欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2358-2370.doi: 10.3724/SP.J.1006.2025.54043

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于茶树液相功能芯片的白化茶树资源遗传多样性分析

梅飘1**(), 刘丁丁1**(), 叶圆圆1, 张晨禹1, 丁诗琦1, 李亚奇2, 王培鑫1, 梅菊芬2,*(), 马春雷1,*()   

  1. 1中国农业科学院茶叶研究所 / 茶树种质创新与资源利用全国重点实验室, 浙江杭州 310008
    2无锡市茶叶品种研究所有限公司 / 江苏省茶树种质资源圃, 江苏无锡 214000
  • 收稿日期:2025-03-31 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-11
  • 通讯作者: *马春雷, E-mail: malei220@tricaas.com; 梅菊芬, E-mail: meijufen@sina.com
  • 作者简介:梅飘, E-mail: 2635718002@qq.com;刘丁丁, E-mail: liudingding@tricaas.com
    **同等贡献
  • 基金资助:
    本研究由浙江省自然科学基金重点项目(LZ24C160003);江苏省无锡市太湖之光科技攻关项目(N20231002);浙江省农业(茶树)品种选育重大科技专项子课题项目(2021C02067-6);中国农业科学院茶叶研究所基本科研业务费项目(1610212022009)

Genetic diversity analysis of domestic albino tea germplasm resources based on the tea plant liquid phase functional chip

MEI Piao1**(), LIU Ding-Ding1**(), YE Yuan-Yuan1, ZHANG Chen-Yu1, DING Shi-Qi1, LI Ya-Qi2, WANG Pei-Xin1, MEI Ju-Fen2,*(), MA Chun-Lei1,*()   

  1. 1Tea Research Institute, Chinese Academy of Agricultural Sciences / National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hangzhou 310008, Zhejiang, China
    2Wuxi Tea Breeding Research Co., Ltd. / Tea Tree Germplasm Resource Nursery of Jiangsu Province, Wuxi 214000, Jiangsu, China
  • Received:2025-03-31 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-11
  • Contact: *E-mail: malei220@tricaas.com; E-mail: meijufen@sina.com
  • About author:**Contributed equally to this work
  • Supported by:
    Zhejiang Provincial Natural Science Foundation of China(LZ24C160003);Taihu Light Science and Technology Research Program of Wuxi(N20231002);Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding-Tea Plant(2021C02067-6);Fundamental Research Fund for Tea Research Institute of the Chinese Academy of Agricultural Sciences(1610212022009)

摘要:

本研究基于自主开发的茶树高密度液相功能芯片对我国主要白化茶树资源进行了基因型检测, 根据遗传相似度结果保留了61份核心样本用于遗传多样性分析。通过进化树和群体遗传结构分析发现, 这些白化茶树资源主要可分为3个类群, 不同类群的分布与样本地理来源和育种背景密切相关。进一步的PCA分析结果表明, 我国的白化茶树资源主要来自浙江省, 其遗传多样性水平同我国保存的丰富种质资源相比, 整体上并不高, 表明白化茶树在育种改良方面还具有较大潜力。随后研究组对30份典型白化茶树资源品质成分进行鉴定发现, 30份白化茶树资源的咖啡碱含量介于2.26%~4.17%, 平均值为3.51%; 氨基酸总含量分布在1.85%~7.54%之间, 平均为4.33%; 儿茶素总量分布范围为8.63%~16.68%, 平均值为13.28%。相比于普通绿色品种, 大部分白化茶树资源具有高氨基酸、低生物碱、低儿茶素的特征, 是制作高品质绿茶的良好原料。综上, 本研究初步阐明了我国主要白化茶树种质资源的遗传结构和遗传多样性水平, 并验证了茶树液相功能芯片在资源和品种鉴定中的可行性, 为白化茶树资源的创新利用和遗传改良提供了理论依据。

关键词: 白化茶树, 液相芯片, 基因分型, 遗传多样性, 生化成分

Abstract:

