欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (7): 1959-1968.doi: 10.3724/SP.J.1006.2025.41078

• 研究简报 • 上一篇    下一篇

免耕轮作对减氮小麦产量下降的补偿效果

武斌,曹永刚,胡发龙,殷文,樊志龙,范虹,柴强*   

  1. 省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州730070
  • 收稿日期:2024-11-12 修回日期:2025-01-23 接受日期:2025-01-23 出版日期:2025-07-12 网络出版日期:2025-02-08
  • 基金资助:
    本研究由国家自然科学基金项目(U21A20218)和甘肃省科技重大专项(24ZDNA008)资助。

Compensation effect of no-tillage rotation on yield reduction of nitrogen-reduced wheat

WU Bin,CAO Yong-Gang,HU Fa-Long,YIN Wen,FAN Zhi-Long,FAN Hong,CHAI Qiang*   

  1. State Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-11-12 Revised:2025-01-23 Accepted:2025-01-23 Published:2025-07-12 Published online:2025-02-08
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (U21A20218) and Gansu Provincial Science and Technology Major Project (24ZDNA008).

摘要:

针对河西绿洲灌区小麦生产连作普遍、氮肥施用量大等问题,开展轮作结合免耕对减量施氮小麦产量的影响研究,以期为优化小麦栽培管理提供依据。2022—2023年,通过裂区试验,重点研究前茬玉米及其处理方式(免耕留茬、翻耕)对减量施氮小麦干物质累积特性、产量及其构成要素的影响,试验主区为免耕轮作小麦(NTRW)、翻耕轮作小麦(CTRW)、翻耕连作小麦(CTCW) 3种种植方式,裂区设小麦225 kg hm-2 (常规,N1)180 kg hm-2 (减氮20%N2) 2个施氮水平。结果表明,轮作较连作可提高小麦籽粒产量及生物产量,且轮作能有效补偿氮肥减施引起的产量下降负效应,与免耕结合能进一步强化补偿效应。与CTCW相比,NTRWCTRW籽粒产量分别提高31.7%17.3%,生物产量分别提高15.3%10.3%;氮肥减施20%后籽粒产量及生物产量分别降低6.2%3.7%。但CTRWN2CTCWN1生物产量提高4.6%,籽粒产量差异不显著,且NTRWN2CTCWN1籽粒产量和生物产量分别提高21.9%11.6%。与CTCW相比,NTRWCTRW孕穗期-成熟期的CGR分别提高22.4%13.6%,全生育期Vmean分别提高15.0%10.2%;氮肥减施20%CGRVmean分别降低3.8%3.6%。但CTRWN2CTCWN1CGRVmean分别提高6.3%4.5%,且NTRWN2CTCWN1CGRVmean分别提高19.3%11.6%。与CTCW相比,NTRWCTRW穗粒数分别提高12.0%4.7%,收获指数分别提高14.4%6.5%,穗数分别提高5.0%8.0%;氮肥减施20%后穗粒数、收获指数、穗数分别降低2.5%2.9%2.3%。但CTRWN2CTCWN1的穗数提高4.3%,穗粒数、收获指数差异不显著,且NTRWN2CTCWN1穗粒数、收获指数分别提高10.3%9.3%,穗数差异不显著。因此,在河西绿洲灌区,免耕轮作小麦结合180 kg hm-2施氮量是该区适宜推广利用的小麦节氮增产有效措施。

关键词: 氮肥减施, 免耕, 轮作, 补偿, 产量

Abstract:

