欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2831-2447.doi: 10.3724/SP.J.1006.2024.41012

• 耕作栽培·生理生化 • 上一篇    下一篇

播量对缩行带状滴灌燕麦抗倒伏能力和产量的影响

杨志雪1,2(), 刘景辉1,2,*(), 米俊珍1,2,*(), 孙婧1,2, 赵宝平1,2, 任长忠3, 田露4, 郑成忠5   

  1. 1内蒙古农业大学农学院, 内蒙古呼和浩特 010000
    2内蒙古高校燕麦工程研究中心 / 内蒙古自治区燕麦工程实验室 / 内蒙古农业大学杂粮产业协同创新中心, 内蒙古呼和浩特 010000
    3白城市农业科学院, 吉林白城 137000
    4内蒙古自治区农牧业科学院, 内蒙古呼和浩特 010000
    5乌兰察布市农林科学研究所, 内蒙古乌兰察布 012000
  • 收稿日期:2024-02-21 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-15
  • 通讯作者: *刘景辉, E-mail: cauljh @163.com; 米俊珍, E-mail: imaumjz@aliyun.com
  • 作者简介:E-mail: 18847161833@163.com
  • 基金资助:
    燕麦全产业链科技创新团队项目(BR22-12-05);内蒙古重大专项(2021ZD0002);内蒙古自治区燕麦藜麦产业技术创新推广体系, 财政部和农业农村部国家现代农业产业技术体系建设专项(燕麦荞麦, CARS-07);内蒙古“草原英才”燕麦种质资源利用创新人才团队和内蒙古自治区燕麦工程实验室能力建设项目(BR221023)

Effect of seeding rates on lodging resistance and yield of oat under reduced strip drip irrigation

YANG Zhi-Xue1,2(), LIU Jing-Hui1,2,*(), MI Jun-Zhen1,2,*(), SUN Jing1,2, ZHAO Bao-Ping1,2, REN Chang-Zhong3, TIAN Lu4, ZHENG Cheng-Zhong5   

  1. 1School of Agriculture, Inner Mongolia Agricultural University, Hohhot 010000, Inner Mongolia, China
    2Inner Mongolia University Oat Engineering Research Center / Inner Mongolia Autonomous Region Oat Engineering Laboratory / Inner Mongolia Agricultural University Multi-grain Industry Collaborative Innovation Center, Hohhot 010000, Inner Mongolia, China
    3Baicheng City Agricultural Science Research Institute of Jilin Province, Baicheng 137000, Jilin, China
    4Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010000, Inner Mongolia, China
    5Ulanqab City Institute of Agriculture and Forestry Science, Ulanqab 012000, Inner Mongolia, China
  • Received:2024-02-21 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-15
  • Contact: *E-mail: cauljh @163.com; E-mail: imaumjz@aliyun.com
  • Supported by:
    Oat Whole industry Chain Science and Technology Innovation Team Project(BR22-12-05);Inner Mongolia Major Project(2021ZD0002);Inner Mongolia Autonomous Region Oat Quinoa Industry Technology Innovation and PromotionSystem, the China Agriculture Research System of MOF and MARA(Oat Buckwheat, CARS-07);Inner Mongolia ‘Grassland Talents’ Oat Germplasm Resource Utilization Innovative Talent Team and Inner Mongolia Autonomous Region Supported by Capacity Building Project of Oat Engineering Laboratory(BR221023)

摘要:

为明确缩行带状滴灌下播量对燕麦抗倒伏能力和产量的影响, 于2022—2023年以抗倒伏品种“坝莜1号”和易倒伏品种“燕科2号”为试验材料, 分别设90 kg hm-2 (S1)、120 kg hm-2 (S2)、150 kg hm-2 (S3)、180 kg hm-2 (S4)和210 kg hm-2 (S5) 5个播量, 研究其对燕麦茎秆基部理化特性、抗倒伏能力、产量及构成因素的影响。结果表明, 燕麦株高和重心高度随播量增加呈先升高后降低趋势, “坝莜1号”在S3处理下最高, 较其他处理株分别增加了2.63%~13.36%和1.49%~12.30%; “燕科2号”在S2处理下最高, 较其他处理分别增加了2.52%~15.20%、4.67%~21.21%。两燕麦茎秆基部第二节间长随播量增加而增加, S1较其他处理降低了10.86%~96.39%, 第二节间粗、干重、充实度及抗折力随播量增加而减小, S1较其他处理分别增加了1.76%~32.81%、9.08%~125.89%、26.88%~292.64%、6.48%~129.70%。随着播量的增加, 燕麦茎秆基部纤维素、可溶性糖、C/N、钾、硅含量逐渐降低, 氮含量相反。与其他处理相比较, S1处理各化学组分含量分别增加了5.81%~74.10%、1.62%~24.34%、4.78%~55.41%、1.90%~107.78%、2.00%~17.37%, 氮含量降低了2.95%~22.66%。倒伏率和倒伏级别在不同年份和品种间表现不同: 2022年坝莜1号和燕科2号分别在S4~S5和S3~S5播量下发生倒伏, 2023年两燕麦均发生倒伏, 且倒伏率和倒伏分级随播量增加而增加。穗粒数和千粒重随播量增加而降低, 但籽粒产量呈先升高后降低趋势, “坝莜1号”和“燕科2号”分别在150 kg hm-2和120 kg hm-2下籽粒产量最高。相关性分析表明, 燕麦茎秆基部节间形态特征和化学组分含量显著影响茎秆基部抗折力, 从而影响田间倒伏率和级别, 可作为评价燕麦抗倒伏能力的关键指标。综合考虑抗倒伏能力与籽粒产量, 坝莜1号最佳播量为150 kg hm-2, 燕科2号最佳播量为120 kg hm-2

关键词: 茎秆基部形态, 茎秆基部化学组分含量, 抗折力, 倒伏率, 产量

Abstract:

