase subunit C-like, transcript variant X3 1067.2
LOC123047031 Ubiquitin-40S ribosomal protein S27a-2-like 820.5
LOC123159281 316.9
LOC123137258 264.9
LOC123064314 60S ribosomal protein L9 113.4
LOC123068951 80.7
LOC123142574 Uncharacterized 53.5
LOC123039371 19.1
0.10 mmol L-1 Cd胁迫蛋白-蛋白相互作用
Protein-protein
interaction under
0.10 mmol L-1
Cd stress
LOC123142574 1223.2
LOC123083701 767.6
LOC123091968 498.7
LOC123047031 Ubiquitin-40S ribosomal protein S27a-2-like 452.4
LOC123091201 26S proteasome non-ATPase regulatory subunit 13 homolog B-like 354.7
LOC123177030 277.2
LOC123129514 Glyoxysomal fatty acid beta-oxidation multifunctional protein MFP-a-like 222.8
LOC123137258 186.9
LOC123064314 60S ribosomal protein L9 92.4
LOC123159281 63.8

图7

Cd胁迫下模块与表型相关性热图 ME: 模块特征基因; A-Cd: 地上部Cd含量; R-Cd: 根部Cd含量; MDA: 丙二醛; POD: 过氧化物酶; CAT: 过氧化氢酶; SOD: 超氧化物歧化酶; GSH: 谷胱甘肽; NPT: 非蛋白巯基肽; PCs: 植物螯合肽; **为极显著差异(P < 0.01)。"

图8

Cd胁迫下与Cd相关模块KEGG富集分析和可视化分析 A, B分别为Cd胁迫下棕色、棕褐色模块的KEGG富集分析; C, D分别为浅青色模块的KEGG富集分析和可视化分析; E, F分别为暗红色模块的KEGG富集分析和可视化分析; G, H分别为蓝色模块的KEGG富集分析和可视化分析; M: 代谢; GIP: 遗传信息处理; EIP: 环境信息处理; OS: 生物体系统; CP: 细胞过程。"

[1] Hussain B, Ashraf M N, Shafeeq-Ur-Rahman, Abbas A, Li J M, Farooq M. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies. Sci Total Environ, 2021, 754: 142188.
[2] 范业赓, 廖洁, 王天顺, 丘立杭, 陈荣发, 黄杏, 莫磊兴, 吴建明. 镉胁迫对甘蔗抗氧化酶系统及非蛋白巯基物质的影响. 湖南农业科学, 2019, (4): 23-27.
Fan Y G, Liao J, Wang T S, Qiu L H, Chen R F, Huang X, Mo L X, Wu J M. Effects of cadmium stress on antioxidant enzyme system and non-protein thiols substances in sugarcane. Hunan Agric Sci, 2019, (4): 23-27 (in Chinese with English abstract).
[3] Xu J H, Hu C Y, Wang M L, Zhao Z S, Zhao X X, Cao L, Lu Y F, Cai X Y. Changeable effects of coexisting heavy metals on transfer of cadmium from soils to wheat grains. J Hazard Mater, 2022, 423: 127182.
[4] Xing W Q, Zhang H Y, Scheckel K G, Li L P. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China. Environ Monit Assess, 2016, 188: 23.
doi: 10.1007/s10661-015-5023-3 pmid: 26661959
[5] Hu B F, Shao S, Ni H, Fu Z Y, Huang M X, Chen Q X, Shi Z. Assessment of potentially toxic element pollution in soils and related health risks in 271 cities across China. Environ Pollut, 2021, 270: 116196.