To address the challenges of continuous wheat cropping and excessive use of nitrogen fertilizer in the Hexi Oasis irrigation area, this study evaluated the effects of crop rotation combined with no-tillage on the yield and biomass of wheat under reduced nitrogen application. The goal was to provide a basis for optimizing wheat cultivation management. From 2022 to 2023, a split-plot experiment was conducted with three planting systems as the main plots: no-till rotational wheat (NTRW), tilled rotational wheat (CTRW), and tilled continuous wheat (CTCW). Two nitrogen application rates were assigned as subplots: 225 kg hm-2 (convention, N1) and 180 kg hm-2 (20% reduction, N2). The study focused on the effects of the preceding maize crop and treatments (no-tillage stubble, plowing) on dry matter accumulation, yield, and yield components of wheat under reduced nitrogen conditions. The results showed that crop rotation significantly increased grain yield and biomass compared to continuous cropping, and rotation effectively compensated for the yield reduction caused by nitrogen reduction. This compensatory effect was further enhanced when combined with no-tillage. Specifically, compared to CTCW, grain yield and biomass increased by 31.7% and 15.3% under NTRW and by 17.3% and 10.3% under CTRW, respectively. A 20% reduction in nitrogen application resulted in decreases in grain yield and biomass by 6.2% and 3.7%, respectively. However, the biomass of CTRWN2 was 4.6% higher than that of CTCWN1, with no significant difference in grain yield. Moreover, NTRWN2 achieved 21.9% and 11.6% higher grain yield and biomass, respectively, compared to CTCWN1. Compared to CTCW, the CGR of NTRW and CTRW during the booting to maturity stages increased by 22.4% and 13.6%, while Vmean across the entire growth period increased by 15.0% and 10.2%, respectively. A 20% nitrogen reduction caused CGR and Vmean to decrease by 3.8% and 3.6%, respectively. However, CTRWN2 exhibited 6.3% and 4.5% higher CGR and Vmean compared to CTCWN1, while NTRWN2 showed 19.3% and 11.6% higher CGR and Vmean, respectively, than CTCWN1. Compared to CTCW, kernel number per spike increased by 12.0% under NTRW and by 4.7% under CTRW, harvest index increased by 14.4% and 6.5%, and spike number increased by 5.0% and 8.0%, respectively. A 20% reduction in nitrogen resulted in decreases of 2.5%, 2.9%, and 2.3% in kernel number per spike, harvest index, and spike number, respectively. However, CTRWN2 exhibited a 4.3% higher spike number than CTCWN1, with no significant differences in kernel number per spike or harvest index. NTRWN2 achieved 10.3% and 9.3% higher kernel number per spike and harvest index, respectively, compared to CTCWN1, with no significant difference in spike number. In conclusion, no-tillage rotational wheat combined with a nitrogen application rate of 180 kg ha-1 is an effective, nitrogen-saving strategy for enhancing wheat yield in the Hexi Oasis irrigation area. This approach is suitable for widespread adoption and utilization in the region.

Key words: nitrogen fertilizer reduction, no-tillage, rotation, compensation, yield

[1] Lassaletta L, Billen G, Garnier J, Bouwman L, Velazquez E, Mueller N D, Gerber J S. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ Res Lett, 2016, 11: 095007.

[2] Wang C, Shen Y, Fang X T, Xiao S Q, Liu G Y, Wang L G, Gu B J, Zhou F, Chen D L, Tian H Q, et al. Reducing soil nitrogen losses from fertilizer use in global maize and wheat production. Nat Geosci, 2024, 17: 1008–1015.

[3] Legesse N, Wu S, Wang Y, Gan M Q, Liu P S, Huang Y, Xu H J, Hu H X, Ma Y H. Optimal fertilizer rates towards the improvement of nitrogen use efficiency and reduction of nitrogen export in paddy rice-wheat intensive farming. Front Environ Sci, 2023, 11: 1239785.

[4] 赵亚南, 宿敏敏, 吕阳, 况福虹, 陈轩敬, 张跃强, 石孝均. 减量施肥下小麦产量、肥料利用率和土壤养分平衡. 植物营养与肥料学报, 2017, 23: 864–873.

Zhao Y N, Su M M, Lü Y, Kuang F H, Chen X J, Zhang Y Q, Shi X J. Wheat yield, nutrient use efficiencies and soil nutrient balance under reduced fertilizer rate. J Plant Nutr Fert, 2017, 23: 864–873 (in Chinese with English abstract).

[5] 李凌云, 和爱玲, 杨焕焕, 刘高远, 郭中义, 杜君. 氮肥减施对黄褐土区小麦: 玉米轮作体系产量和氮素吸收利用的影响. 河南农业科学, 2023, 52(11): 21–32.