This study aimed to determine the effects of seeding rate under reduced strip irrigation on the lodging resistance and yield of oat. Five seeding rates—90 kg hm-2, 120 kg hm-2, 150 kg hm-2, 180 kg hm-2, and 210 kg hm-2 were tested on the lodging-resistant variety ‘Bayou 1’ and the easily lodging variety ‘Yanke 2’ from 2022 to 2023. We investigated the effects on physicochemical properties, lodging resistance, yield, and constituent factors of the oat stem base. The results showed that the plant height and center of gravity height of oat initially increased and then decreased with an increasing seeding rate. For ‘Bayou 1’, the highest plant height and center of gravity height were observed under the 150 kg hm-2 treatment, increasing by 2.63%-13.36% and 1.49%-12.30% compared to other treatments, respectively. For ‘Yanke 2’, the highest values were under the 120 kg hm-2 treatment, with increases of 2.52%-15.20% and 4.67%-21.21%, respectively. The second internode length of both oat varieties increased with seeding rate, while the course, dry weight, fullness, and bending resistance of the second internode decreased. Compared with other treatments, the 90 kg hm-2 treatment showed increases of 1.76%-32.81% in coarse, 9.08%-125.89% in dry weight, 26.88%-292.64% in fullness, and 6.48%-129.70% in bending resistance. With higher seeding rates, the contents of cellulose, soluble sugar, C/N ratio, potassium, and silicon in the oat stem base decreased, while nitrogen content increased. Under the 90 kg hm-2 treatment, these chemical components increased by 5.81%-74.10%, 1.62%-24.34%, 4.78%-55.41%, 1.90%-107.78%, and 2.00%-17.37%, respectively, whereas nitrogen content decreased by 2.95%-22.66%. Lodging rates and grades varied by year and variety. Lodging occurred in ‘Bayou 1’ and ‘Yanke 2’ under seeding rates of 180-210 kg hm-2 and 150-210 kg hm-2, respectively, with both varieties experiencing increased lodging in 2023 as seeding rates rose. The number of grains per ear and 1000-grain weight decreased with higher seeding rates, but grain yield initially increased and then decreased. The highest grain yields for ‘Bayou 1’ and ‘Yanke 2’ were achieved at 150 kg hm-2 and 120 kg hm-2, respectively. Correlation analysis indicated that the morphological characteristics and chemical composition of the stem base significantly affected its folding resistance, subsequently influencing lodging rate and grade. These factors can be key indices for evaluating oat lodging resistance. Considering lodging resistance and grain yield, the optimal seeding rates for ‘Bayou 1’ and ‘Yanke 2’ were 150 kg hm-2 and 120 kg hm-2, respectively.

Key words: stem base morphology, the content of chemical components in stem base, bending resistance, lodging rate, yield

图1

燕麦生育期内降雨量和平均气温"

表1

试验地土壤基础养分"

年份
Year
pH 有机质
Organic
matter
(g kg-1)
全氮
Total
nitrogen
(g kg-1)
全磷
Total
phosphorus
(mg kg-1)
全钾
Total
potassium
(g kg-1)
碱解氮
Alkali hydrolyzed
nitrogen
(mg kg-1)
速效磷
Available
phosphorus
(mg kg-1)
速效钾
Available
potassium
(mg kg-1)
2022 8.01 27.60 2.02 535.67 18.70 121.33 5.13 241.67
2023 7.96 28.35 2.98 528.56 16.88 134.25 6.06 237.23

图2

缩行带状滴灌燕麦种植模式示意图"

表2

不同播量对燕麦株高、重心高度的影响"

年份 Year 品种 Variety 播量 Seeding rate 株高Plant height (cm) 重心高度 Height of center of gravity (cm)
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 104.36±0.46 ef 104.05±0.56 d 102.74±2.87 f 53.51±3.91 de 54.85±0.72 de 53.07±1.86 cd
S2 105.51±1.95 de 108.90±0.80 c 107.92±1.02 e 58.04±1.40 abc 58.51±0.99 b 56.62±1.25 bc
S3 110.79±3.29 c 112.59±0.77 b 112.29±2.36 d 59.53±0.93 ab 59.90±0.70 b 59.27±1.23 b
S4 106.62±0.29 de 107.70±0.61 c 106.96±1.24 e 56.69±0.53 bc 57.55±1.25 bc 56.87±2.25 bc
S5 95.82±1.30 g 103.85±2.00 d 103.63±0.20 f 52.44±0.70 e 52.68±2.58 e 53.82±1.66 cd
YK2 S1 115.08±2.44 b 115.32±2.31 b 115.23±0.89 c 53.30±0.42 de 58.50±1.74 b 56.54±0.34 bc
S2 118.46±1.58 a 121.97±1.80 a 121.89±0.55 a 60.26±0.63 a 62.68±1.40 a 68.02±3.55 a
S3 110.72±2.80 c 121.20±1.23 a 119.52±1.88 ab 56.09±0.46 cd 58.29±1.16 b 58.08±3.03 b
S4 108.41±1.72 cd 120.44±2.09 a 117.23±0.21 bc 53.29±1.06 de 55.40±0.92 cd 53.56±3.11 cd
S5 101.84±0.89 f 114.52±1.81 b 115.49±1.84 c 55.26±2.34 cde 54.84±0.31 de 52.41±1.14 d
2023 BY1 S1 105.82±3.58 d 109.93±2.36 cd 106.31±3.89 d 46.17±0.87 bc 48.85±1.32 ef 47.62±1.62 f
S2 110.26±2.92 abc 112.05±0.69 abc 110.01±3.16 bc 47.70±1.56 bc 52.02±0.76 bcd 50.19±0.96 e
S3 113.98±2.29 a 114.13±2.02 ab 115.94±0.76 a 49.09±0.53 ab 54.45±2.02 a 55.89±1.50 ab
S4 107.61±0.90 cd 107.62±1.63 de 101.09±3.12 e 49.08±1.19 ab 50.25±0.81 de 51.27±1.03 de
S5 104.58±2.47 d 104.51±3.57 e 97.94±2.42 e 45.98±1.35 c 48.04±1.12 f 46.47±0.58 f
YK2 S1 108.43±2.08 bcd 111.13±0.82 bc 111.71±3.91 ab 47.60±1.26 bc 52.00±0.29 bcd 52.64±1.33 cd
S2 112.78±0.52 a 115.05±0.39 a 116.33±1.50 a 50.33±1.37 a 53.94±1.62 ab 57.57±1.30 a
S3 112.25±1.96 ab 112.42±0.60 abc 113.14±1.10 ab 49.05±0.41 ab 52.98±1.09 abc 55.50±0.39 b
S4 105.34±2.47 d 105.85±2.47 e 108.71±1.94 bc 47.86±1.47 bc 51.18±0.54 cd 54.02±0.02 bc
S5 104.15±1.93 d 104.30±1.24 e 105.90±1.80 d 47.72±1.14 bc 47.84±1.18 f 51.11±0.87 de
方差分析ANOVA
V ** ** ** NS * **
S ** ** ** ** ** **
V×S ** NS ** ** ** **

表3

播量对不同燕麦茎秆基部节间长、粗的影响"