[6] 刘娜, 张少斌, 郭欣宇, 宁瑞艳. 小麦籽粒镉含量影响因素Meta分析和决策树分析. 环境科学, 2023, 44: 2265-2274.
pmid: 37040975
Liu N, Zhang S B, Guo X Y, Ning R Y. Influencing factors of cadmium content in wheat grain: a meta-analysis and decision tree analysis. Environ Sci, 2023, 44: 2265-2274 (in Chinese with English abstract).
doi: 10.13227/j.hjkx.202204090 pmid: 37040975
[7] 唐舒庭, 卢一铭, 肖盛柏, 崔浩, 魏世强. 稻田土壤砷、镉复合污染阻控技术研究进展. 环境科学, 2023, 44: 5704-5717.
Tang S T, Lu Y M, Xiao S B, Cui H, Wei S Q. Research advances in barrier technology of paddy soil co-contaminated with As and Cd. Environ Sci, 2023, 44: 5704-5717 (in Chinese with English abstract).
[8] Liu C, Peng L M, Lei M F, Li Y F. Research on crossing tunnels’ seismic response characteristics. KSCE J Civ Eng, 2019, 23: 4910-4920.
[9] Liu N, Huang X M, Sun L M, Li S S, Chen Y H, Cao X Y, Wang W X, Dai J L, Rinnan R. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China. Chemosphere, 2020, 241: 125065.
[10] 郭震华, 蔡丽君, 潘国君, 王立楠, 周雪松, 杜晓东, 蔡永盛, 张希瑞, 韩笑, 周通, 等. 低温胁迫下水稻孕穗期幼穗的转录组动态分析. 种子, 2024, 43(8): 60-68.
Guo Z H, Cai L J, Pan G J, Wang L N, Zhou X S, Du X D, Cai Y S, Zhang X R, Han X, Zhou T, et al. Transcriptome dynamic analysis on young panicle of rice at booting stage under cold stress. Seed, 2024, 43(8): 60-68 (in Chinese with English abstract).
[11] 王慧敏. 谷子苗期响应盐碱胁迫的生理和转录组分析及SiAAAPs家族研究. 河北科技师范学院硕士学位论文, 河北秦皇岛, 2024.
Wang H M. Physiological Investigation, Transcriptome Analysis, and SiAAAPs Family Study of Foxtail Millet Response to Saline-alkali Stress at the Seedling Stage. MS Thesis of Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China, 2024 (in Chinese with English abstract).
[12] 姚琦, 石俊婷, 鲁振强, 刘大丽. 甜菜镉胁迫应答基因ZAT10的克隆与功能预测. 中国糖料, 2024, 46(3): 1-9.
Yao Q, Shi J T, Lu Z Q, Liu D L. Cloning and functional prediction of the sugar beet cadmium stress-responsive gene ZAT10. Sugar Crops China, 2024, 46(3): 1-9 (in Chinese with English abstract).
[13] Wang Z Q, Zhang W Y, Huang W J, Biao A, Lin S, Wang Y, Yan S J, Zeng S H. Salt stress affects the fruit quality of Lycium ruthenicum Murr. Ind Crops Prod, 2023, 193: 116240.
[14] 倪显春, 任建国, 庞玉新, 王俊丽. 转录组测序分析艾纳香对镉胁迫响应机制. 分子植物育种, 网络首发[2023-01-19], https://kns.cnki.net/kcms/detail//46.1068.S.20230119.0907.002.html.
Ni X C, Ren J G, Pang Y X, Wang J L. Transcriptome sequencing analysis of the response mechanism of blumea balsamifera Dc to cadmium stress. Mol Plant Breed, Published online [2023-01-19], https://kns.cnki.net/kcms/detail//46.1068.S.20230119.0907.002.html (in Chinese with English abstract).
[15] 张大众. 不同镉耐受性小麦对镉胁迫的响应和耐受分子机制研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2022.
Zhang D Z. Response and Tolerant Molecular Mechanism of Cadmium Stress in Common Wheat with Distinct Cadmium Tolerance. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).
[16] Zhang D Z, Liu J J, Zhang Y B, Wang H R, Wei S W, Zhang X, Zhang D, Ma H S, Ding Q, Ma L J. Morphophysiological, proteomic and metabolomic analyses reveal cadmium tolerance mechanism in common wheat (Triticum aestivum L.). J Hazard Mater, 2023, 445: 130499.