L L Y, He A L, Yang H H, Liu G Y, Guo Z Y, Du J. Effect of reduction of nitrogen fertilizer rate on yield and nitrogen utilization of wheat-maize rotation system in yellow-cinnamon soil area. J Henan Agric Sci, 2023, 52(11): 21–32 (in Chinese with English abstract).

[6] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响. 作物学报, 2025, 51: 207–220.

Zhang J, Hu C, Zhou Q H, Ren K M, Dong S Y, Liu A H, Wu J Z, Huang M, Li Y J. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat. Acta Agron Sin, 2025, 51: 207–220.

[7] Li H Y, Zhang Y H, Sun Y G, Liu P Z, Zhang Q, Wang X L, Wang R, Li J. Long-term effects of optimized fertilization, tillage and crop rotation on soil fertility, crop yield and economic profit on the Loess Plateau. Eur J Agron, 2023, 143: 126731.

[8] Renard D, Tilman D. National food production stabilized by crop diversity. Nature, 2019, 571: 257–260.

[9] Beillouin D, Ben-Ari T, Malézieux E, Seufert V, Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Chang Biol, 2021, 27: 4697–4710.

[10] Zhao J, Yang Y D, Zhang K, Jeong J, Zeng Z H, Zang H D. Does crop rotation yield more in China? A meta-analysis. Field Crops Res, 2020, 245: 107659.

[11] Wang J J, Qian R, Li J X, Wei F N, Ma Z M, Gao S S, Sun X, Zhang P, Cai T, Zhao X N, et al. Nitrogen reduction enhances crop productivity, decreases soil nitrogen loss and optimize its balance in wheat-maize cropping area of the Loess Plateau, China. Eur J Agron, 2024, 161: 127352.

[12] 李波, 赵财, 殷民兴, 王岩, 白春生, 曹悦, 杨莉莉. 轮作及减氮对绿洲灌区农田温室气体排放及土壤酶活性的影响.干旱地区农业研究, 2024, 42(4): 210–220.

    Li B, Zhao C, Yin M X, Wang Y, Bai C S, Cao Y, Yang L L. Effects of rotation and nitrogen reduction on greenhouse gas emissions and soil enzyme activities in oasis irrigation areas. Agric Res Arid Areas, 2024, 42(4): 210–220 (in Chinese with English abstract).

[13] 易琼, 张秀芝, 何萍, 杨利, 熊桂云. 氮肥减施对稻-麦轮作体系作物氮素吸收、利用和土壤氮素平衡的影响.植物营养与肥料学报, 2010, 16: 1069–1077.

   Yi Q, Zhang X Z, He P, Yang L, Xiong G Y. Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system. J Plant Nutr Fert, 2010, 16: 1069–1077 (in Chinese with English abstract).

[14] Su Y, Gabrielle B, Makowski D. A global dataset for crop production under conventional tillage and no tillage systems. Sci Data, 2021, 8: 33.

[15] Pittelkow C M, Linquist B A, Lundy M E, Liang X Q, van Groenigen K J, Lee J, van Gestel N, Six J, Venterea R T, van Kessel C. When does no-till yield more? A global meta-analysis. Field Crops Res, 2015, 183: 156–168.

[16] 沈晓琳, 王丽丽, 汪洋, 王明亮, 杨殿林, 赵建宁, 李刚, 轩清霞, 王亮. 保护性耕作对土壤团聚体、微生物及线虫群落的影响研究进展. 农业资源与环境学报, 2020, 37: 361–370.

Shen X L, Wang L L, Wang Y, Wang M L, Yang D L, Zhao J N, Li G, Xuan Q X, Wang L. Progress on the effects of conservation tillage on soil aggregates, microbes, and nematode communities. J Agric Resour Environ, 2020, 37: 361–370 (in Chinese with English abstract).

[17] Guo Y, Yin W, Hu F L, Fan Z L, Fan H, Zhao C, Yu A Z, Chai Q, Coulter J A. Reduced irrigation and nitrogen coupled with no-tillage and plastic mulching increase wheat yield in maize-wheat rotation in an arid region. Field Crops Res, 2019, 243: 107615.