年份Year 品种Variety 播量 Seeding rate 第二节间长 Second internode length (cm) 第二节间粗 Second internode diameter (mm)
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 8.98±0.31 e 8.45±0.65 e 9.82±0.67 g 4.36±0.11 a 4.60±0.03 a 4.81±0.07 a
S2 9.07±0.72 e 11.34±1.22 d 10.84±0.35 fg 4.23±0.12 ab 4.47±0.12 ab 4.67±0.10 a
S3 10.71±1.05 d 12.42±0.94 d 12.29±0.17 de 4.13±0.14 b 4.24±0.14 cd 4.38±0.11 b
S4 14.18±0.52 ab 15.73±0.67 abc 14.69±0.45 bc 3.88±0.05 c 3.90±0.09 e 4.08±0.14 cd
S5 15.12±0.25 a 16.45±0.79 a 15.51±0.60 ab 3.68±0.04 d 3.68±0.14 f 3.78±0.12 e
YK2 S1 10.63±0.51 d 11.94±0.34 d 11.83±0.29 ef 4.25±0.04 ab 4.42±0.09 abc 4.39±0.18 b
S2 12.19±0.47 c 14.50±0.82 c 13.00±0.95 de 4.20±0.04 ab 4.38±0.08 bc 4.35±0.11 b
S3 12.44±0.32 c 14.99±0.10 bc 13.41±0.40 cd 4.10±0.01 b 4.10±0.06 d 4.21±0.18 bc
S4 13.80±0.47 b 16.06±0.20 ab 14.90±1.12 ab 3.82±0.08 cd 3.91±0.13 e 3.90±0.06 de
S5 15.04±1.37 a 16.86±1.06 a 16.13±1.50 a 3.73±0.18 cd 3.69±0.13 f 3.69±0.13 e
2023 BY1 S1 5.80±0.61 e 6.71±0.99 e 6.20±0.17 g 4.33±0.17 a 4.34±0.02 a 4.14±0.24 a
S2 7.00±0.74 e 8.13±0.97 de 9.02±0.62 de 4.31±0.11 a 3.95±0.07 b 3.92±0.14 ab
S3 8.54±0.35 cd 10.92±0.82 bc 10.30±0.69 cd 4.29±0.07 a 3.61±0.11 cd 3.77±0.15 bc
S4 9.69±0.63 bc 12.91±0.88 a 12.12±0.98 b 3.91±0.07 c 3.39±0.25 de 3.46±0.20 d
S5 10.15±0.24 b 13.30±0.84 a 13.21±1.13 b 3.78±0.12 cd 3.20±0.09 ef 2.99±0.12 ef
YK2 S1 6.50±0.55 e 7.00±0.95 de 7.22±0.07 fg 4.26±0.12 a 4.04±0.02 b 4.04±0.08 ab
S2 8.28±1.38 d 8.78±1.54 d 8.62±1.03 ef 4.15±0.07 ab 3.94±0.12 b 3.88±0.13 abc
S3 8.61±0.46 cd 10.57±0.60 c 11.64±0.64 bc 3.99±0.13 bc 3.68±0.14 c 3.62±0.26 cd
S4 10.74±0.60 ab 12.46±1.56 ab 12.76±1.64 b 3.79±0.12 cd 3.38±0.22 de 3.17±0.09 e
S5 11.83±0.52 a 14.11±0.60 a 15.78±0.50 a 3.64±0.22 d 3.03±0.07 f 2.82±0.05 f
方差分析ANOVA
V ** ** ** ** * **
S ** ** ** ** ** **
V×S * * NS NS NS NS

表4

播量对不同燕麦茎秆基部节间干重、充实度的影响"

年份
Year
品种
Variety
播量
Seeding rate
第二节间干重 Second internode dry weight (g) 第二节间充实度 Second internode fullness (mg cm-1)
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 0.37±0.20 a 0.29±0.02 a 0.27±0.02 ab 25.56±3.47 a 31.01±2.36 a 27.18±2.13 a
S2 0.27±0.02 ab 0.24±0.03 abc 0.27±0.05 ab 20.42±0.35 bc 21.22±4.09 bc 24.65±3.73 a
S3 0.23±0.03 b 0.22±0.01 cde 0.22±0.01 bc 16.27±2.51 cde 17.86±1.29 cd 17.99±0.46 b
S4 0.21±0.01 b 0.18±0.01 de 0.20±0.03 c 11.87±1.15 ef 11.44±0.53 f 13.46±1.62 c
S5 0.20±0.02 b 0.12±0.02 fg 0.13±0.03 e 10.78±1.20 f 7.27±1.07 gh 8.26±2.14 d
YK2 S1 0.28±0.05 ab 0.28±0.04 ab 0.30±0.04 a 23.22±4.90 ab 23.11±3.32 b 25.12±2.95 a
S2 0.26±0.02 ab 0.23±0.07 bcd 0.20±0.01 c 17.82±2.20 cd 15.75±3.75 de 15.16±0.86 bc
S3 0.23±0.05 b 0.19±0.02 cde 0.19±0.02 cd 15.57±2.92 de 12.38±1.32 ef 13.83±1.16 c
S4 0.22±0.01 b 0.17±0.00 ef 0.14±0.03 de 13.50±0.53 def 10.59±0.08 fg 9.51±2.53 d
S5 0.19±0.03 b 0.10±0.02 g 0.11±0.02 e 11.01±1.49 f 6.18±0.87 h 6.63±0.94 d
2023 BY1 S1 0.15±0.06 a 0.20±0.01 a 0.19±0.01 a 24.94±2.08 a 30.86±5.80 a 31.28±0.70 a
S2 0.13±0.01 a 0.19±0.01 ab 0.18±0.01 ab 22.85±2.59 a 22.93±1.49 bc 23.00±3.89 c
S3 0.12±0.02 a 0.17±0.01 bc 0.17±0.00 b 15.31±1.10 bc 15.82±0.94 de 16.28±1.10 d
S4 0.11±0.04 a 0.16±0.01 c 0.15±0.03 c 11.98±1.63 cde 12.16±0.70 ef 11.87±0.98 e
S5 0.10±0.01 a 0.13±0.01 d 0.13±0.01 cd 10.12±1.11 de 9.86±0.45 f 9.87±1.50 e
YK2 S1 0.12±0.02 a 0.18±0.02 ab 0.19±0.01 a 16.84±3.96 b 26.46±3.17 b 26.93±1.09 b
S2 0.11±0.03 a 0.17±0.02 bc 0.19±0.02 ab 13.64±3.87 bcd 19.35±0.91 cd 21.62±3.66 c
S3 0.11±0.03 a 0.16±0.01 c 0.18±0.01 ab 13.45±2.79 bcd 14.99±0.63 e 15.46±1.41 d
S4 0.11±0.02 a 0.15±0.02 cd 0.14±0.01 c 10.49±1.66 de 11.96±1.97 ef 10.92±0.35 e
S5 0.10±0.01 a 0.13±0.01 d 0.11±0.01 d 8.15±1.05 e 9.22±0.70 f 7.12±0.38 f
方差分析ANOVA
V NS * ** * ** **
S * ** ** ** ** **
V×S NS NS NS NS ** NS