In this study, a self-developed high-density liquid-phase functional chip for tea plants was employed to genotype the major albino tea germplasms in China. Based on genetic similarity analyses, 61 core accessions were selected for genetic diversity assessment. Phylogenetic tree construction and population structure analysis revealed that these albino tea resources could be classified into three main groups, with their distribution closely associated with geographical origins and breeding histories. Principal Component Analysis further indicated that most albino tea accessions in China originate from Zhejiang province. Compared with the rich genetic resources of conventional tea germplasms in China, albino tea plants exhibit relatively limited genetic diversity, underscoring the need and potential for genetic improvement through breeding. Additionally, the quality components of 30 representative albino tea accessions were analyzed. Caffeine content ranged from 2.26% to 4.17%, with an average of 3.51%; total amino acid content varied from 1.85% to 7.54%, with a mean of 4.33%; and total catechin content ranged from 8.63% to 16.68%, averaging 13.28%. Compared to conventional green tea cultivars, most albino tea accessions exhibited higher amino acid levels and lower alkaloid and catechin contents, making them promising raw materials for the production of high-quality green tea. In conclusion, this study provides a comprehensive analysis of the genetic structure and diversity of major albino tea germplasms in China and demonstrates the effectiveness of the liquid-phase functional chip in tea germplasm and cultivar identification. These findings lay a theoretical foundation for the innovative utilization and genetic improvement of albino tea resources.

Key words: albino tea cultivars, liquid chip, genotyping, genetic diversity, biochemical components

表1

71份白化茶树样品的编号、名称和来源"

编号ID 资源名称Resources 来源Origin 编号ID 资源名称Resources 来源Origin
BJG 白鸡冠 Baijiguan 福建 Fujian HYB 黄叶宝 Huangyebao 浙江 Zhejiang
HJJu 黄金菊 Huangjinju 江西 Jiangxi CP260 CP260 浙江 Zhejiang
JF1H 金凤1号 Jinfeng 1 四川 Sichuan TTBC 天台白茶 Tiantaibaicha 浙江 Zhejiang
JF2H 金凤2号 Jinfeng 2 四川 Sichuan YXBC 越乡白茶 Yuexiangbaicha 浙江 Zhejiang
Y1 YNBH01 云南 Yunnan ZC211 中茶211 Zhongcha 211 浙江 Zhejiang
Y2 YNBH02 云南 Yunnan ZH1H 中黄1号 Zhonghuang 1 浙江 Zhejiang
Y3 YNBH03 云南 Yunnan ZH2H 中黄2号 Zhonghuang 2 浙江 Zhejiang
Y4 YNBH04 云南 Yunnan ZH3H 中黄3号 Zhonghuang 3 浙江 Zhejiang
Y5 YNBH05 云南 Yunnan ZH4H 中黄4号 Zhonghuang 4 浙江 Zhejiang
BHD 白蝴蝶 Baihudie 浙江 Zhejiang BY1H 白叶1号 Baiye 1 浙江 Zhejiang
DLHC 大龙黄茶 Dalong Huangcha 浙江 Zhejiang TSH 泰上黄 Taishanghuang 浙江 Zhejiang
HB1H 杭白1号 Hangbai 1 浙江 Zhejiang ZCB 早春白 Zaochunbai 浙江 Zhejiang
HB2H 杭白2号 Hangbai 2 浙江 Zhejiang LJHC 龙井黄茶 Longjin Huangcha 浙江 Zhejiang
HJXY 黄金雪芽 Huangjinxueya 浙江 Zhejiang QNX 千年雪 Qiannianxue 浙江 Zhejiang
HYJ3H 黄金芽3号 Huangjinya 3 浙江 Zhejiang BJY 白金芽 Baijinya 浙江 Zhejiang
YSBC 迎霜白茶Yingshuang Baicha 浙江 Zhejiang XXY 小雪芽 Xiaoxueya 浙江Zhejiang
JYMT 金玉满堂Jinyu Mantang 浙江 Zhejiang JXB 金香白 Jinxiangbai 浙江 Zhejiang
RXYH 瑞雪1号 Ruixue 1 浙江 Zhejiang YYB 圆叶白 Yuanyebai 浙江 Zhejiang
HJH 黄金毫 Huangjinhao 浙江 Zhejiang JB 极白 Jibai 浙江 Zhejiang
ZJH 醉金红 Zuijinhong 浙江 Zhejiang YJX 郁金香 Yujinxiang 浙江 Zhejiang
JB1H 景白1号 Jingbai 1 浙江 Zhejiang AJHC 安吉黄茶 Anji Huangcha 浙江 Zhejiang
JB2H 景白2号 Jingbai 2 浙江 Zhejiang SZYH 嵊州越黄 Shengzhou Yuehuang 浙江 Zhejiang
HJJ 黄金甲 Huangjinjia 浙江 Zhejiang HJYe 黄金叶 Huangjinye 浙江 Zhejiang
SB1H 嵊白1号 Shengbai 1 浙江 Zhejiang ZB1H 中白1号 Zhongbai 1 浙江 Zhejiang
LB1H 丽白1号 Libai 1 浙江 Zhejiang LDHC 莲都黄茶 Liandu Huangcha 浙江 Zhejiang
LH3H 丽黄3号 Lihuang 3 浙江 Zhejiang LH1H 丽黄1号 Lihuang 1 浙江 Zhejiang
YHY 玉皇芽 Yuhuangya 浙江 Zhejiang WNZH 乌牛早黄 Wuniu Zaohuang 浙江 Zhejiang
HJY 黄金芽 Huangjinya 浙江 Zhejiang WNB 乌牛白 Wuniubai 浙江 Zhejiang
HPX 黄袍香 Huangpaoxiang 浙江 Zhejiang JB3H 景白3号 Jingbai 3 浙江 Zhejiang
HT 黄汤 Huangtang 浙江 Zhejiang WNH 乌牛黄 Wuniuhuang 浙江 Zhejiang
NYBC 奶油白茶 Naiyou Baicha 浙江 Zhejiang ZNH 早奶黄 Zaonaihuang 浙江 Zhejiang
SJNB 水晶奶白 Shuijing Naibai 浙江 Zhejiang ZNB 早奶白 Zaonaibai 浙江 Zhejiang
SB2H 嵊白2号 Shengbai 2 浙江 Zhejiang TZJH 特早极黄 Tezao Jihuang 浙江 Zhejiang
SJB 水晶白 Shuijingbai 浙江 Zhejiang LOH1H 龙虎1号 Longhu 1 浙江 Zhejiang
XYNB 小叶奶白 Xiaoye Naibai 浙江 Zhejiang BPP2H 北坪棚2号 Beipingpeng 2 未知 Unknown
TTB2H 梯田白2号 Titianbai 2 浙江 Zhejiang