[18] Rusinamhodzi L, Corbeels M, van Wijk M T, Rufino M C, Nyamangara J, Giller K E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron Sustain Dev, 2011, 31: 657–673.

[19] Veresoglou S D, Chen J J, Du X H, Fu Q, Geng Q L, Huang C Y, Huang X L, Hu N, Hun Y M, Li G C, et al. No tillage outperforms conventional tillage under arid conditions and following fertilization. Soil Ecol Lett, 2023, 5: 137–141.

[20] 王旭敏, 雒文鹤, 刘朋召, 张琦, 王瑞, 李军. 节水减氮对夏玉米干物质和氮素积累转运及产量的调控效应. 中国农业科学, 2021, 54: 3183–3197.

Wang X M, Luo W H, Liu P Z, Zhang Q, Wang R, Li J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci Agric Sin, 2021, 54: 3183–3197 (in Chinese with English abstract).

[21] 殷文, 陈桂平, 郭瑶, 樊志龙, 胡发龙, 范虹, 于爱忠, 赵财, 柴强. 春小麦秸秆还田对后茬玉米干物质积累及产量形成的调控效应. 中国生态农业学报(中英文), 2020, 28: 1210–1218.

Yin W, Chen G P, Guo Y, Fan Z L, Hu F L, Fan H, Yu A Z, Zhao C, Chai Q. Responses of dry matter accumulation and yield in a following maize crop to spring wheat straw returning. Chin J Eco-Agric, 2020, 28: 1210–1218 (in Chinese with English abstract).

[22] 李盼, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 西北灌区秸秆地膜带状覆盖对玉米产量性能的影响. 玉米科学, 2024, 32(1): 119–129.

Li P, Fan Z L, Hu F L, Fan H, He W, Yin W, Chen G P. Effect of strip mulching with straw and plastic film on yield capability for maize in northwest irrigation areas. J Maize Sci, 2024, 32(1): 119–129 (in Chinese with English abstract).

[23] 李玉英, 宋玉伟, 程序, 孙建好, 刘吉利, 李隆. 施氮对灌漠土春玉米干物质积累和氮素吸收利用动态的影响. 中国农业大学学报, 2009, 14(1): 61–65.

Li Y Y, Song Y W, Cheng X, Sun J H, Liu J L, Li L. Impact of nitrogen application on the dynamics of dry matter accumulation and nitrogen absorption and utilization of spring maize. J China Agric Univ, 2009, 14(1): 61–65 (in Chinese with English abstract).

[24] 高仁才, 陈松鹤, 马宏亮, 莫飘, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与氮肥减施对旱地冬小麦干物质积累、结实特性和产量的影响. 植物营养与肥料学报, 2022, 28: 426–439.

Gao R C, Chen S H, Ma H L, Mo P, Xiao Y, Zhang X, Fan G Q. Effects of straw mulching in autumn and reducing nitrogen application on dry matter accumulation, seed-setting characteristics and yield of dryland winter wheat. J Plant Nutr Fert, 2022, 28: 426–439 (in Chinese with English abstract).

[25] 张建军, 党翼, 赵刚, 王磊. 西北旱塬免耕的产量效应受降水特征和施肥显著影响. 植物营养与肥料学报, 2024, 30: 1694–1704.

Zhang J J, Dang Y, Zhao G, Wang L. Crop yield efficiency of no-tillage is significantly influenced by precipitation and fertilization in the dryland of Northwest China. J Plant Nutr Fert, 2024, 30: 1694–1704 (in Chinese with English abstract).

[26] 田肖肖, 吕慎强, 张亮, 李娜, 孙晓, 景建元, 王林权, 李厚华. 免耕覆盖有效提高夏玉米产量及水氮利用效率. 植物营养与肥料学报, 2017, 23: 606–614.

Tian X X, Lü S Q, Zhang L, Li N, Sun X, Jing J Y, Wang L Q, Li H H. No-tillage with straw mulching could increase grain yield, water and nitrogen use efficiencies of summer maize. J Plant Nutr Fert, 2017, 23: 606–614 (in Chinese with English abstract).