表5

品种、播量及互作效应对抗折力影响的方差分析"

变异来源 Source of variation 抽穗期 Heading stage 灌浆期 Filling stage 成熟期 Maturity stage
V NS ** **
S ** ** **
V×S NS NS **

图3

不同播量对燕麦抗折力的影响 不同小写字母表示0.05概率水平差异显著。缩写和处理同表2。"

表6

品种、播量及互作效应对纤维素含量影响的方差分析"

变异来源 Source of variation 抽穗期Heading stage 灌浆期 Filling stage 成熟期 Maturity stage
V NS ** **
S ** ** **
V×S NS NS NS

图4

不同播量对燕麦茎秆基部第二节间纤维素含量的影响 不同小写字母表示0.05概率水平差异显著。缩写和处理同表2。"

表7

不同播量对燕麦可溶性糖含量、氮含量的影响"

年份Year 品种Variety 播量Seeding rate 可溶性糖含量Soluble sugar content 氮含量 Nitrogen content
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 7.16±0.29 a 6.21±0.09 a 6.73±0.27 a 0.69±0.02 c 0.67±0.01 e 0.67±0.01 d
S2 6.47±0.13 b 6.07±0.10 b 6.21±0.14 b 0.74±0.06 bc 0.67±0.01 e 0.68±0.02 cd
S3 5.92±0.15 cde 6.03±0.04 bc 5.65±0.09 c 0.76±0.03 bc 0.72±0.01 d 0.69±0.02 cd
S4 5.69±0.17 de 5.81±0.19 efg 5.60±0.05 c 0.77±0.05 bc 0.75±0.02 c 0.70±0.02 bcd
S5 5.63±0.31 de 5.70±0.06 fg 5.47±0.05 c 0.78±0.06 bc 0.79±0.03 b 0.71±0.00 bc
YK2 S1 5.94±0.04 cd 5.98±0.08 bcd 6.08±0.18 b 0.76±0.04 bc 0.66±0.02 e 0.67±0.01 d
S2 5.92±0.09 cde 5.92±0.05 bcde 6.06±0.12 b 0.79±0.02 b 0.71±0.01 d 0.69±0.02 cd
S3 6.10±0.23 c 5.88±0.04 cde 5.64±0.04 c 0.80±0.03 b 0.75±0.01 c 0.71±0.03 bc
S4 5.79±0.07 cde 5.84±0.03 def 5.56±0.02 c 0.82±0.04 b 0.79±0.01 b 0.73±0.03 ab
S5 5.60±0.06 e 5.66±0.05 g 5.46±0.22 c 0.93±0.12 a 0.83±0.01 a 0.76±0.02 a
2023 BY1 S1 6.41±0.04 a 6.53±0.05 a 6.30±0.06 a 0.75±0.04 h 0.80±0.00 f 0.82±0.02 bcd
S2 6.06±0.02 b 6.22±0.08 b 6.23±0.02 a 0.91±0.06 g 0.87±0.06 e 0.85±0.06 abcd
S3 5.79±0.06 e 5.92±0.01 c 6.00±0.03 b 0.96±0.07 fg 0.91±0.03 de 0.90±0.02 abc
S4 5.57±0.05 f 5.67±0.05 e 5.63±0.02 d 1.00±0.03 def 0.95±0.04 cd 0.91±0.05 ab
S5 5.27±0.07 g 5.48±0.06 f 5.41±0.03 e 1.03±0.02 cde 0.98±0.06 bc 0.92±0.04 ab
YK2 S1 6.03±0.03 bc 5.91±0.01 c 6.04±0.14 b 0.97±0.04 efg 0.88±0.01 e 0.77±0.01 d
S2 5.97±0.06 cd 5.81±0.02 d 5.86±0.06 c 1.05±0.03 cd 1.00±0.05 abc 0.80±0.06 cd
S3 5.90±0.03 d 5.73±0.03 e 5.67±0.08 d 1.08±0.02 bc 1.03±0.01 ab 0.85±0.01 abcd
S4 5.62±0.02 f 5.36±0.04 g 5.38±0.03 e 1.12±0.01 b 1.03±0.02 ab 0.90±0.14 abc
S5 5.31±0.02 g 5.17±0.02 h 5.16±0.03 f 1.18±0.04 a 1.05±0.03 a 0.95±0.02 a
方差分析ANOVA
V ** ** ** ** ** NS
S ** ** ** ** ** **
V×S ** ** ** NS NS NS

表8

品种、播量及互作效应对C/N影响的方差分析"

变异来源 Source of variation 抽穗期Heading stage 灌浆期 Filling stage 成熟期 Maturity stage
V ** ** **
S ** ** **
V×S ** NS NS

图5

不同播量对燕麦茎秆基部第二节间C/N的影响 不同小写字母表示0.05概率水平差异显著。缩写和处理同表2。"

表9

不同播量对燕麦茎秆基部钾、硅含量的影响"