[17] Wang M, Li H B, Dang F, Cheng B X, Cheng C, Ge C H, Zhou D M. Common metabolism and transcription responses of low- cadmium-accumulative wheat (Triticum aestivum L.) cultivars sprayed with nano-selenium. Sci Total Environ, 2024, 948: 174936.
[18] 丁艳. 小麦叶片对Cd、Hg和1, 2, 4-三氯苯胁迫应答的蛋白组学研究. 扬州大学硕士学位论文, 江苏扬州, 2008.
Ding Y. Proteomic Study for Wheat Leaves Responding to Cd, Hg and TCB Stress. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2008 (in Chinese with English abstract).
[19] 陈倩, 谢旗. 内质网胁迫在植物中的研究进展. 生物技术通报, 2018, 34(1): 15-25.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0996
Chen Q, Xie Q. The research progress of the endoplasmic reticulum (ER) stress response in plant. Biotechnol Bull, 2018, 34(1): 15-25 (in Chinese with English abstract).
[20] Liu J X, Srivastava R, Che P, Howell S H. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J, 2007, 51: 897-909.
[21] McCracken A A, Brodsky J L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol, 1996, 132: 291-298.
pmid: 8636208
[22] 白雨婷, 张文晓, 周倩, 向凤宁. 转录因子在植物内质网胁迫中的作用及分子机制研究进展. 植物生理学报, 2024, 60: 1055-1067.
Bai Y T, Zhang W X, Zhou Q, Xiang F N. Advances in roles and molecular mechanisms of transcription factors in endoplasmic reticulum stress in plants. Plant Physiol J, 2024, 60: 1055-1067 (in Chinese with English abstract).
[23] Liu L J, Cui F, Li Q L, Yin B J, Zhang H W, Lin B Y, Wu Y R, Xia R, Tang S Y, Xie Q. The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res, 2011, 21: 957-969.
doi: 10.1038/cr.2010.181 pmid: 21187857
[24] Ciobanu L G, Sachdev P S, Trollor J N, Reppermund S, Thalamuthu A, Mather K A, Cohen-Woods S, Stacey D, Toben C, Schubert K O, et al. Co-expression network analysis of peripheral blood transcriptome identifies dysregulated protein processing in endoplasmic reticulum and immune response in recurrent MDD in older adults. J Psychiatr Res, 2018, 107: 19-27.
doi: S0022-3956(18)30744-1 pmid: 30312913
[25] Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley R B, Briggs S P, et al. Analysis of a chemical plant defense mechanism in Grasses. Science, 1997, 277: 696-699.
doi: 10.1126/science.277.5326.696 pmid: 9235894
[26] Tzin V, Hojo Y, Strickler S R, Bartsch L J, Archer C M, Ahern K R, Zhou S Q, Christensen S A, Galis I, Mueller L A, et al. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. J Exp Bot, 2017, 68: 4709-4723.
[27] von Rad U, Hüttl R, Lottspeich F, Gierl A, Frey M. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant J, 2001, 28: 633-642.
pmid: 11851909
[28] Poschenrieder C, Tolrà R P, Barceló J. A role for cyclic hydroxamates in aluminium resistance in maize. J Inorg Biochem, 2005, 99: 1830-1836.
pmid: 16054220
[29] Niculaes C, Abramov A, Hannemann L, Frey M. Plant protection by benzoxazinoids—recent insights into biosynthesis and function. Agronomy, 2018, 8: 143.
[30] Zhao Z K, Gao X F, Ke Y, Chang M M, Xie L, Li X F, Gu M H, Liu J P, Tang X L. A unique aluminum resistance mechanism conferred by aluminum and salicylic-acid-activated root efflux of benzoxazinoids in maize. Plant Soil, 2019, 437: 273-289.