[27] Li Y, Chen J, Dong Q G, Feng H, Siddique K H M. Plastic mulching significantly improves soil enzyme and microbial activities without mitigating gaseous N emissions in winter wheat-summer maize rotations. Field Crops Res, 2022, 286: 108630.

[28] 周永杰, 谢军红, 李玲玲, 王林林, 罗珠珠, 王进斌. 长期少免耕与氮肥减量对全膜双垄沟播玉米产量及碳排放的调控作用. 中国农业科学, 2021, 54: 5054–5067.

Zhou Y J, Xie J H, Li L L, Wang L L, Luo Z Z, Wang J B. Effects of long-term reduce/zero tillage and nitrogen fertilizer reducing on maize yield and soil carbon emission under fully plastic mulched ridge-furrow planting system. Sci Agric Sin, 2021, 54: 5054–5067 (in Chinese with English abstract).

[29] 曹永刚, 徐龙龙, 柴强, 胡发龙, 殷文, 樊志龙, 王琦明, 赵财. 水氮减量条件下地膜玉米免耕轮作小麦的水分利用特征. 中国农业科学, 2023, 56: 2660–2672.

Cao Y G, Xu L L, Chai Q, Hu F L, Yin W, Fan Z L, Wang Q M, Zhao C. Water use characteristics of wheat rotated after no tillage plastic film mulching maize with reduced water and nitrogen. Sci Agric Sin, 2023, 56: 2660–2672 (in Chinese with English abstract).

[30] 吕晴晴, 何宁, 张永江, 迟宝杰, 张艳军, 张冬梅, 董合忠. 间作和轮作通过根冠互作调控作物产量形成的生理生态机制. 植物生理学报, 2023, 59: 1277–1290.

Lü Q Q, He N, Zhang Y J, Chi B J, Zhang Y J, Zhang D M, Dong H Z. Eco-physiological mechanism of crop yield formation regulated by intercropping and rotation through root-shoot interaction. Plant Physiol J, 2023, 59: 1277–1290 (in Chinese with English abstract).

[31] 银敏华, 李援农, 陈朋朋, 徐路全, 申胜龙, 王星垚. 基于Meta-analysis的中国北方地区免耕玉米产量效应研究. 中国农业科学, 2018, 51: 843–857.

Yin M H, Li Y N, Chen P P, Xu L Q, Shen S L, Wang X Y. Effect of No-tillage on maize yield in northern region of China–a meta-analysis. Sci Agric Sin, 2018, 51: 843–857(in Chinese with English abstract).

[32] Guo R Y, Miao W, Fan C Y, Li X G, Shi X Y, Li F M, Qin W. Exploring optimal nitrogen management for high yielding maize in arid areas via 15N-labeled technique. Geoderma, 2021, 382: 114711.

[33] Hu F L, Chai Q, Tan Y, Zhao C, Yu A Z, Fan Z L, Yin W, Fan H, He W. No-till with plastic film mulching combined with N fertilizer reduction improves water productivity of spring wheat. Farming System, 2023, 1: 100021

[34] Du C H, Liu Y ,Guo J R, Zhang W Q, Xu R L, Zhou B J, Xiao X C, Zhang Z, Gao Z Q, Zhang Y H, et al. Novel annual nitrogen management strategy improves crop yield and reduces greenhouse gas emissions in wheat-maize rotation systems under limited irrigation. J environ manag, 2024, 353: 120236.

[35] 丁锦峰, 黄正金, 袁毅, 朱新开, 李春燕, 彭永欣, 郭文善. -麦轮作下9000 kg hm–2产量水平扬麦20的群体质量及花后光合特征. 作物学报, 2015, 41: 1086–1097.

Ding J F, Huang Z J, Yuan Y, Zhu X K, Li C Y, Peng Y X, Guo W S. Population quality and photosynthetic characteristics after anthesis in Yangmai 20 with yield potential of 9000 kg hm–2 in rice–wheat rotation system. Acta Agron Sin, 2015, 41: 1086–1097 (in Chinese with English abstract).