年份Year 品种Variety 播量Seeding rate K含量K content Si含量Si content
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
2022 BY1 S1 3.97±0.21 a 3.87±0.21 a 3.03±0.32 a 3.70±0.09 a 3.90±0.02 a 3.81±0.05 a
S2 3.83±0.49 ab 3.50±0.10 bc 2.97±0.21 ab 3.61±0.04 b 3.48±0.05 b 3.69±0.03 b
S3 3.33±0.15 bcde 3.40±0.00 bc 2.63±0.06 bcd 3.60±0.03 b 3.42±0.02 bc 3.68±0.02 b
S4 2.93±0.32 e 3.27±0.06 c 2.37±0.25 de 3.33±0.03 cd 3.22±0.03 e 3.57±0.05 c
S5 2.80±0.17 e 2.33±0.12 e 2.07±0.12 ef 3.28±0.02 de 3.09±0.05 g 3.21±0.02 f
YK2 S1 3.70±0.30 abc 3.60±0.26 ab 2.90±0.30 abc 3.38±0.03 c 3.35±0.03 cd 3.55±0.03 c
S2 3.57±0.06 abcd 3.23±0.25 cd 2.57±0.21 cd 3.33±0.01 cd 3.32±0.07 d 3.47±0.01 d
S3 3.17±0.32 cde 2.97±0.15 d 2.30±0.10 def 3.23±0.02 e 3.15±0.01 f 3.35±0.03 e
S4 3.10±0.46 de 2.50±0.10 e 1.97±0.06 f 3.12±0.03 f 3.08±0.04 g 3.18±0.04 f
S5 2.83±0.06 e 1.77±0.15 f 1.57±0.12 g 3.01±0.05 g 3.00±0.02 h 2.97±0.05 g
2023 BY1 S1 3.18±0.23 a 2.70±0.14 a 2.42±0.05 a 3.71±0.13 a 3.92±0.04 a 3.97±0.04 a
S2 3.17±0.17 a 2.56±0.06 abc 2.07±0.19 bc 3.41±0.06 bc 3.83±0.05 b 3.84±0.12 b
S3 2.64±0.10 bcd 2.51±0.03 bc 1.83±0.08 de 3.54±0.03 ab 3.76±0.06 b 3.76±0.05 bc
S4 2.46±0.04 de 2.51±0.06 bcd 1.73±0.10 ef 3.29±0.03 cd 3.63±0.03 cd 3.73±0.03 cd
S5 2.32±0.07 e 2.36±0.11 d 1.29±0.22 g 3.23±0.09 de 3.61±0.02 cd 3.66±0.02 d
YK2 S1 3.11±0.05 a 2.63±0.04 ab 2.22±0.13 ab 3.55±0.05 ab 3.79±0.07 b 3.77±0.06 bc
S2 2.85±0.26 b 2.41±0.11 cd 1.96±0.04 cd 3.42±0.07 bc 3.68±0.04 c 3.69±0.03 cd
S3 2.75±0.10 bc 2.06±0.03 e 1.63±0.07 ef 3.31±0.01 cd 3.56±0.04 d 3.64±0.07 d
S4 2.56±0.12 cde 1.93±0.07 ef 1.54±0.10 f 3.15±0.03 de 3.48±0.03 e 3.46±0.04 e
S5 2.39±0.13 de 1.79±0.12 f 0.96±0.08 h 3.09±0.23 e 3.45±0.01 e 3.38±0.06 e
方差分析ANOVA
V NS ** ** ** ** **
S ** ** ** ** ** **
V×S NS ** NS NS ** **

表10

不同播量对燕麦田间实际倒伏情况及倒伏级别的影响"

年份
Year
品种
Variety
播种量
Seeding rate
倒伏时期
Stage of lodging
倒伏面积
Lodging area (%)
倒伏分级
Lodging grade
2022 BY1 S1 0±0 f 0
S2 0±0 f 0
S3 0±0 f 0
S4 成熟期Maturity stage 13.29±13.29 e 1
S5 成熟期Maturity stage 23.75±23.75 d 2
YK2 S1 0±0 f 0
S2 0±0 f 0
S3 灌浆期Filling stage 27.29±27.29 c 2
S4 灌浆期Filling stage 53.36±53.36 b 3
S5 灌浆期Filling stage 82.31±82.31 a 3
2023 BY1 S1 灌浆期Filling stage 13.33±2.89 e 1
S2 灌浆期Filling stage 25.00±5.00 d 2
S3 灌浆期Filling stage 33.33±2.89 d 2
S4 灌浆期Filling stage 51.67±7.64 c 3
S5 灌浆期Filling stage 68.33±2.89 b 3
YK2 S1 灌浆期Filling stage 23.33±2.89 d 2
S2 灌浆期Filling stage 30.00±10.00 d 2
2023 YK2 S3 抽穗期Heading stage 60.00±10.00 bc 3
S4 抽穗期Heading stage 88.33±2.89 a 3
S5 抽穗期Heading stage 95.00±0.00 a 3
方差分析ANOVA
V **
S **
V×S **

表11

不同播量对燕麦产量及构成因素的影响"

年份
Year
品种
Variety
播量
Seeding rate
收获穗数
Spike
(×104 hm-2)
穗粒数
Kernel number
per spike
千粒重
Thousand-grain weight (g)
籽粒产量
Grain yield
(kg hm-2)
2022 BY1 S1 481.33±32.02 de 84.11±1.92 ab 23.01±0.23 a 4100.02±173.21 bcd
S2 530.67±21.20 bcd 77.22±11.65 bc 20.57±0.15 b 4266.69±57.74 b
S3 546.00±22.72 bc 69.33±3.67 cd 20.30±0.42 b 4500.02±100.00 a
S4 651.67±11.93 a 60.11±10.12 de 19.33±0.57 c 4166.69±152.75 bc
S5 679.67±31.79 a 49.34±7.64 e 18.47±0.42 d 4033.35±57.74 cde
YK2 S1 412.67±8.08 f 94.78±7.67 a 22.43±0.37 a 3953.85±68.62 de
S2 483.33±28.59 de 79.78±3.87 bc 20.88±0.37 b 4143.02±60.44 bc
S3 453.67±41.96 ef 76.34±4.51 bc 20.71±0.47 b 4035.85±23.42 cde
S4 513.67±47.82 cd 67.00±9.68 cd 19.47±0.30 c 3886.29±22.01 e
S5 570.67±20.03 b 57.22±2.80 de 17.96±0.32 d 3703.89±123.33 f
2023 BY1 S1 434.67±27.06 c 80.22±5.09 b 23.73±0.95 a 4148.79±92.50 cd
S2 489.33±80.65 bc 69.67±3.00 c 22.79±0.99 a 4219.89±101.61 bc
S3 533.67±13.58 ab 64.67±6.84 c 22.16±1.87 ab 4387.92±39.51 a
S4 542.67±3.79 ab 52.56±5.50 d 20.14±0.43 cd 4043.75±72.81 d
S5 592.67±39.17 a 47.56±1.17 d 19.16±0.87 de 3867.82±122.71 e
YK2 S1 484.00±12.12 bc 90.00±3.33 a 21.11±0.54 bc 4133.85±68.62 cd
2023 YK2 S2 546.67±30.62 ab 86.34±5.13 ab 20.21±1.18 cd 4363.02±60.44 ab
S3 511.33±11.15 b 67.56±3.36 c 19.84±0.36 cd 4025.85±23.42 bc
S4 537.00±22.61 ab 47.78±4.17 d 18.65±0.22 de 3816.29±22.01 d
S5 592.67±16.86 a 45.00±8.74 d 17.71±0.36 e 3653.89±123.33 e
方差分析ANOVA
V ** ** ** **
S ** ** ** **
V×S * NS NS *

表12

不同播量下燕麦茎秆理化特性与抗折力、倒伏率和产量的相关性分析"

