作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1784-1800.doi: 10.3724/SP.J.1006.2025.41082
王天译1,2,**,杨绣娟3,**,赵佳佳1,郝宇琼1,郑兴卫1,武棒棒1,李晓华1,郝水源3,郑军1,2,*
WANG Tian-Yi1,2,**,YANG Xiu-Juan3,**,ZHAO Jia-Jia1,HAO Yu-Qiong1,ZHENG Xing-Wei1,WU Bang-Bang1,LI Xiao-Hua1,HAO Shui-Yuan3,ZHENG Jun1,2,*
摘要:
山西省小麦种质资源丰富,以抗旱性强和品质优异而著称,但醇溶蛋白多样性研究不足。为阐明山西小麦醇溶蛋白多样性及其对面粉品质的效应,采用酸性聚丙烯酰胺凝胶电泳鉴定了421份山西小麦的醇溶蛋白谱带组成,分析了不同谱带对面粉品质的效应。结果表明,421份材料醇溶蛋白多态性整体上较高,具有91种谱带类型,共分离出8585条谱带,平均每个品种含有20.39条,品种间谱带数量变异范围为15~27条,基于遗传距离的聚类,所有品种可分为5大类。醇溶蛋白多态性信息含量、基因多样性以及遗传距离受品种亲缘关系和生态分布的影响,除不同麦区间的种质谱带数量存在差异外,育成品种平均谱带数量高于地方品种,水地品种高于旱地品种,育成品种的谱带多样性随育种年代呈先升后降的趋势。山西小麦同名地方品种的醇溶蛋白谱带数量和多样性均有差异,存在同名同种和同名异种的现象;进一步发现地方品种小红皮是由多个纯系组成的混合群体,有3种不同的醇溶蛋白单元型。相关性分析发现34条谱带与5项面粉理化性质相关,58条谱带与12项面粉加工品质相关,正效应谱带为15条,其中迁移率为23.4和64.1的谱带可分别提高吸水率2.0%和2.1%,谱带45.2可提高湿面筋含量0.9%,14.1、43.3和65.4等13条谱带可以提高粉质质量,其中谱带65.4的效应最高,可以提高11.3%,14.1、20.6和43.3等谱带可同时提高面团形成时间和稳定时间;25条谱带与黏度特性显著相关,呈正相关的谱带共9条,其中谱带76.8效应最高,可提高最低黏度、峰值黏度和最终黏度的21.7%、12.8%和20.0%,具有多效应谱带有48条,这些谱带在今后的应用研究中潜力较大。本研究有助于深入认识山西小麦种质资源遗传及演化,可以为小麦品质定向改良育种提供有价值的信息。
[1] 徐兆飞. 山西小麦. 北京: 中国农业出版社, 2006. Xu Z F. Shanxi Wheat. Beijing: China Agriculture Press, 2006 (in Chinese). [2] 乔玲, 刘成, 郑兴卫, 赵佳佳, 尚保华, 马小飞, 乔麟轶, 盖红梅, 姬虎太, 刘建军, 张建诚, 郑军. 小麦骨干亲本临汾5064单元型区段的遗传解析. 作物学报, 2018, 44: 931–937. Qiao L, Liu C, Zheng X W, Zhao J J, Shang B H, Ma X F, Qiao L Y, Gai H M, Ji H T, Liu J J, Zhang J C, Zheng J. Genetic analysis of haplotype-blocks from wheat founder parent Linfen 5064. Acta Agron Sin, 2018, 44: 931–937 (in Chinese with English abstract). [3] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714–727. Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agron Sin, 2021, 47: 714–727 (in Chinese with English abstract). [4] 卫乃翠, 陶金博, 苑名杨, 张彧, 开梦想, 乔玲, 武棒棒, 郝宇琼, 郑兴卫, 王娟玲, 赵佳佳, 郑军. 山西小麦苗期耐低磷特性及遗传分析. 中国农业科学, 2024, 57: 831–845. Wei N C, Tao J B, Yuan M Y, Zhang Y, Kai M X, Qiao L, Wu B B, Hao Y Q, Zheng X W, Wang J L, Zhao J J, Zheng J. Seedling characterization and genetic analysis of low phosphorus tolerance in Shanxi varieties. Sci Agric Sin, 2024, 57: 831–845 (in Chinese with English abstract). [5] Zhao J J, Zheng X W, Qiao L, Yang C K, Wu B B, He Z M, Tang Y Q, Li G R, Yang Z J, Zheng J, Qi Z J. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). Plant J, 2022, 112: 1447–1461. [6] 代美瑶, 巩艳菲, 李芳, 张波. 小麦籽粒不同部位蛋白质理化特性研究进展. 中国粮油学报, 2019, 34(7):132–138. Dai M Y, Gong Y F, Li F, Zhang B. A review on the physicochemical properties of the different fractions of wheat kernel. J Chin Cereals Oils Assoc, 2019, 34(7): 132–138 (in Chinese with English abstract). [7] Woychik J H, Boundy J A,Dimler R J. Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Arch Biochem Biophys, 1961, 94: 477–482. [8] Bushuk W, Zillman R R. Wheat cultivar identification by gliadin electrophoregrams. Ⅰ. apparatus, method and nomenclature. Can J Plant Sci, 1978, 58: 505–515. [9] Kawaura K, Mochida K, Ogihara Y. Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant Physiol, 2005, 139: 1870–1880. [10] Metakovsky E V, Knežević D, Javornik B. Gliadin allele composition of Yugoslav winter wheat cultivars. Euphytica, 1991, 54: 285–295. [11] Draper S R. ISTA Variety Committee - Report of the working group for biochemical tests for cultivar identification 1983–1986. Seed Sci Technol, 1987, 15: 431–434. [12] Payne P I, Holt L M, Lawrence G J, Law C N. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Plant Foods Hum Nutr, 1982, 31: 229–241. [13] Metakovsky E V, Gómez M, Vázquez J F, Carrillo J M. High genetic diversity of Spanish common wheats as judged from gliadin alleles. Plant Breed, 2000, 119: 37–42. [14] Metakovsky E V. Gliadin allele identification in common wheat. Ⅱ. Catalogue of gliandin alleles in common wheat. J Genet Breed, 1991, 45: 325–344. [15] 张平平, 陈东升, 张勇, 夏先春, 何中虎. 春播小麦醇溶蛋白组成及其对品质性状的影响. 作物学报, 2006, 32: 1796–1801. Zhang P P, Chen D S, Zhang Y, Xia X C, He Z H. Gliadin composition and their effects on quality properties in spring wheat. Acta Agron Sin, 2006, 32: 1796–1801 (in Chinese with English abstract). [16] Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119: 59–67. [17] 姜小苓, 张自阳, 李小军, 李淦, 于红彩, 李秀玲, 茹振钢. 301份小麦种质醇溶蛋白遗传多样性及其与品质性状的相关性分析. 中国粮油学报, 2017, 32(11): 14–20. Jiang X L, Zhang Z Y, Li X J, Li G, Yu H C, Li X L, Ru Z G. Genetic diversity of gliadin in 301 wheat germplasms and the relationship with quality properties. J Chin Cereals Oils Assoc, 2017, 32(11): 14–20 (in Chinese with English abstract). [18] 阎旭东, 卢少源, 李宗智. 普通小麦醇溶蛋白组份的分布及其与HMW-麦谷蛋白亚基对品质的组合效应. 作物学报, 1997, 23: 70–75. Yan X D, Lu S Y, Li Z Z. The distribution of gliadin composition and its interaction with HMW-Glutenin subunits on breadbaking quality of common wheat. Acta Agron Sin, 1997, 23: 70–75 (in Chinese with English abstract). [19] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215. He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract). [20] Metakovsky E V, Brandlard G. Genetic diversity of French common wheat germplasm based on gliadin alleles. Theor Appl Genet, 1998, 96: 209–218. [21] Metakovsky E V, Novoselskaya A Y, Kopus M M, Sobko T A, Sozinov A A. Blocks of gliadin components in winter wheat detected by one-dimensional polyacrylamide gel electrophoresis. Theor Appl Genet, 1984, 67: 559–568. [22] 刘华, 王宇生, 张辉, 曹永生, 周荣华, 贾继增. 小麦种质资源醇溶蛋白指纹图谱数据库的初步建立及应用. 作物学报, 1999, 25: 674–682. Liu H, Wang Y S, Zhang H, Cao Y S, Zhou R H, Jia J Z. Preliminary construction and application of gliadin fingerprints database of Chinese wheat germplasm. Acta Agron Sin, 1999, 25: 674–682 (in Chinese with English abstract). [23] 刘丽华, 庞斌双, 王立新, 李宏博, 张欣, 蔡金麟, 赵昌平. 醇溶蛋白法和SSR标记法检测小麦种子纯度的比较. 麦类作物学报, 2013, 33: 429–434. Liu L H, Pang B S, Wang L X, Li H B, Zhang X, Cai J L, Zhao C P. Comparison of seed purity detection of wheat using gliadin analysis and SSR markers. J Triticeae Crops, 2013, 33: 429–434 (in Chinese with English abstract). [24] 张学勇, 杨欣明, 董玉琛. 