[31] 苏小雨. 干旱胁迫下褪黑素对玉米幼苗生理生化的调控及蛋白组分析. 河南农业大学博士学位论文, 河南郑州, 2018.
Su X Y. The Role of Melatonin on Regulation Mechanism of Physiological and Proteome Analysis in Maize Seedlings Under Drought Stress. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2018 (in Chinese with English abstract).
[32] Adeva-Andany M M, Carneiro-Freire N, Seco-Filgueira M, Fernández-Fernández C, Mouriño-Bayolo D. Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion, 2019, 46: 73-90.
doi: S1567-7249(17)30289-1 pmid: 29551309
[33] Yu H L, Du X Q, Zhang F X, Zhang F, Hu Y, Liu S C, Jiang X N, Wang G D, Liu D. A mutation in the E2 subunit of the mitochondrial pyruvate dehydrogenase complex in Arabidopsis reduces plant organ size and enhances the accumulation of amino acids and intermediate products of the TCA cycle. Planta, 2012, 236: 387-399.
[34] 刘缨, 霍诗睿, 李婷, 赫荣乔. 在教学中通过脱羧线索解析三羧酸循环. 微生物学通报, 2024, 51: 5270-5281.
Liu Y, Huo S R, Li T, He R Q. Teaching of tricarboxylic acid cycle via decarboxylation clues. Microbiol China, 2024, 51: 5270-5281 (in Chinese with English abstract).
[35] Hoffland E, Kuyper T W, Wallander H, Plassard C, Gorbushina A A, Haselwandter K, Holmstrom S, Landeweert R, Lundstrom U S, Rosling A, et al. The role of fungi in weathering. Front Ecol Environ, 2004, 2: 258.
[36] 伏贝贝. 改造酿酒酵母乙酰辅酶A合成途径及其在香叶醇生产中的应用. 齐鲁工业大学硕士学位论文, 山东济南, 2018.
Fu B B. A Thesis Submitted for the Spplication of the Master’s Degree of Engineering. MS Thesis of Qilu University of Technology, Jinan, Shandong, China, 2018 (in Chinese with English abstract).
[37] 谢探春. Cd-芘复合污染土壤柳树修复及强化技术研究. 南京大学硕士学位论文, 江苏南京, 2019.
Xie T C. Phytoremediation and Enhancement of Willow for Cd and Pyrene Co-contaminated Soils. MS Thesis of Nanjing University, Nanjing, Jiangsu, China, 2019 (in Chinese with English abstract).
[38] 樊扬帆. 外源螯合剂柠檬酸和NTA对苎麻修复重金属Cd污染土壤的研究. 湖南大学硕士学位论文, 湖南长沙, 2015.
Fan Y F. The Effects of Exogenous CA and NTA on Phytoremediation of Cadmium by Boehmeria nivea (L.) Gaud. MS Thesis of Hunan University, Changsha, Hunan, China, 2015 (in Chinese with English abstract).
[39] Shen C, Huang B F, Hu L, Yuan H W, Huang Y Y, Wang Y B, Sun Y F, Li Y, Zhang J R, Xin J L. Comparative transcriptome analysis and Arabidopsis thaliana overexpression reveal key genes associated with cadmium transport and distribution in root of two Capsicum annuum cultivars. J Hazard Mater, 2024, 465: 133365.
[40] Tang L, Mao B G, Li Y K, Lyu Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, et al. Knockout of OsNramp 5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep, 2017, 7: 14438.
doi: 10.1038/s41598-017-14832-9 pmid: 29089547
[41] 贺章咪. 不同辣椒品种镉吸收差异及其积累关键基因表达研究. 西南大学硕士学位论文, 重庆, 2020.
He Z M. Difference of Cadmium Absorption Characteristic and Expression of the Key Cadmium Accumulated Genes in Different Pepper Varieties. MS Thesis of Southwest University, Chongqing, China, 2020 (in Chinese with English abstract).