指标
Item
抗折力
Stem bending resistance
倒伏率
Lodging rate
籽粒产量
Grain yield
株高Plant height 0.22 -0.23 0.22
重心高度Height of center of gravity -0.06 -0.51** 0.29*
基部第二节间长The second internode length -0.76** 0.32* -0.51**
基部第二节间粗The second internode stem diameter 0.54** -0.82** 0.43**
基部第二节间干重The second internode dry weight 0.77** -0.66** 0.40**
基部第二节间充实度The second internode fullness 0.27* -0.72** 0.40**
纤维素含量 Cellulose content 0.50** -0.51** 0.40**
可溶性糖Soluble sugar content 0.62** -0.72** 0.43**
氮含量N content -0.13 0.74** -0.14
碳氮比 C/N 0.32* -0.82** 0.25
钾含量K content 0.24 -0.71** 0.30*
硅含量Si content 0.75** -0.40** 0.56**
抗折力Stem bending resistance -0.48** 0.57**
倒伏率 Lodging rate -0.48** -0.58**
[1] 任长忠, 闫金婷, 董锐, 胡新中. 燕麦营养成分、功能特性及其产品的研究进展. 食品工业科技, 2022, 43: 438-446.
Ren C Z, Yan J T, Dong R, Hu X Z. Research progress on oat nutrients, functional properties and related products. Sci Technol Food Ind, 2022, 43: 438-446 (in Chinese with English abstract).
[2] Stewart D, McDougall G. Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. British J Nutr, 2014, 112: S50-S57.
[3] 高阳, 赵力兴, 朱铁霞, 王琳, 高凯. 施氮量对科尔沁沙地燕麦生物量及物质分配规律的影响. 草地学报, 2018, 26: 1168-1172.
doi: 10.11733/j.issn.1007-0435.2018.05.019
Gao Y, Zhao L X, Zhu T X, Wang L, Gao K. Effects of nitrogen application rate on Avena sativa biomass and substance distribution in Horqin sandy land. Acta Agrest Sin, 2018, 26: 1168-1172 (in Chinese with English abstract).
[4] 周罕觅, 孙旗立, 牛晓丽, 陈佳庚, 马林爽, 苏裕民, 李纪琛. 滴灌节水减氮对苹果幼树生长与光合特征的影响. 灌溉排水学报, 2023, 42: 49-57.
Zhou H M, Sun Q L, Niu X L, Chen J G, Ma L S, Su Y M, Li J C. Effect of saving-water drip irrigation and nitrogen reduction on growth and photosynthetic characteristics of young apple tree. J Irrig Drain, 2023, 42: 49-57 (in Chinese with English abstract).
[5] 南铭, 赵桂琴, 李晶, 柴继宽, 刘彦明. 不同燕麦品种茎秆形态特征与抗倒伏性的关系. 草地学报, 2018, 26: 1382-1391.
doi: 10.11733/j.issn.1007-0435.2018.06.014
Nan M, Zhao G Q, Li J, Chai J K, Liu Y M. Research of lodging-resistance and the stem morphological characteristics of different Avena stiva L. varieties. Acta Agrest Sin, 2018, 26: 1382-1391 (in Chinese with English abstract).
[6] 南铭, 王兴荣, 李晶, 刘彦明, 张成君, 柴继宽, 赵桂琴. 燕麦抗倒伏性状的基因型差异. 草业学报, 2023, 32: 106-118.
doi: 10.11686/cyxb2023010
[39] Hu W, Liang G L, Liu K Q, Liu W H, Li W. Study on lodging resistance and its influencing factors of 9 oat varieties in Qinghai-Tibet Plateau. Acta Agrest Sin, 2023, 31: 1788-1797 (in Chinese with English abstract).
[40] 景婷婷, 旦增塔庆, 任淑娉, 王登平, 张新全, 杨盛婷, 陈仕勇, 黄琳凯. 播期和播量对成都平原“英迪米特”燕麦饲草产量及相关性状的影响. 草业科学, 2019, 36: 2594-2600.
Jing T T, Tenzintarchen, Ren S P, Wang D P, Zhang X Q, Yang S T, Chen S Y, Huang L K. Effects of the planting date and planting rate on the yield and related characters of ‘Intimidator’ oats on the Chengdu Plain. Pratac Sci, 2019, 36: 2594-2600 (in Chinese with English abstract).
[41] 许俊伟, 孟天瑶, 荆培培, 张洪程, 李超, 戴其根, 魏海燕, 郭保卫. 机插密度对不同类型水稻抗倒伏能力及产量的影响. 作物学报, 2015, 41: 1767-1776.
doi: 10.3724/SP.J.1006.2015.01767
Xu J W, Meng T Y, Jing P P, Zhang H C, Li C, Dai Q G, Wei H Y, Guo B W. Effect of mechanical-transplanting density on lodging resistance and yield in different types of rice. Acta Agron Sin, 2015, 41: 1767-1776 (in Chinese with English abstract).
[42] Matsuyama H, Ookawa T. The effects of seeding rate on yield, lodging resistance and culm strength in wheat. Plant Prod Sci, 2020, 23: 322-332.
doi: 10.1080/1343943X.2019.1702469
[6] Nan M, Wang X R, Li J, Liu Y M, Zhang C J, Chai J K, Zhao G Q. Differences in traits related to lodging resistance among oat genotypes. Acta Pratac Sin, 2023, 32: 106-118 (in Chinese with English abstract).
[7] 南铭, 柴继宽, 景芳, 张丽娟, 闵庚梅, 刘亚锋, 刘彦明, 李晶, 赵桂琴. 燕麦抗倒伏性研究进展. 草地学报, 2023, 31: 2582-2589.
doi: 10.11733/j.issn.1007-0435.2023.09.002
Nan M, Chai J K, Jing F, Zhang L J, Min G M, Liu Y F, Liu Y M, Li J, Zhao G Q. Research advances on lodging resistance of oat (Avena stiva L.). Acta Agrest Sin, 2023, 31: 2582-2589 (in Chinese with English abstract).
[8] 张靓, 梁小玉, 胡远彬, 季杨, 易军, 汪辉. 燕麦抗倒伏性研究进展. 麦类作物学报, 2024, 44: 74-81.
Zhang J, Liang X Y, Hu Y B, Ji Y, Yi J, Wang H. Research progress on lodging resistance in oat. J Triticeae Crops, 2024, 44: 74-81 (in Chinese with English abstract).
[9] Khan S, Anwar S, Kuai J, Ullah S, Fahad S, Zhou G S. Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Frunt Plant Sci, 2017, 8: 532.
[10] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成. 作物学报, 2023, 49: 1919-1929.
doi: 10.3724/SP.J.1006.2023.23056
Wei J G, Guo Y, Chai Q, Yin W, Fan Z L, Hu F L. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply. Acta Agron Sin, 2023, 49: 1919-1929 (in Chinese with English abstract).
[11] 覃凤, 汪小飞, 吴臻, 胡一波, 王小琴, 张家伟, 蔡铁. 集雨种植模式下种植密度与行距配置对小麦茎秆糖积累及倒伏性能的影响. 中国农业科学, 2024, 57: 65-79.
doi: 10.3864/j.issn.0578-1752.2024.01.006