[36] Zhang S X, Chen X W, Jia S X, Liang A Z, Zhang X P, Yang X M, Wei S C, Sun B J, Huang D D, Zhou G Y. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China. Soil Tillage Res, 2015, 154: 84–90.

[37] 王维, 韩清芳, 吕丽霞, 侯贤清, 张鹏, 贾志宽, 丁瑞霞, 聂俊峰. 不同耕作模式对旱地小麦旗叶光合特性及产量的影响. 干旱地区农业研究, 2013, 31(1): 20–26.

Wang W, Han Q F, Lü L X, Hou X Q, Zhang P, Jia Z K, Ding R X, Nie J F. Effects of different tillage patterns on photosynthetic characteristics and yield of dryland wheat. Agric Res Arid Areas, 2013, 31(1): 20–26 (in Chinese with English abstract).

[38] 李玲玲, 黄高宝, 秦舒浩, 于爱忠. 保护性耕作对绿洲灌区冬小麦产量形成的影响. 作物学报, 2011, 37: 514–520.

Li L L, Huang G B, Qin S H, Yu A Z. Effect of conservation tillage on dry matter accumulating and yield of winter wheat in oasis area. Acta Agron Sin, 2011, 37: 514–520 (in Chinese with English abstract).

[39] 吕梦, 黄明, 侯园泉, 歹英豪, 焦念元, 尹飞, 赵振欣, 付国占. 减氮配施有机肥对豫西旱区玉米产量及氮肥利用率的影响. 玉米科学, 2023, 31(4): 158–164.

Lü M, Huang M, Hou Y Q, Dai Y H, Jiao N Y, Yin F, Zhao Z X, Fu G Z. Effects of nitrogen reduction combined with organic fertilizer application on maize yield and nitrogen use efficiency in western Henan arid region. J Maize Sci, 2023, 31(4): 158–164 (in Chinese with English abstract).

[40] 葛丽丽, 赵财, 程宝钰, 殷民兴. 不同轮作模式和施氮水平对春小麦产量和品质的影响. 中国农学通报, 2023, 39(20): 6–13.

Ge L L, Zhao C, Cheng B Y, Yin M X. Effects of different crop rotation patterns and nitrogen application levels on yield and quality of spring wheat. Chin Agric Sci Bull, 2023, 39(20): 6–13 (in Chinese with English abstract).

[41] 李杰, 张洪程, 常勇, 龚金龙, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同种植方式水稻高产栽培条件下的光合物质生产特征研究. 作物学报, 2011, 37: 1235–1248.

Li J, Zhang H C, Chang Y, Gong J L, Guo Z H, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Characteristics of photosynthesis and matter production of rice with different planting methods under high-yielding cultivation condition. Acta Agron Sin, 2011, 37: 1235–1248 (in Chinese with English abstract).

[42] 马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. 中国农业科学, 2011, 44: 4159–4169.

Ma Q, Yang X, Li M, Li G Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin, 2011, 44: 4159–4169 (in Chinese with English abstract).

[43] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44: 1694–1703.

Zhao C, Wang Q M, Guo Y, Yin W, Fan Z L, Hu F L, Yu A Z, Chai Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under No-tillage with previous plastic mulched maize. Acta Agron Sin, 2018, 44: 1694–1703 (in Chinese with English abstract).

[44] 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷光合生产特征及产量的调控效应. 作物学报, 2022, 48: 2840–2852.

Wang Q, Xu Y L, Yan P, Dong H S, Zhang W, Lu L, Dong Z Q. Effects of polyaspartic acid-chitosan on photosynthesis characteristics and yield in spring foxtail millet. Acta Agron Sin, 2022, 48: 2840–2852 (in Chinese with English abstract).

[45] 赵涛, 高小丽, 高扬, 张东旗, 高金锋, 王鹏科, 杨璞. 轮作及连作条件下荞麦功能叶片衰老特性的比较. 西北农业学报, 2015, 24: 87–94.

Zhao T, Gao X L, Gao Y, Zhang D Q, Gao J F, Wang P K, Yang P. Characteristics of buckwheats leaf senescence under rotation and continuous cropping. Acta Agric Boreali-Occident Sin, 2015, 24: 87–94 (in Chinese with English abstract).