[42] 吴雪. 富氢水缓解小白菜(Brassica chinensis L.)镉胁迫的机理研究. 南京农业大学博士学位论文, 江苏南京, 2020.
Wu X. The Mechanism of Hydrogen-rich Water Alleviating Cadmium Toxicity in Pak Choi. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2020 (in Chinese with English abstract).
[43] 付珊. 水稻ABC转运蛋白OsABCG36的耐镉分子机制研究. 广西大学博士学位论文, 广西南宁, 2019.
Fu S. Molecular Mechanism of ABC Transporter OsABCG36 in Rice Cadmium Tolerance. PhD Dissertation of Guangxi University, Nanning, Guangxi, China, 2019 (in Chinese with English abstract).
[44] Fu S, Lu Y S, Zhang X, Yang G Z, Chao D, Wang Z G, Shi M X, Chen J G, Chao D Y, Li R B, et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot, 2019, 70: 5909-5918.
doi: 10.1093/jxb/erz335 pmid: 31328224
[45] Planta R J, Mager W H. The list of cytoplasmic ribosomal proteins of Saccharomyces cerevisiae. Yeast, 1998, 14: 471-477.
pmid: 9559554
[46] 高明阳, 杨宣叶, 吴玉湖, 王进千. 核糖体相关质量控制在精微调控蛋白质合成中的作用机制及意义. 微生物学通报, 2024, 51: 2741-2752.
Gao M Y, Yang X Y, Wu Y H, Wang J Q. Mechanism and significance of ribosome-associated quality control in protein synthesis. Microbiol China, 2024, 51: 2741-2752 (in Chinese with English abstract).
[47] Rogalski M, Schöttler M A, Thiele W, Schulze W X, Bock R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell, 2008, 20: 2221-2237.
doi: 10.1105/tpc.108.060392 pmid: 18757552
[48] Berka M, Luklová M, Dufková H, Berková V, Novák J, Saiz-Fernández I, Rashotte A M, Brzobohatý B, Cerný M. Barley root proteome and metabolome in response to cytokinin and abiotic stimuli. Front Plant Sci, 2020, 11: 590337.
[49] Zhang Q Y, Gao M, Wu L W, Wu H, Chen Y C, Wang Y D. Expression network of transcription factors in resistant and susceptible tung trees responding to Fusarium wilt disease. Ind Crops Prod, 2018, 122: 716-725.
[50] Wu X Z, Yan J Y, Qin M Z, Li R Z, Jia T, Liu Z G, Ahmad P, El-Sheikh M A, Yadav K K, Rodríguez-Díaz J M, et al. Comprehensive transcriptome, physiological and biochemical analyses reveal that key role of transcription factor WRKY and plant hormone in responding cadmium stress. J Environ Manag, 2024, 367: 121979.
[51] Xian J P, Wang Y, Niu K J, Ma H L, Ma X. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere, 2020, 250: 126158.
[52] Wu X L, Chen Q, Chen L L, Tian F F, Chen X X, Han C Y, Mi J X, Lin X Y, Wan X Q, Jiang B B, et al. A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar. Ecotoxicol Environ Saf, 2022, 239: 113630.
[53] Sun K L, Wang H Y, Xia Z L. The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco. Plant Sci, 2019, 280: 97-109.
[54] Zhu S J, Shi W J, Jie Y C, Zhou Q M, Song C B. A MYB transcription factor, BnMYB2, cloned from ramie (Boehmeria nivea) is involved in cadmium tolerance and accumulation. PLoS One, 2020, 15: e0233375.
[55] Zhang L Y, Xu Y F, Wang A W, Wu T Y, Guo J L, Shi G Y, Tian B M, Wei F, Cao G Q. Integrated physiological and transcriptomic analysis reveals the involvement of photosynthesis and redox homeostasis in response of Arundo donax to low and high nitrogen supply. Ind Crops Prod, 2024, 221: 119377.
[1] 孟祥宇, 刁邓超, 刘雅睿, 李云丽, 孙玉晨, 吴玮, 赵雯, 汪妤, 吴建辉, 李春莲, 曾庆东, 韩德俊, 郑炜君. 小麦新品种西农877高产稳产的遗传特性解析[J]. 作物学报, 2025, 51(5): 1261-1276.
[2] 王佳婕, 王正楠, BATOOL Maria, 王旺年, 文静, 任长忠, 何峰, 武优悠, 徐正华, 王晶, 蒯婕, 汪波, 周广生, 傅廷栋. 油菜和小麦响应盐碱胁迫的生理特性比较[J]. 作物学报, 2025, 51(5): 1215-1229.
[3] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[4] 程红娜, 秦丹丹, 许甫超, 徐晴, 彭严春, 孙龙清, 徐乐, 郭英, 杨新泉, 徐得泽, 董静. 彩色青稞和彩色小麦籽粒的代谢组学比较分析[J]. 作物学报, 2025, 51(4): 932-942.
[5] 李慧敏, 邢志鹏, 张海鹏, 魏海燕, 张洪程, 李光彦. 化学调控及其他栽培措施在小麦抗倒伏高产栽培中的应用[J]. 作物学报, 2025, 51(4): 847-862.
[6] 李培华, 李杰, 孟祥宇, 孙玉晨, 冯永佳, 李云丽, 刁邓超, 赵雯, 吴玮, 韩德俊, 张嵩午, 郑炜君. 高温胁迫下冷型小麦的抗逆性评估及其生理响应研究[J]. 作物学报, 2025, 51(4): 1118-1130.
[7] 李乔, 叶杨春, 常旭虹, 王德梅, 王艳杰, 杨玉双, 马瑞琦, 赵广才, 蔡瑞国, 张敏, 刘希伟. 花后高温干旱逆境对冬小麦光合特性和产量的影响[J]. 作物学报, 2025, 51(4): 1077-1090.
[8] 王娇, 白海霞, 韩语燕, 梁惠, 冯雅楠, 张东升, 李萍, 宗毓铮, 史鑫蕊, 郝兴宇. CO2浓度升高、升温及其交互作用对良星99冬小麦叶片碳氮代谢的影响[J]. 作物学报, 2025, 51(4): 1061-1076.
[9] 张恒, 冯雅岚, 田文仲, 郭彬彬, 张均, 马超. 小麦TaSnRK基因家族鉴定及在局部根区干旱下的表达分析[J]. 作物学报, 2025, 51(3): 632-649.
[10] 张金泽, 周庆国, 杨旭, 王倩, 肖莉晶, 金海润, 欧阳青静, 余坤江, 田恩堂. 芥菜型油菜响应菌核病侵染表达特性与高抗性关联基因分析[J]. 作物学报, 2025, 51(3): 621-631.
[11] 展宗冰, 靳奇峰, 刘迪, 吕迎春, 郭莹, 张雪婷, 虎梦霞, 王尚, 杨芳萍. 甘肃省小麦农家种老芒麦分子鉴定及其重要性状评价[J]. 作物学报, 2025, 51(3): 609-620.
[12] 雍瑞, 胡文静, 吴迪, 汪尊杰, 李东升, 赵蝶, 尤俊超, 肖永贵, 王春平. 小麦穗粒数QTL分析及其对千粒重多效性评价[J]. 作物学报, 2025, 51(2): 312-323.
[13] 杨芳萍, 郭莹, 田媛媛, 徐玉凤, 王兰兰, 白斌, 展宗冰, 张雪婷, 徐银萍, 刘金栋. 甘肃省小麦地方品种春化光周期基因效应及抗寒性评价[J]. 作物学报, 2025, 51(2): 370-382.
[14] 梁淼, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响[J]. 作物学报, 2025, 51(2): 470-484.
[15] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!