Qin F, Wang X F, Wu Z, Hu Y B, Wang X Q, Zhang J W, Cai T. Effects of planting density and row spacing configuration on sugar accumulation and lodging performance of wheat stem under rainfall harvesting planting mode. Sci Agric Sin, 2024, 57: 65-79 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.01.006
[12] Wang Y Y, Jin M, Luo Y L, Chang Y L, Zhu J K, Li Y, Wang Z L. Effects of irrigation on stem lignin and breaking strength of winter wheat with different planting densities. Field Crops Res, 2022, 282: 108518.
[13] 李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005, 31: 662-666.
Li J C, Yin J, Wei F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat. Acta Agron Sin, 2005, 31: 662-666 (in Chinese with English abstract).
[14] 景芳, 南铭, 刘彦明, 陈富, 边芳, 任生兰, 张成君. 品种和种植密度对燕麦饲草产量、品质和病害的影响. 草地学报, 2023, 31: 3174-3184.
doi: 10.11733/j.issn.1007-0435.2023.10.030
Jing F, Nan M, Liu Y M, Chen F, Bian F, Ren S L, Zhang C J. Effects of variety and planting density on yield, quality and disease of forage oat. Acta Agrest Sin, 2023, 31: 3174-3184 (in Chinese with English abstract).
[15] 田露, 刘景辉, 米俊珍, 赵宝平, 李英浩, 张胜, 王凤梧, 焦伟红, 高卿, 郑成忠, 张子臻. 缩行带状种植和保水剂对滴灌燕麦籽粒和饲草品质的影响. 中国农业大学学报, 2023, 28(1): 79-88.
Tian L, Liu J H, Mi J Z, Zhao B P, Li Y H, Zhang S, Wang F W, Jiao W H, Gao Q, Zheng C Z, Zhang Z Z. Effects of strip cropping with reducing row spacing and super absorbent polymer on the grain and forage quality of oat under drip irrigation. J China Agric Univ, 2023, 28(1): 79-88 (in Chinese with English abstract).
[16] 田露, 刘景辉, 米俊珍, 赵宝平, 李英浩, 张胜, 王凤梧, 焦伟红, 高卿. 缩行配施保水剂对滴灌燕麦群体特征和产量的影响. 麦类作物学报, 2023, 43: 332-342.
Tian L, Liu J H, Mi J Z, Zhao B P, Li Y H, Zhang S, Wang F W, Jiao W H, Gao Q. Effect of combination of row spacing reduction and super absorbent polymercan on population characteristics and yield of oat under drip irrigation. J Triticeae Crops, 2023, 43: 332-342 (in Chinese with English abstract).
[17] Tian L, Liu J H, Zhang S, Zhao B P, Mi J Z, Li Y H, Wang F W. Effects of strip cropping with reducing row spacing and super absorbent polymer on yield and water productivity of oat (Avena sativa L.) under drip irrigation in Inner Mongolia, China. Sci Rep, 2022, 12: 11441.
doi: 10.1038/s41598-022-15418-w pmid: 35794199
[18] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价. 作物学报, 2023, 49: 926-937.
doi: 10.3724/SP.J.1006.2023.24080
Liu M, Fan W J, Zhao P, Jin R, Zhang Q Q, Zhu X Y, Wang J, Li Q. Genotypes screening and comprehensive evaluation of sweet- potato tolerant to low potassium stress at seeding stage. Acta Agron Sin, 2023, 49: 926-937 (in Chinese with English abstract).
[19] 邓穗生, 洪彩香. 靛酚蓝比色法测定植物全氮含量方法的改进. 热带农业科学, 2013, 33: 5-7.
Deng S S, Hong C X. Improvement of phenol method for determining total nitrogen in plant. Chin J Trop Agric, 2013, 33: 5-7 (in Chinese with English abstract).
[20] 贾雨薇, 杨瑞林, 张洋, 房娟娟, 陈惠. 一种优化的测定水稻硅含量的方法. 植物学报, 2016, 51: 679-683.
doi: 10.11983/CBB15181
Jia Y W, Yang R L, Zhang Y, Fang J J, Chen H. An optimized method to determine silicon content in rice. Chin Bull Bot, 2016, 51: 679-683 (in Chinese with English abstract).
[21] 薛文芳, 高玉红, 胡亚朋, 崔政军, 王一帆, 剡斌, 晁长艳. 增密扩行对宽幅匀播胡麻抗倒伏能力及籽粒产量的影响. 核农学报, 2024, 38: 149-159.
doi: 10.11869/j.issn.1000-8551.2024.01.0149
Xue W F, Gao Y H, Hu Y P, Cui Z J, Wang Y F, Yan B, Chao C Y. Effect of increasing density and row spacing on lodging resistance and grain yield of oil flax under wide-width uniformed sowing status. J Nucl Agric Sci, 2024, 38: 149-159 (in Chinese with English abstract).
[22] 纪明雪, 张智勇, 齐冰洁, 何竹青, 周子健, 王永聪, 杨超, 隋白婧. 燕麦种质资源抗倒伏及生物学性状的差异评价. 麦类作物学报, 2023, 43: 453-462.
Ji M X, Zhang Z Y, Qi B J, He Z Q, Zhou Z J, Wang Y C, Yang C, Sui B J. Evaluation of lodging resistance and difference of biological characters of oat germplasm resources. J Triticeae Crops, 2023, 43: 453-462 (in Chinese with English abstract).
[23] Irshad A, Maksat B, Khushnuma I. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. J Integr Agric, 2023, 22: 417-433.
[24] 南铭, 赵桂琴, 李晶, 柴继宽, 刘彦明. 半干旱区燕麦品种茎秆理化特性及其与抗倒性的关系研究. 草地学报, 2019, 27: 1284-1290.
doi: 10.11733/j.issn.1007-0435.2019.05.022
Nan M, Zhao G Q, Li J, Chai J K, Liu Y M. Research on relationship with physicochemical properties of lodging resistance of different oat varieties in the semi-arid area. Acta Agrest Sin, 2019, 27: 1284-1290 (in Chinese with English abstract).
[25] 梁国玲, 刘文辉, 秦燕, 魏小星, 刘凯强, 杨晶. 不同燕麦资源生物量构成和茎秆特征与倒伏间的相关性研究. 草地学报, 2019, 27: 1339-1346.
doi: 10.11733/j.issn.1007-0435.2019.05.028
Liang G L, Liu W H, Qin Y, Wei X X, Liu K Q, Yang J. Study of correlation between biomass composition, stem traits and lodging in different oats resources. Acta Agrest Sin, 2019, 27: 1339-1346 (in Chinese with English abstract).
[26] 曾凡成, 王建元, 曾赟. 不同播量对鄂麦580产量性状及抗逆性的影响. 湖北农业科学, 2021, 60 (增刊2): 75-76.
Zeng F C, Wang J Y, Zeng Y. Effects of different sowing rates on Emai 580 yield traits and stress resistance. Hubei Agric Sci, 2021, 60 (S2): 75-76 (in Chinese with English abstract).