醇溶蛋白电泳在小麦种质资源遗传分析中的应用. 中国农业科学, 1995, 28: 26–33. Zhang X Y, Yang X M, Dong Y C. Genetic analysis of wheat germplasm by acid polyacrylamide gel electrophoresis of gliadins. Sci Agric Sin, 1995, 28: 26–33 (in Chinese with English abstract). [25] Dubois B, Bertin P, Mingeot D. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species. Mol Breed, 2016. 36: 152. [26] 高艾英, 吴长艾, 朱树生, 王宪泽. 山东省普通小麦醇溶蛋白Gli-1和Gli-2位点等位基因的遗传变异. 作物学报, 2005, 31: 1460–1465. Gao A Y, Wu C A, Zhu S S, Wang X Z. Genetic variation at gli-1 and gli-2 loci in wheat cultivars from Shandong Province. Acta Agron Sin, 2005, 31: 1460–1465 (in Chinese with English abstract). [27] 李正玲, 许为钢, 张清珍, 李锁平, 胡琳. 河南省地方小麦品种醇溶蛋白的遗传多样性分析. 麦类作物学报, 2008, 28: 582–587. Li Z L, Xu W G, Zhang Q Z, Li S P, Hu L. Genetic heterogeneity and diversity within and among Henan wheat landraces with the same Name as revealed by gliadin composition. J Triticeae Crops, 2008, 28: 582–587 (in Chinese with English abstract). [28] 侯丞志, 汪辉, 吴豪, 钱可, 郑文寅, 张文明, 郭文善, 姚大年. 安徽小麦品种醇溶蛋白遗传多样性及其与品质性状的相关性研究. 麦类作物学报, 2019, 39: 540–548. Hou C Z, Wang H, Wu H, Qian K, Zheng W Y, Zhang W M, Guo W S, Yao D N. Study on the genetic diversity of gliadin and its correlation with quality characters of Anhui wheat varieties. J Triticeae Crops, 2019, 39: 540–548 (in Chinese with English abstract). [29] 王海燕, 王秀娥, 陈佩度, 刘大钧. 云南、西藏与新疆小麦醇溶蛋白Gli-1和Gli-2编码位点等位基因组成及遗传多样性分析. 麦类作物学报, 2005, 25: 34–39. Wang H Y, Wang X E, Chen P D, Liu D J. Analysis of gliadin allelic composition at Gli-1 and Gli-2 loci and genetic diversity in Yunnan, Tibetan and Xinjiang wheats. J Triticeae Crops, 2005, 25: 34–39 (in Chinese with English abstract). [30] 孙黛珍, 杨海峰, 王曙光, 曹亚萍, 杨武德. 山西小麦品种资源醇溶蛋白组成的遗传变异. 核农学报, 2009, 23: 939–946. Sun D Z, Yang H F, Wang S G, Cao Y P, Yang W D. Genetic variation of gliadin composition of wheat varieties in Shanxi. J Nucl Agric Sci, 2009, 23: 939–946 (in Chinese with English abstract). [31] Liu Y X, Lin Y, Gao S, Li Z Y, Ma J, Deng M, Chen G Y, Wei Y M, Zheng Y L. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017, 91: 861–873. [32] Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 1973, 70: 3321–3323. [33] Li D, Jin H B, Zhang K P, Wang Z J, Wang F M, Zhao Y, Huo N X, Liu X, Gu Y Q, Wang D W, Dong L L. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat. Plant J, 2018, 95: 414–426. [34] Metakovsky E V, Annicchiarico P, Boggini G, Pogna N E. Relationship between gliadin alleles and dough strength in Italian bread wheat cultivars. J Cereal Sci, 1997, 25: 229–236. [35] 王正阳, 倪永静, 牛吉山, 刘靖. 99份国内小麦新品种(系)醇溶蛋白的遗传多样性分析. 麦类作物学报, 2010, 30: 233–239. Wang Z Y, Ni Y J, Niu J S, Liu J. Analysis of the genetic diversity at gliadin loci in 99 new domestic wheat cultivars or lines. J Triticeae Crops, 2010, 30: 233–239 (in Chinese with English abstract). [36] 郎明林, 卢少源, 张荣芝. 中国北方冬麦区主栽品种醇溶蛋白指纹图谱数据库的建立. 中国农业科学, 2002, 35: 238–244. Lang M L, Lu S Y, Zhang R Z. Construction of gliadin fingerprints database of the main wheat cultivars grown in North China. Sci Agric Sin, 2002, 35: 238–244 (in Chinese with English abstract). [37] 晏月明, 茹岩岩, 余建中, 刘广田, S.Prodnovic. 中国小麦品种醇溶蛋白Gli-1和Gli-2编码位点等位基因组成分析. 农业生物技术学报, 2000, 8: 23–27. Yan Y M, Ru Y Y, Yu J Z, Liu G T, Prodnovic S. Analysis of gliadin allele composition at gli-1 and gli-2 loci in Chinese wheat cultivars. J Agric Biotechnol, 2000, 8: 23–27 (in Chinese with English abstract). [38] 张茶, 梁虹, 王睿辉, 安浩军, 王静华, 赵金峰, 赵玉新, 常文锁. 河北省主栽小麦品种醇溶蛋白遗传多样性分析. 中国农学通报, 2008, 24(1): 191–196. Zhang C, Liang H, Wang R H, An H J, Wang J H, Zhao J F, Zhao Y X, Chang W S. Analysis on genetic diversity among Hebei major wheat cultivars based on gliadins. Chin Agric Sci Bull, 2008, 24(1): 191–196 (in Chinese with English abstract). [39] 郝晨阳. 甘肃春小麦种质资源贮藏蛋白遗传变异研究. 甘肃农业大学硕士学位论文, 甘肃兰州, 2001. Hao C Y. Studies on Genetic Variation of Storage Protein in Gansu-grown Spring Wheat Germplasm Resources. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2001 (in Chinese with English abstract). [40] 魏育明, 郑有良, 刘登才, 周永红, 兰秀锦. 四川小麦地方品种Gli-1、Gli-2和Glu-1位点的遗传多样性. 植物学报, 2000, 42: 496–501. Wei Y M, Zheng Y L, Liu D C, Zhou Y H, Lan X J. Genetic diversity of Gli-1、Gli-2 and Glu-1 loci in Sichuan wheat landraces. Chin J Crop Sci, 2000, 42: 496–501 (in Chinese with English abstract). [41] 刘筱颖, 李晓华, 郑兴卫, 乔玲, 赵佳佳, 葛川, 乔麟轶, 张树伟, 郑军. 山西小麦育成品种农艺性状演变趋势及关联分析. 中国农业科技导报, 2020, 22(3): 14–23. Liu X Y, Li X H, Zheng X W, Qiao L, Zhao J J, Ge C, Qiao L Y, Zhang S W, Zheng J. Evolution and relevant analysis of agronomic characters of wheat in Shanxi province. J Agric Sci Technol, 2020, 22(3): 14–23 (in Chinese with English abstract). [42] 郑军, 李晓华, 赵佳佳, 尚保华, 曹勇, 马小飞, 张晓军, 乔玲, 乔麟轶, 郑兴卫, 等. 山西省小麦育成品种遗传多样性分析. 植物遗传资源学报, 2018, 19: 619–626. Zheng J, Li X H, Zhao J J, Shang B H, Cao Y, Ma X F, Zhang X J, Qiao L, Qiao L Y, Zheng X W, et al. Genetic diversity analysis of wheat cultivars in Shanxi Province. J Plant Genet Resour, 2018, 19: 619–626 (in Chinese with English abstract). [43] 康志钰, 王建军. 河西灌区小麦地方品种醇溶蛋白的遗传多样性分析. 麦类作物学报, 2011, 31: 455–461. Kang Z Y, Wang J J. Genetic diversity on gliadin loci of wheat landraces from Hexi irrigation region. J Triticeae Crops, 2011, 31: 455–461 (in Chinese with English abstract). [44] 韩雪, 杨丹丹, 孔欣欣, 赵鹏飞, 金建猛, 苏亚中, 赵国轩, 赵国建. 200份小麦种质品质性状及醇溶蛋白遗传多样性分析. 作物杂志, 2024, (6): 1–13. Han X, Yang D D, Kong X X, Zhao P F, Jin J M, Su Y Z, Zhao G X, Zhao G J. Genetic diversity analysis of quality traits and gliadin in 200 wheat germplasm resources. Crops, 2024, (6): 1–13 (in Chinese with English abstract). [45] 马晓岗, 李凤珍, 王晓辉, 李德志. 青海省小麦种质材料醇溶蛋白的遗传多样性分析. 麦类作物学报, 2012, 32: 1060–1065. Ma X G, Li F Z, Wang X H, Li D Z. Gliadin genetic diversity analysis of wheat cultivars and germplasms from Qinghai province. J Triticeae Crops, 2012, 32: 1060–1065 (in Chinese with English abstract). [46] 陶先萍, 李洪杰, 李秀全, 杨欣明, 李立会. 中国小麦地方品种内和品种间醇溶蛋白遗传多样性分析. 