图1

部分白化茶树资源的新梢 缩写同表1。"

图2

40K茶树液相功能芯片位点评估结果 A: SNP密度图; B: 位点测序深度; C: 位点MAF分布统计情况; D: SNP位置注释结果。"

图3

GO和KEGG通路富集结果 A: GO富集分析结果; B: KEGG富集结果。MF: 分子功能; BP: 生物学过程; CC: 细胞组分。"

图4

白化茶树资源间遗传相似度分析 缩写同表1。"

图5

白化茶树资源的遗传多样性分析 缩写同表1。A: PIC值统计结果; B: 61份白化茶树种质资源的系统发育树; C: 61份白化茶树种质资源的群体遗传结构。"

图6

我国主要白化茶树资源与3272份主要产茶省份收集的茶树种质资源的主成分分析图 红色部分代表白化茶树种质资源, 灰色部分代表3272份国家茶树种质资源圃保存的茶树种质资源。"

图7

部分白化茶树资源的品质成分分析 图A: 主要生化成分总含量; 图B: 主要氨基酸组分含量; 图C: 主要儿茶素组分含量; 图D: 主要生物碱含量。C: 儿茶素; EC: 表儿茶素; ECG: 表儿茶素没食子酸酯; EGC: 表没食子儿茶素; EGCG: 表儿茶素没食子酸酯; GC: 没食子儿茶素; CAF: 咖啡碱; TB: 可可碱。"