[27] 张永平, 潘佳楠, 郭占斌, 吴强, 白羽. 不同种植密度对藜麦群体抗倒伏性能及产量的影响. 华北农学报, 2021, 36(4): 108-115.
doi: 10.7668/hbnxb.20191823
Zhang Y P, Pan J N, Guo Z B, Wu Q, Bai Y. The effect of different planting densities on lodging-resistant properties and yield of quinoa. Acta Agric Boreali-Sin, 2021, 36(4): 108-115 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20191823
[28] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响. 作物学报, 2021, 47: 738-751.
doi: 10.3724/SP.J.1006.2021.03044
Zheng Y X, Chen D, Wei P C, Lu P, Yang J Y, Luo S K, Ye K M, Song B. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province. Acta Agron Sin, 2021, 47: 738-751 (in Chinese with English abstract).
[29] 牛海燕, 刘元元, 孔令强, 吕鹏, 刘树震, 冯波. 适当晚播结合增加播量对小麦产量和抗倒性的影响. 山东农业科学, 2021, 53(9): 19-26.
Niu H Y, Liu Y Y, Kong L Q, Lyu P, Liu S Z, Feng B. Effects of suitable late sowing combined with increasing sowing rate on yield and lodging resistance of wheat. Shandong Agric Sci, 2021, 53(9): 19-26 (in Chinese with English abstract).
[30] 赵小红, 白羿雄, 王凯, 姚有华, 姚晓华, 吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响. 作物学报, 2020, 46: 586-595.
doi: 10.3724/SP.J.1006.2020.91038
Zhao X H, Bai Y X, Wang K, Yao Y H, Yao X H, Wu K L. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties. Acta Agron Sin, 2020, 46: 586-595 (in Chinese with English abstract).
[31] Kaack K, Schwarz K U, Brander P E. Variation in morphology, an atomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Ind Crops Prod, 2003, 17:131-142.
[32] 袁圆, 汪波, 周广生, 刘芳, 黄俊生, 蒯婕. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54: 1613-1626.
doi: 10.3864/j.issn.0578-1752.2021.08.004
Yuan Y, Wang B, Zhou G S, Liu F, Huang J S, Kuai J. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed. Sci Agric Sin, 2021, 54: 1613-1626 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.08.004
[33] 冯学颖, 米俊珍, 刘景辉, 赵宝平, 王英, 田露, 陈晓晶, 王欣欣. 宽幅条播和种植密度对燕麦抗倒伏性及产量的影响. 麦类作物学报, 2021, 41: 914-920.
Feng X Y, Mi J Z, Liu J H, Zhao B P, Wang Y, Tian L, Chen X J, Wang X X. Effect of wide range drilling and planting density on lodging resistance and yield of oat. J Triticeae Crops, 2021, 41: 914-920 (in Chinese with English abstract).
[34] 康勇建, 赵宝平, 武俊英, 邹俊杰, 刘景辉. 追氮时期对饲用燕麦茎秆理化特性和抗倒性的影响. 草地学报, 2020, 28: 1775-1783.
doi: 10.11733/j.issn.1007-0435.2020.06.034
Kang Y J, Zhao B P, Wu J Y, Zou J J, Liu J H. Effects of different nitrogen topdressing stage on the stalk physical and chemical characteristics and lodging resistance of forage oats. Acta Agrest Sin, 2020, 28: 1775-1783 (in Chinese with English abstract).
[35] Lyubimova A V, Moiseeva M N, Eremin D I. Genetic resistance of cultivated oat and the influence of the mineral nutrition level on stem lodging in Western Siberia. Biol Web Conf, 2022, 51: 04005.
[36] 黄海, 常莹, 吴春胜, 胡文河, 谷岩. 群体密度对玉米茎秆可溶性碳水化合物和矿质元素含量的影响. 西北农林科技大学学报(自然科学版), 2014, 42(2): 53-60.
Huang H, Chang Y, Wu C S, Hu W H, Gu Y. Effects of population density on carbohydrate and mineral element contents in stalk of maize. J Northwest A&F (Nat Sci Edn), 2014, 42(2): 53-60 (in Chinese with English abstract).
[37] 王成雨, 代兴龙, 石玉华, 王振林, 陈晓光, 贺明荣. 氮肥水平和种植密度对冬小麦茎秆抗倒性能的影响. 作物学报, 2012, 38: 121-128.
doi: 10.3724/SP.J.1006.2012.00121
Wang C Y, Dai X L, Shi Y H, Wang Z L, Chen X G, He M R. Effects of nitrogen application rate and plant density on lodging resistance in winter wheat. Acta Agron Sin, 2012, 38: 121-128 (in Chinese with English abstract).
[38] 张晋, 郭翠花, 高志强. 不同密度对小麦花后旗叶和籽粒中可溶性糖含量的影响. 山西农业科学, 2011, 39: 1266-1268.
Zhang J, Guo C H, Gao Z Q. Effects of different densities on the wheat soluble sugar in the flag leaf and grain. J Shanxi Agric Sci, 2011, 39: 1266-1268 (in Chinese with English abstract).
[39] 胡伟, 梁国玲, 刘凯强, 刘文辉, 李文. 青藏高原9个燕麦品种抗倒伏能力及其影响因素研究. 草地学报, 2023, 31: 1788-1797.
doi: 10.11733/j.issn.1007-0435.2023.06.022
[1] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[2] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[3] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[4] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[5] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[6] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[7] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[8] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[9] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[10] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[11] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[12] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[13] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[14] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[15] 张智源, 周界光, 刘家君, 王素容, 王同著, 赵聪豪, 尤佳宁, 丁浦洋, 唐华苹, 刘燕林, 江千涛, 陈国跃, 魏育明, 马建. 基于遗传解析新模式的小麦寡分蘖QTL的鉴定和验证[J]. 作物学报, 2024, 50(6): 1373-1383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!