植物遗传资源学报, 2006, 7: 387–392. Tao X P, Li H J, Li X Q, Yang X M, Li L H. Genetic heterogeneity and diversity within and among Chinese wheat landraces as revealed by gliadin composition. J Plant Genet Resour, 2006, 7: 387–392 (in Chinese with English abstract). [47] 雷梦林. 山西小麦地方种质资源评价与重要农艺性状的全基因组关联分析. 山西农业大学博士学位论文, 太谷山西, 2022. Lei M L. Evaluation of Local Wheat Germplasm Resources and Genome Wide Association Study of Important Agronomic Traits in Shanxi Wheat. PhD Dissertation of Shanxi agricultural University, Taigu, Shanxi, China, 2022 (in Chinese with English abstract). [48] 谢炜, 郭青云, 郭小敏, 杨欣明, 李秀全, 李立会. 同名小麦地方品种小红芒和小红芒麦形态学和HMW-GS组成的演变分析. 植物遗传资源学报, 2011, 12: 381–388. Xie W, Guo Q Y, Guo X M, Yang X M, Li X Q, Li L H. Evolution on morphology and HMW-GS composition of wheat landraces Xiaohongmang and Xiaohongmangmai. J Plant Genet Resour, 2011, 12: 381–388 (in Chinese with English abstract). [49] 张玲丽, 王辉, 李立会, 李洪杰, 李小军, 李秀全, 杨欣明. 中国小麦地方品种大青芒遗传多样性研究. 中国农业科学, 2007, 40: 1579–1586. Zhang L L, Wang H, Li L H, Li H J, Li X J, Li X Q, Yang X M. Genetic diversity analysis of common wheat Landrace daqingmang in various growing areas. Sci Agric Sin, 2007, 40: 1579–1586 (in Chinese with English abstract). [50] Branlard G, Dardevet M. Diversity of grain proteins and bread wheat quality Ⅰ Correlation between Gliadin Bands and Flour quality characteristics. J Cereal Sci, 1985, 3: 329–343. [51] 王曙光, 杨海峰, 孙黛珍, 李中青, 史雨刚, 范华, 曹亚萍. 小麦醇溶蛋白亚基与品质性状的相关性分析. 中国粮油学报, 2013, 28(5): 31–35. Wang S G, Yang H F, Sun D Z, Li Z Q, Shi Y G, Fan H, Cao Y P. Analysis of correlation between gliadin subunits and quality characters in wheat. J Chin Cereals Oils Assoc, 2013, 28(5): 31–35 (in Chinese with English abstract). |
[1] | 杨芳萍, 郭莹, 田媛媛, 徐玉凤, 王兰兰, 白斌, 展宗冰, 张雪婷, 徐银萍, 刘金栋. 甘肃省小麦地方品种春化光周期基因效应及抗寒性评价[J]. 作物学报, 2025, 51(2): 370-382. |
[2] | 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266. |
[3] | 张红岩, 敏玉霞, 滕长才, 彭小星, 陈志凯, 周仙莉, 娄树宝, 刘玉皎. 利用130K液相芯片分析中国蚕豆种质资源遗传多样性[J]. 作物学报, 2024, 50(8): 1989-2000. |
[4] | 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960. |
[5] | 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502. |
[6] | 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293. |
[7] | 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382. |
[8] | 薛亚鹏, 辛旭霞, 王若楠, 于筱菡, 刘少雄, 王瑞云, 刘敏轩. 国内外谷子资源农艺、品质性状差异分析以及遗传多样性研究[J]. 作物学报, 2024, 50(10): 2468-2482. |
[9] | 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593. |
[10] | 王倩, 张立媛, 许月, 李海, 刘少雄, 薛亚鹏, 陆平, 王瑞云, 刘敏轩. 黍稷高基元EST-SSR标记开发及200份核心种质资源遗传多样性分析[J]. 作物学报, 2023, 49(8): 2308-2318. |
[11] | 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714. |
[12] | 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621. |
[13] | 李赢, 刘海翠, 石吕, 石晓旭, 韩笑, 刘建, 魏亚凤. 江苏裸大麦种质资源遗传多样性和群体结构分析[J]. 作物学报, 2023, 49(10): 2687-2697. |
[14] | 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241. |
[15] | 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925. |
|