[1] 许继业. 代表性白化品种绿茶、红茶和白茶品质化学成分研究. 中国农业科学院硕士学位论文, 北京, 2023.
Xu J Y. Study on the Quality Chemical Constituents of Green Tea, Black Tea and White Tea Made by Representative Albino Varieties. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2023 (in Chinese with English abstract).
[2] 童海燕, 杨平. 安吉白茶: “三茶”统筹发展共走富裕路. 中国农村科技, 2023, (5): 4-7.
Tong H Y, Yang P. Anji white tea: coordinated development of “three teas” jointly paves the path to prosperity. China Rural Sci Technol, 2023, (5): 4-7 (in Chinese).
[3] 李娜娜. 新梢白化茶树生理生化特征及白化分子机理研究. 浙江大学博士学位论文, 浙江杭州, 2015.
Li N N. Physiological, Biochemical Characteristics and Molecular Albinism of the Albino Tea (Camellia sinensis) Plant. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2015 (in Chinese with English abstract).
[4] 韩奥迪. 黄 化茶树品种‘茗冠茶’多茶类风味及特征品质研究. 福建农林大学硕士学位论文, 福建福州, 2023.
Han A D. Study on the Multi-tea Flavour and Characteristic Quality of the Albino Tea Tree Variety ‘Ming Guan Tea’. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2023 (in Chinese with English abstract).
[5] 汪瑛琦. 遮荫和温度对光敏白化茶树‘黄金芽’叶色影响及其潜在机制. 浙江大学博士学位论文, 浙江杭州, 2023.
Wang Y Q. Effect of Shading and Temperature on the Leaf Color of the Light-sensitive Albino Tea Plant ‘Huangjinya’ and Its Potential Mechanism. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2023 (in Chinese with English abstract).
[6] 郝国双, 郑志平, 马海军, 叶银祥, 郭明敏, 成浩, 阮丽. 白化茶树新品系: 中白4号. 中国茶叶, 2019, 41(3): 11-13.
Hao G S, Zheng Z P, Ma H J, Ye Y X, Guo M M, Cheng H, Ruan L. A new albino tea tree cultivar ‘Zhongbai 4’. China Tea, 2019, 41(3): 11-13 (in Chinese).
[7] 唐子贻. 陕西引进的9个白化茶树品种综合评价. 西北农林科技大学硕士学位论文, 陕西杨凌, 2023.
Tang Z Y. Comprehensive Evaluation of 9 Albino Tea Cultivars Introduced in Shaanxi Province. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[8] 董玉琛. 生物多样性及作物遗传多样性检测. 作物品种资源, 1995, (3): 1-5.
Dong Y C. Detection of biodiversity and crop genetic diversity. China Seed Ind, 1995, (3): 1-5 (in Chinese).
[9] 李娜娜, 王璐, 郝心愿, 向云攀, 王波, 蔡琼梅, 丁长庆, 曾建明, 杨亚军, 王新超. 2022年茶树遗传育种研究进展. 中国茶叶, 2023, 45(5): 6-11.
Li N N, Wang L, Hao X Y, Xiang Y P, Wang B, Cai Q M, Ding C Q, Zeng J M, Yang Y J, Wang X C. Research progress of genetics and breeding of tea plants in 2022. China Tea, 2023, 45(5): 6-11 (in Chinese with English abstract).
[10] 王让剑, 杨军, 孔祥瑞, 陈常颂, 余文权. 茶树分子标记辅助育种研究进展. 茶叶学报, 2017, 58(4): 157-163.
Wang R J, Yang J, Kong X R, Chen C S, Yu W Q. Advances in molecular marker assisted breeding of Camellia sinensis. Acta Tea Sin, 2017, 58(4): 157-163 (in Chinese with English abstract).
[11] 黄丹娟, 马建强, 陈亮. 茶树DNA分子指纹图谱研究进展. 茶叶科学, 2015, 35: 513-519.
Huang D J, Ma J Q, Chen L. Research progress on DNA molecular fingerprinting of tea plant (Camellia sinensis). J Tea Sci, 2015, 35: 513-519 (in Chinese with English abstract).
[12] 刘浩然, 张晨禹, 龚洋, 叶圆圆, 陈杰丹, 陈亮, 刘丁丁, 马春雷. 基于全基因组重测序的白化茶树mSNP标记开发及验证. 茶叶科学, 2023, 43(1): 27-39.
Liu H R, Zhang C Y, Gong Y, Ye Y Y, Chen J D, Chen L, Liu D D, Ma C L. Development and application of albino tea plant mSNP molecular markers based on genome-wide resequencing. J Tea Sci, 2023, 43(1): 27-39 (in Chinese with English abstract).
[13] 黎巷汝. 基于简化基因组SNP标记的茶树气候适应性分化研究. 福建农林大学硕士学位论文, 福建福州, 2023.
Li X R. Analysis of Climatic Adaptive Differentiation of Camellia sinensis by Simplified Genomic SNP. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2023 (in Chinese with English abstract).
[14] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 等. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, et al. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001
[15] Shaibu A S, Ibrahim H, Miko Z L, Mohammed I B, Mohammed S G, Yusuf H L, Kamara A Y, Omoigui L O, Karikari B. Assessment of the genetic structure and diversity of soybean (Glycine max L.) germplasm using diversity array technology and single nucleotide polymorphism markers. Plants, 2021, 11: 68.
[16] 雷梦林, 刘霞, 王艳珍, 崔国庆, 穆志新, 刘龙龙, 李欣, 逯腊虎, 李晓丽, 张晓军. 基于55K SNP芯片的山西冬小麦种质资源遗传多样性分析. 中国农业科学, 2024, 57: 1845-1856.
doi: 10.3864/j.issn.0578-1752.2024.10.001
Lei M L, Liu X, Wang Y Z, Cui G Q, Mu Z X, Liu L L, Li X, Lu L H, Li X L, Zhang X J. Genetic diversity analysis of winter wheat germplasm resources in Shanxi province based on 55K SNP array. Sci Agric Sin, 2024, 57: 1845-1856 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.10.001
[17] Guo Z F, Yang Q N, Huang F F, Zheng H J, Sang Z Q, Xu Y F, Zhang C, Wu K S, Tao J J, Prasanna B M, et al. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun, 2021, 2: 100230.
[18] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406-425.
doi: 10.1093/oxfordjournals.molbev.a040454 pmid: 3447015
[19] Panagiotou O A, Evangelou E, Ioannidis J P A. Genome-wide significant associations for variants with minor allele frequency of 5% or less: an overview: a HuGE review. Am J Epidemiol, 2010, 172: 869-889.
doi: 10.1093/aje/kwq234 pmid: 20876667
[20] Wei K, Wang X C, Hao X Y, Qian Y H, Li X, Xu L Y, Ruan L, Wang Y X, Zhang Y Z, Bai P X, et al. Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis. Plant Biotechnol J, 2022, 20: 414-416.
[21] Chen J D, He W Z, Chen S, Chen Q Y, Ma J Q, Jin J Q, Ma C L, Moon D G, Ercisli S, Yao M Z, et al. TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. Front Plant Sci, 2022, 13: 1056891.
[22] Chen S, Wang P J, Kong W L, Chai K, Zhang S C, Yu J X, Wang Y B, Jiang M W, Lei W L, Chen X, et al. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. Nat Plants, 2023, 9: 1986-1999.
[23] 姜燕华, 张成才, 成浩. 茶树良种场不同品种的SSR鉴定研究. 茶叶学报, 2016, 57(3): 105-112.
Jiang Y H, Zhang C C, Cheng H. SSR cultivar identifications of premium teas. Acta Tea Sin, 2016, 57(3): 105-112 (in Chinese with English abstract).
[24] Zhang J, Yang J J, Zhang L K, Luo J, Zhao H, Zhang J N, Wen C L. A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep, 2020, 10: 5623.
doi: 10.1038/s41598-020-62518-6 pmid: 32221398
[25] 李力, 罗盛财, 王飞权, 黎巷汝, 冯花, 石玉涛, 叶江华, 刘菲, 赵佳林, 李舒莹, 等. 基于GBS-SNP的武夷茶树遗传分析及标记开发. 茶叶科学, 2023, 43: 310-324.
Li L, Luo S C, Wang F Q, Li X R, Feng H, Shi Y T, Ye J H, Liu F, Zhao J L, Li S Y, et al. Genetic analysis and marker development for Wuyi tea (Camellia sinensis, Synonym: Thea bohea L.) based on GBS-SNP. J Tea Sci, 2023, 43: 310-324 (in Chinese with English abstract).
[26] 李兰英, 尧渝, 龚雪蛟, 刘东娜, 罗晟, 胥亚琼, 高远, 罗凡. 茶树叶色黄化型新品种金凤1号选育研究. 安徽农业科学, 2022, 50(19): 20-24.
Li L Y, Yao Y, Gong X J, Liu D N, Luo S, Xu Y Q, Gao Y, Luo F. Breeding report of chlorosis-specific new tea plant variety Jinfeng 1. J Anhui Agric Sci, 2022, 50(19): 20-24 (in Chinese with English abstract).
[27] 李兰英, 胥亚琼, 刘东娜, 尧渝, 龚雪蛟, 罗晟, 罗凡. 茶树新品种‘金凤2号’. 园艺学报, 2022, 49(增刊2): 283-284.
Li L Y, Xu Y Q, Liu D N, Yao Y, Gong X J, Luo S, Luo F. A new Camellia sinensis cultivar ‘Jinfeng 2’. Acta Hortic Sin, 2022, 49(S2): 283-284 (in Chinese with English abstract).
[28] 王开荣, 张国平, 李明, 林伟平, 方乾勇, 杜颖颖, 俞茂昌, 梁月荣. 新梢白化系列茶树新品系性状比较研究. 茶叶, 2006, 32(1): 22-24.
Wang K R, Zhang G P, Li M, Lin W P, Fang Q Y, Du Y Y, Yu M C, Liang Y R. Comparative study on new tea cultivars with albino shoots. J Tea, 2006, 32(1): 22-24 (in Chinese with English abstract).
[29] 王开荣, 梁月荣, 李明, 张龙杰. 白化茶骨干亲本及其家系种质性状分析. 茶叶, 2015, 41(3): 130-132.
Wang K R, Liang Y R, Li M, Zhang L J. Backbone parents of albino tea plants and their germplasm traits. J Tea, 2015, 41(3): 130-132 (in Chinese with English abstract).
[30] Zhang X T, Chen S, Shi L Q, Gong D P, Zhang S C, Zhao Q, Zhan D L, Vasseur L, Wang Y B, Yu J X, et al. Haplotype-resolved genome assembly provides insights in to evolutionary history of the tea plant Camellia sinensis. Nat Genet, 2021, 53: 1250-1259.
[31] 张红秀, 汪灵燚, 孙杨炀, 何远庆, 徐丽荣, 刘升锐. 茶树育种研究进展. 茶叶学报, 2024, 65(5): 1-11.
Zhang H X, Wang L Y, Sun Y Y, He Y Q, Xu L R, Liu S R. Research progress on tea breeding. Acta Tea Sin, 2024, 65(5): 1-11 (in Chinese with English abstract).
[32] 黄飞毅, 陈宇宏, 刘伟, 丁玎, 雷雨, 段继华, 邓晶, 康彦凯, 罗意, 张秀军, 等. 湖南莽山茶树种质资源调查与品质性状的遗传多样性分析. 植物遗传资源学报, 2021, 22: 328-337.
doi: 10.13430/j.cnki.jpgr.20200807001
Huang F Y, Chen Y H, Liu W, Ding D, Lei Y, Duan J H, Deng J, Kang Y K, Luo Y, Zhang X J, et al. Germplasm resources and genetic diversity of quality characters of tea plants from Mangshan in Hunan. J Plant Genet Resour, 2021, 22: 328-337 (in Chinese with English abstract).
[33] 吕毅, 郭雯飞, 倪捷儿, 杨贤强. 茶氨酸的生理作用及合成. 茶叶科学, 2003, 23(1): 1-5.
Lyu Y, Guo W F, Ni J E, Yang X Q. The bioactivities and synthesis of theanine. J Tea Sci, 2003, 23(1): 1-5 (in Chinese with English abstract).
[34] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展. 中国农业科学, 2009, 42: 2899-2908.
Xia T, Gao L P. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Sci Agric Sin, 2009, 42: 2899-2908 (in Chinese with English abstract)
[35] 张建勇, 江和源, 崔宏春, 江用文, 王斌, 黄永东. 茶叶功能成分与新型食品开发. 湖南农业科学, 2011, (3): 104-108.
Zhang J Y, Jiang H Y, Cui H C, Jiang Y W, Wang B, Huang Y D. The functional components of tea and the exploitation of new type food. Hunan Agric Sci, 2011, (3): 104-108 (in Chinese with English abstract).
[36] 卢翠, 沈程文. 茶树白化变异研究进展. 茶叶科学, 2016, 36: 445-451.
Lu C, Shen C W. Research progress of albino tea plant (Camellia sinensis (L.) O. Kuntze). J Tea Sci, 2016, 36: 445-451 (in Chinese with English abstract).
[37] 穆兵, 艾仄宜, 唐君, 梅菊芬, 杨亦扬. 不同叶色茶树品种春季新梢生理生化特性研究. 江苏农业科学, 2021, 49(18): 143-149.
Mu B, Ai Z Y, Tang J, Mei J F, Yang Y Y. Study on physiological and biochemical characteristics of spring shoots of different tea cultivars with different leaf colors. Jiangsu Agric Sci, 2021, 49(18): 143-149 (in Chinese with English abstract).
[38] Li J L, Xiao Y Y, Zhou X C, Liao Y Y, Wu S H, Chen J M, Qian J J, Yan Y, Tang J C, Zeng L T. Characterizing the cultivar-specific mechanisms underlying the accumulation of quality-related metabolites in specific Chinese tea (Camellia sinensis) germplasms to diversify tea products. Food Res Int, 2022, 161: 111824.
[39] 周颖, 褚飞洋, 仇方方, 冯德品, 黄少奇, 黄声东. 宜昌茶树品种生化成分分析. 蚕桑茶叶通讯, 2024, (6): 27-30.
Zhou Y, Chu F Y, Qiu F F, Feng D P, Huang S Q, Huang S D. Analysis of biochemical components of tea varieties in Yichang. Newsl Seric Tea, 2024, (6): 27-30 (in Chinese).
[1] 王天译, 杨绣娟, 赵佳佳, 郝宇琼, 郑兴卫, 武棒棒, 李晓华, 郝水源, 郑军. 山西小麦醇溶蛋白多样性及其对面粉品质效应研究[J]. 作物学报, 2025, 51(7): 1784-1800.
[2] 张红岩, 敏玉霞, 滕长才, 彭小星, 陈志凯, 周仙莉, 娄树宝, 刘玉皎. 利用130K液相芯片分析中国蚕豆种质资源遗传多样性[J]. 作物学报, 2024, 50(8): 1989-2000.
[3] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[4] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[5] 苏一钧, 赵路宽, 唐芬, 戴习彬, 孙亚伟, 周志林, 刘亚菊, 曹清河. 378份甘薯引进种遗传多样性及群体结构分析[J]. 作物学报, 2023, 49(9): 2582-2593.
[6] 王倩, 张立媛, 许月, 李海, 刘少雄, 薛亚鹏, 陆平, 王瑞云, 刘敏轩. 黍稷高基元EST-SSR标记开发及200份核心种质资源遗传多样性分析[J]. 作物学报, 2023, 49(8): 2308-2318.
[7] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
[8] 李赢, 刘海翠, 石吕, 石晓旭, 韩笑, 刘建, 魏亚凤. 江苏裸大麦种质资源遗传多样性和群体结构分析[J]. 作物学报, 2023, 49(10): 2687-2697.
[9] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[10] 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925.
[11] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[12] 田红丽, 赵紫薇, 杨扬, 范亚明, 班秀丽, 易红梅, 杨洪明, 刘少荣, 高玉倩, 刘亚维, 王凤格. 290个吉林省审定玉米品种SSR-DNA指纹构建及遗传多样性分析[J]. 作物学报, 2022, 48(12): 2994-3003.
[13] 刘玉玲, 张红岩, 滕长才, 周仙莉, 侯万伟. 蚕豆SSR标记遗传多样性及与淀粉含量的关联分析[J]. 作物学报, 2022, 48(11): 2786-2796.
[14] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[15] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!