[46] 曹议丹, 钱麟君, 霍俊豪, 邹晓霞. 优化管理对小麦-玉米轮作系统植株干物质积累、转运与产量的影响. 山东农业科学, 2024, 56(5): 59–68.

Cao Y D, Qian L J, Huo J H, Zou X X. Effects of optimized managements on accumulation and translocation of dry matter and crop yield in wheat-maize rotation system. Shandong Agric Sci, 2024, 56(5): 59–68 (in Chinese with English abstract).

[47] 张文霞, 李盼, 殷文, 陈桂平, 樊志龙, 胡发龙, 范虹, 何蔚. 麦后复种绿肥及配施不同水平氮肥对小麦产量、品质及氮素利用的影响. 中国农业科学, 2023, 56: 3317–3330.

Zhang W X, Li P, Yin W, Chen G P, Fan Z L, Hu F L, Fan H, He W. Effects of multiple green manure after wheat combined with different levels of nitrogen fertilization on wheat yield, grain quality, and nitrogen utilization. Sci Agric Sin, 2023, 56: 3317–3330 (in Chinese with English abstract).

[48] 韩柏岳, 任爱霞, Hafeez Noor, 古丽刚, 孙敏. 施氮量对旱地小麦花后糖代谢及籽粒产量的影响. 山东农业科学, 2024, 56(4): 81–86.

Han B Y, Ren A X, Noor H, Gu L G, Sun M. Effects of nitrogen application rate on sugar metabolism after anthesis and grain yield of dryland wheat. Shandong Agric Sci, 2024, 56(4): 81–86 (in Chinese with English abstract).

[49] 董明, 张谦, 王燕, 王树林, 冯国艺, 梁青龙, 祁虹, 赵贵元. --油菜宽带轮作提升作物产量和光能利用率. 中国生态农业学报(中英文), 2024, 32: 1159–1169.

Dong M, Zhang Q, Wang Y, Wang S L, Feng G Y, Liang Q L, Qi H, Zhao G Y. Broadband crop rotation of cotton-grain-rape improved crop yield and light utilization efficiency. Chin J Eco-Agric, 2024, 32: 1159–1169 (in Chinese with English abstract).

[1] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[2] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[3] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[4] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[5] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[6] 董伟进, 张亚封, 李启云, 路杨, 张正坤, 隋丽. CO2浓度升高条件下球孢白僵菌定殖对玉米生长及产量的影响[J]. 作物学报, 2025, 51(7): 1874-1886.
[7] 陈如雪, 孙丽芳, 张芯源, 牟海萌, 张永新, 袁丽雪, 彭仕乐, 王壮壮, 王永华. 秸秆还田与微生物菌剂配施对冬小麦旗叶碳氮代谢及产量形成的影响[J]. 作物学报, 2025, 51(7): 1901-1913.
[8] 李子翔, 黄绒, 王志超, 李鸿雁, 谭俊行, 程宇, 杜雪竹, 盛锋. 聚-γ-谷氨酸对直播稻抗倒伏性的影响[J]. 作物学报, 2025, 51(6): 1654-1664.
[9] 崔鑫, 谷贺贺, 宋毅, 张哲, 刘诗诗, 陆志峰, 任涛, 鲁剑巍. 钾肥用量对油菜产量和钾素积累及因冻害减产程度的影响[J]. 作物学报, 2025, 51(6): 1629-1642.
[10] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[11] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[12] 赵刚, 张建军, 党翼, 樊廷录, 王磊, 周刚, 王淑英, 李兴茂, 倪胜利, 米文博, 周旭姣, 程万莉, 李尚中. 黄土旱塬区秸秆覆盖量对不同降雨年型土壤水温效应和冬小麦产量的影响[J]. 作物学报, 2025, 51(6): 1643-1653.
[13] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
[14] 王东, 王森, 尚丽, 冯浩伟, 张永巧, 崔佳鸣, 李爽, 章佳聪, 车欢. 补灌对黄土高原半湿润区冬小麦产量和水分利用效率的影响[J]. 作物学报, 2025, 51(5): 1312-1325.
[15] 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .