欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (12): 3266-3280.doi: 10.3724/SP.J.1006.2025.55011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

高油酸和普通花生萌发期抗旱筛选评价体系的建立

马群1(), 王志昊1(), 闫磊1, 李瑜娇1, 王佳琪1, 李钊1, 刘巍1, 艾鑫, 马迁驰1, 王晓光1, 钟超1, 任婧瑶1, 刘喜波1, 赵姝丽1, 张鹤, 赵新华1, 蒋春姬1, 王婧1,*(), 于海秋1,2,*()   

  1. 1沈阳农业大学农学院, 辽宁沈阳 110161
    2辽宁农业职业技术学院, 辽宁营口 115009
  • 收稿日期:2025-01-27 接受日期:2025-07-09 出版日期:2025-12-12 网络出版日期:2025-07-16
  • 通讯作者: *王婧, E-mail: jingwang602@syau.edu.cn;于海秋, E-mail: yuhaiqiu@syau.edu.cn
  • 作者简介:E-mail: mq115116@163.com
    E-mail: 18684218820@163.com第一联系人:**同等贡献
  • 基金资助:
    本研究由辽宁省科技计划联合计划项目(2024-MSLH-417);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);辽宁省教育厅面上项目(JYTMS20231293)

Screening and evaluation system for drought resistance in high-oleic acid and common peanut at the germination stage

MA Qun1(), WANG Zhi-Hao1(), YAN Lei1, LI Yu-Jiao1, WANG Jia-Qi1, LI Zhao1, LIU Wei1, AI Xin, MA Qian-Chi1, WANG Xiao-Guang1, ZHONG Chao1, REN Jing-Yao1, LIU Xi-Bo1, ZHAO Shu-Li1, ZHANG He, ZHAO Xin-Hua1, JIANG Chun-Ji1, WANG Jing1,*(), YU Hai-Qiu1,2,*()   

  1. 1College of Agronomy, Shenyang Agricultural University, Shenyang 110161, Liaoning, China
    2Liaoning Agricultural Vocational and Technical College, Yingkou 115009, Liaoning, China
  • Received:2025-01-27 Accepted:2025-07-09 Published:2025-12-12 Published online:2025-07-16
  • Contact: *E-mail: jingwang602@syau.edu.cn;E-mail: yuhaiqiu@syau.edu.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Liaoning Province Science and Technology Plan Joint Plan(2024-MSLH-417);China Agriculture Research System of MOF and MARA(CARS-13);Department of Education Project by Liaoning Province(JYTMS20231293)

摘要: 干旱是限制东北地区花生生产的主要非生物胁迫之一, 培育抗旱品种是最有效的解决途径。为探究干旱胁迫对高油酸和普通花生萌发的影响及不同花生品种萌发期的抗旱性, 本研究以15.0%、17.5%和20.0% 3种不同浓度的PEG-6000对发芽的种子进行处理(对照不添加PEG), 筛选不同花生品种最适宜的抗旱处理浓度, 并测定花生萌发期多项抗旱性相关指标, 通过主成分分析、回归分析及聚类分析等方法, 对萌发期指标进行抗旱性综合评价。结果表明: (1) 不同PEG-6000处理下, 15.0%处理下各品种种子在萌发阶段的性状并未受到显著抑制, 20.0%处理下大多数品种的各个性状抗旱系数均受到显著抑制, 因此17.5%可以作为不同花生品种种子萌发期抗旱性筛选鉴定的适宜浓度。(2) 主成分分析将花生萌发期干旱胁迫下的8个单项指标转化为3个相互独立的综合指标。利用隶属函数法和综合评价D值对38份花生品种抗旱性强弱进行排序。(3) 系统聚类法将19份普通和高油酸花生品种划分为抗旱性极强、抗旱性强、抗旱性中等、抗旱性弱4个类群, 各类群材料分别为4份、11份、12份、11份, 分别占总数的10.5%、28.9%、31.6%、28.9%。(4) 通过逐步回归分析建立最优回归方程, 其中发芽率、活力指数、根鲜重、根干重4个指标可以作为花生萌发期抗旱鉴定的最优指标。

关键词: 高油酸花生, 干旱胁迫, 萌发, 综合评价, 种质资源筛选

Abstract:

Drought is one of the major abiotic stresses limiting peanut production in Northeast China, and cultivating drought-resistant varieties remains the most effective strategy to mitigate its impact. This study aimed to investigate the effects of drought stress on the germination of high-oleic and common peanut varieties, and to evaluate their drought resistance at the germination stage. Polyethylene glycol (PEG-6000) solutions at concentrations of 15.0%, 17.5%, and 20.0% were used to simulate water deficit conditions, while a treatment without PEG served as the control. The most suitable concentration for drought resistance screening was identified, and several drought-related indices were measured during germination. Principal component analysis (PCA), regression analysis, and cluster analysis were employed for a comprehensive evaluation of drought resistance at the germination stage. The results showed that: (1) Under different PEG-6000 treatments, germination traits were not significantly affected at 15.0%, while most traits were significantly inhibited at 20.0%. Therefore, 17.5% PEG-6000 was determined to be the optimal concentration for screening drought resistance in peanut varieties during germination. (2) PCA reduced eight individual drought resistance indicators into three independent composite indices. The drought resistance of 38 peanut varieties was ranked using the membership function method and a comprehensive evaluation D-value. (3) Cluster analysis grouped 19 common and 19 high-oleic acid peanut varieties into four categories based on drought resistance: extremely strong (4 varieties), strong (11 varieties), moderate (12 varieties), and weak (11 varieties), accounting for 10.5%, 28.9%, 31.6%, and 28.9% of the total, respectively. (4) Stepwise regression analysis identified an optimal regression model. Four indicators—germination rate, vigor index, fresh root weight, and dry root weight—were found to be effective for evaluating drought resistance in high-oleic peanut varieties at the germination stage.

Key words: high oleic acid peanut, drought stress, germination, comprehensive evaluation, germplasm screening

表1

供试花生品种"

材料编号
Material number
名称
Name
亚油酸含量
Linoleic acid content (%)
油酸含量
Oleic acid content (%)
油亚比
O/L
材料编号
Material number
名称
Name
亚油酸含量
Linoleic acid content (%)
油酸含量
Oleic acid content (%)
油亚比
O/L
1 花育22 HY22 48.83 36.62 0.75 20 冀花16 JH16 5.29 77.31 14.62
2 花育20 HY20 31.01 41.25 1.33 21 冀花915 JH915 4.67 76.35 16.35
3 花育25 HY25 30.81 37.28 1.21 22 冀花11 JH11 5.50 80.16 14.57
4 农花9 NH9 36.02 35.66 0.99 23 冀花13 JH13 5.75 77.34 13.46
5 农花15 NH15 29.63 36.45 1.23 24 花育51 HY51 4.25 78.46 18.45
6 青花6 QH6 46.00 40.48 0.88 25 花育52 HY52 4.90 79.33 16.19
7 农花19 NH19 37.04 35.56 0.96 26 花育951 HY951 4.35 79.52 18.26
8 农花13 NH13 42.49 41.22 0.97 27 花育962 HY962 4.20 81.79 19.47
9 泉花551 QH551 42.35 40.23 0.95 28 花育965 HY965 3.84 78.53 20.45
10 黔花1号 QH1 28.87 38.42 1.33 29 花育917 HY917 4.19 77.05 18.39
11 锦花15 JH15 35.43 36.14 1.02 30 花育668 HY668 4.90 78.52 16.01
12 阜花18 FH18 34.19 35.22 1.03 31 花育665 HY665 4.55 80.41 17.67
13 阜花12 FH12 43.26 40.23 0.93 32 开农61 KN61 3.80 78.49 20.67
14 农花16 NH16 44.80 41.22 0.92 33 开农1760 KN1760 4.10 77.81 18.99
15 农花14 NH14 34.01 39.46 1.16 34 开农1715 KN1715 3.98 79.31 19.94
16 农花12 NH12 38.28 38.46 1.27 35 开农71 KN71 4.21 77.87 18.47
17 农花22 NH22 31.96 41.23 1.29 36 花育956 HY956 4.75 79.94 16.84
18 农花21 NH21 28.38 40.87 1.44 37 花育655 HY655 4.07 78.35 19.27
19 农花20 NH20 25.41 37.46 1.48 38 花育958 HY958 3.83 78.77 20.59

表2

不同PEG-6000胁迫浓度下花生品种抗旱性评价分级值"

PEG-6000浓度Concentration of PEG-6000 抗旱等级
Degree of drought resistance
发芽率
Germination rate
活力指数
Vitality index
胚轴长
Hypocotyl length
<15.0 4 HY951, KN1715, JH16, JH13, JH915 QH6, HY965, KN61, HY665, HY958, JH16, NH14, HY22, HY25, FH12, NH15, HY951, KN1715, QH1, NH22, NH21, NH20, NH9, KN1760, JH13, JH915
15.0 3 HY958 HY51, HY52, QH551, NH22, KN71 HY917, NH13, JH15, NH19, QH551, KN71, HY51, HY52
17.5 2 QH6, HY917, HY962, HY958, KN1760, HY25, NH13, FH12, NH15, JH15, NH19, NH21, JH11, HY668, HY655 HY962, HY20, JH11
20.0 1 QH6, HY917, HY962, HY20, HY956, HY965, KN61, HY665, KN1760, NH14, HY22, NH16, NH12, FH18, HY25, NH13, FH12, NH15, JH15, NH19, HY51, HY52, HY951, KN1715, QH551, QH1, NH22, NH21, NH20, NH9, JH16, JH11, JH13, KN71, JH915, HY668, HY655 HY20, HY956, HY965, KN61, HY665, NH14, HY22, NH16, NH12, FH18, QH1, NH20, NH9 HY956, NH16, NH12, FH18, HY668, HY655
PEG-6000浓度Concentration of PEG-6000 抗旱等级
Degree of drought resistance
胚根长
Radicle length
根鲜重
Fresh weight of root
根干重
Root dry weight
<15.0 4 FH12, NH15, JH915, NH19, HY951, JH16, KN1715, JH11, JH13, KN71, JH15, HY668, HY655 QH6, HY917, HY20, NH16, FH18, FH12, NH15, JH15, NH19, HY51, HY951, JH11, NH22, KN1715, JH13, JH915 HY962, KN61, HY665, HY958, HY25, NH13, FH12, NH15, HY52, HY951, KN1715, NH22, JH13, KN71, HY668
15.0 3 QH6, HY958, HY51, HY52 KN61, HY665, HY958, KN1760, HY52, KN71 HY965, KN61, HY958, NH13, FH12, NH15, HY951, KN1715, NH22, JH13, KN71
17.5 2 HY917, HY962, NH13, KN1760, HY25, QH551, NH22, NH21 HY962, HY25, NH13, QH551, NH21, HY668 HY962, KN61, NH12, FH18, HY25, HY52
20.0 1 HY20, HY956, HY965, KN61, HY665, NH14, HY22, NH16, NH12, FH18, QH1, NH20, NH9 HY956, HY965, NH14, HY22, NH12, QH1, NH21, NH20, NH9, JH16, HY655 QH6, HY917, HY20, HY956, HY665, KN1760, NH14, HY22, NH16, NH12, FH18, JH15, NH19, HY51, QH551, QH1, NH21, NH20, NH9, JH16, JH11, JH915, HY655

图1

干旱胁迫前后38份花生品种胚根的伸长长度和胚轴长度 品种名缩写同表1。CK: 空白对照; Drought: 浓度为17.5%的PEG-6000溶液处理。A: 胚根长度; B: 胚轴长度。"

表3

花生各指标抗旱系数之间的相关性"

指标
Index
发芽率
GR
发芽势
GP
发芽指数
GI
活力指数
VI
胚根长
HL
胚轴长
RL
根鲜重
RF
根干重
RD
发芽率 GR 1.000
发芽势 GP 0.987** 1.000
发芽指数 GI 0.639** 0.699** 1.000
活力指数 VI 0.576** 0.603** 0.587** 1.000
胚根长 HL 0.347* 0.384* 0.593** 0.927** 1.000
胚轴长 RL 0.263 0.211 -0.436** 0.105 -0.171 1.000
根鲜重 RF 0.525** 0.540** 0.359* 0.674** 0.553** 0.345* 1.000
根干重 RD 0.510** 0.532** 0.558** 0.780** 0.735** 0.049 0.733** 1.000

表4

干旱胁迫下花生萌发期各指标主成分特征值及贡献率"

指标
Index
主成分1
PC1
主成分2
PC2
主成分3
PC3
发芽率 GR 0.803 0.299 -0.496
发芽势 GP 0.830 0.239 -0.495
发芽指数 GI 0.761 -0.468 -0.388
活力指数 VI 0.905 -0.069 0.292
胚轴长 HL 0.793 -0.362 0.404
胚根长 RL 0.087 0.957 0.179
根鲜重 RF 0.772 0.305 0.320
根干重 RD 0.850 -0.061 0.303
特征值 Eigenvalue (%) 4.688 1.512 1.117
贡献率 Contribution rate (%) 58.605 18.903 13.966

图2

干旱胁迫下花生萌发期主成分分析(PCA)散点图 品种名缩写同表1。"

表5

花生萌发期耐旱性D值"

材料编号
Material number
名称
Name
D
D-value
排序
Ordering
材料编号
Material number
名称
Name
D
D-value
排序
Ordering
1 HY22 0.750 2 20 JH16 0.206 32
2 HY20 0.519 9 21 JH915 0.150 37
3 HY25 0.789 1 22 JH11 0.579 6
4 NH9 0.446 14 23 JH13 0.264 30
5 NH15 0.269 29 24 HY51 0.356 25
6 QH6 0.196 35 25 HY52 0.350 26
7 NH19 0.390 20 26 HY951 0.404 18
8 NH13 0.544 8 27 HY962 0.376 22
9 QH551 0.401 19 28 HY965 0.467 13
10 QH1 0.189 36 29 HY917 0.257 31
11 JH15 0.328 27 30 HY668 0.366 24
12 FH18 0.436 15 31 HY665 0.376 22
13 FH12 0.202 33 32 KN61 0.411 17
14 NH16 0.379 21 33 KN1760 0.488 10
15 NH14 0.661 4 34 KN1715 0.091 38
16 NH12 0.619 5 35 KN71 0.283 28
17 NH22 0.416 16 36 HY956 0.478 11
18 NH21 0.573 7 37 HY655 0.676 3
19 NH20 0.478 11 38 HY958 0.202 33

图3

38份花生萌发期耐旱性聚类分析 A、B、C、D分别代表不同抗旱性花生类别。A类属于弱抗旱性的供试材料, B类属于中等抗旱性供试材料, C类属于较强抗旱性的供试材料, D类属于极强抗旱性的供试材料。品种名缩写同表1。"

表6

线性回归结果分析"

非标准化系数
Unstandardized coefficient
标准化系数
Standardized coefficient
t-value P-value VIF R2 F-value
B 标准误Standard error Beta
常数 Constant -0.024 0.020 -1.193 0.24* 0.981 422.967
活力指数 VI 0 0 0.399 9.651 0** 2.954
根鲜重 RF 0.001 0 0.369 9.915 0** 2.386
发芽率 GR 0.223 0.029 0.231 7.624 0** 1.578
根干重 RD 0.003 0.001 0.153 3.564 0** 3.195
[1] 江龙.基于GIS的区域旱灾系统时空特性分析与脆弱性评估. 合肥工业大学硕士学位论文, 安徽合肥, 2014.
Jiang L. Spatiotemporal Characteristics Analysis and Vulnerability Assessment of Regional Drought System based on GIS. MS Thesis of Hefei University of Technology, Hefei, Anhui, China, 2014 (in Chinese with English abstract).
[2] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析. 作物学报, 2024, 50: 2157-2166.
doi: 10.3724/SP.J.1006.2024.44018
Liu Y H, Shen Y, Shen Y, Liang M, Sha Q, Zhang X Y, Chen Z D. Cloning and functional analysis of drought-inducible promoter AhMYB44-11-Pro in peanut (Arachis hypogaea L.). Acta Agron Sin, 2024, 50: 2157-2166 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.44018
[3] 高伟, 吕登宇, 苗利娟, 石磊, 黄冰艳, 张毛宁, 房元瑾, 王娟, 齐飞艳, 董文召, 等. 高油酸花生品种脂肪及脂肪酸积累动态分析. 中国油料作物学报, 2023, 45: 629-636.
doi: 10.19802/j.issn.1007-9084.2022086
Gao W, Lyu D Y, Miao L J, Shi L, Huang B Y, Zhang M N, Fang Y J, Wang J, Qi F Y, Dong W Z, et al. Dynamic analysis of fat and fatty acid accumulation in peanut varieties with high oleic acid. Chin J Oil Crop Sci, 2023, 45: 629-636 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2022086
[4] 谢安, 孙永罡, 白人海. 中国东北近50年干旱发展及对全球气候变暖的响应. 地理学报, 2003, 58(增刊1): 75-82.
Xie A, Sun Y G, Bai R H. Arid climate trend over northeastern China and its response to global warming. Acta Geogr Sin, 2003, 58(S1): 75-82 (in Chinese with English abstract).
[5] 刘振宏, 李娇, 孙艳云, 林中冠, 马林, 王若男, 王一. 辽宁西部农作物生长季干旱风险及降水满足度研究. 沙漠与绿洲气象, 2020, 14(4): 124-130.
Liu Z H, Li J, Sun Y Y, Lin Z G, Ma L, Wang R N, Wang Y. Study on drought risk in crop growing season and precipitation satisfaction in western Liaoning. Desert Oasis Meteor, 2020, 14(4): 124-130 (in Chinese with English abstract).
[6] 谢华光. 辽宁省农作物生长季降水量的变化及其满足度与干旱风险度. 贵州农业科学, 2022, 50(1): 131-138.
Xie H G. Precipitation variation, precipitation satisfaction and drought risk degree in growth season of crops in Liaoning province. Guizhou Agric Sci, 2022, 50(1): 131-138 (in Chinese with English abstract).
[7] 刘芳, 张哲, 王积军. 我国高油酸花生种植及应用技术研究进展. 中国油料作物学报, 2020, 42: 956-959.
Liu F, Zhang Z, Wang J J. Progress on production and technology development of high-oleic acid peanut in China. Chin J Oil Crop Sci, 2020, 42: 956-959 (in Chinese with English abstract).
doi: 10.19802/j.issn.1007-9084.2020215
[8] Dong W, Lyu H J, Xia G M, Wang M C. Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav, 2012, 7: 472-475.
doi: 10.4161/psb.19644 pmid: 22499171
[9] 李猛. 辽宁省干旱发生频率分析及旱灾成因研究. 吉林水利, 2024, (6): 63-68.
Li M. Analysis of drought frequency and study on causes of drought in Liaoning province. Jilin Water Resour, 2024, (6): 63-68 (in Chinese with English abstract).
[10] Huang A H. Oleosins and oil bodies in seeds and other organs. Plant Physiol, 1996, 110: 1055-1061.
doi: 10.1104/pp.110.4.1055 pmid: 8934621
[11] 王才斌, 成波, 郑亚萍, 沙继锋, 李安东, 孙秀山. 温度对花生出苗、幼苗生长及开花的影响. 花生学报, 2003, 32(4): 7-11.
Wang C B, Cheng B, Zheng Y P, Sha J F, Li A D, Sun X S. Effects of temperature to seed emergence, seedling growth and anthesis of peanut. J Peanut Sci, 2003, 32(4): 7-11 (in Chinese with English abstract).
[12] Cao D, Ma Y, Cao Z, Hu S, Li Z, Li Y, Wang K, Wang X, Wang J, Zhao K, et al. Coordinated lipid mobilization during seed development and germination in peanut (Arachis hypogaea L.). J Agric Food Chem, 2024, 72: 3218-3230.
doi: 10.1021/acs.jafc.3c06697
[13] 张智猛, 万书波, 戴良香, 吴正峰, 陈静, 苗华荣. 花生萌芽期水分胁迫品种适应性及抗旱性评价. 干旱地区农业研究, 2009, 27(5): 173-182.
Zhang Z M, Wan S B, Dai L X, Wu Z F, Chen J, Miao H R. A study on appraisal of suitability and drought-resistance of different peanut varieties at germination stage. Agric Res Arid Areas, 2009, 27(5): 173-182 (in Chinese with English abstract).
[14] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价. 作物学报, 2025, 51: 797-811.
doi: 10.3724/SP.J.1006.2025.44097
Jin X X, Song Y H, Su Q, Yang Y Q, Li Y R, Wang J. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties. Acta Agron Sin, 2025, 51: 797-811 (in Chinese with English abstract).
[15] Khajeh-Hosseini M, Powell A A, Bingham I J. The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Sci Technol, 2003, 31: 715-725.
doi: 10.15258/sst
[16] 赵玉坤, 高根来, 王向东, 甄胜虎, 宁慧云, 李宝珠. PEG模拟干旱胁迫条件下玉米种子的萌发特性研究. 农学学报, 2014, 4(7): 1-4.
Zhao Y K, Gao G L, Wang X D, Zhen S H, Ning H Y, Li B Z. Effects of polyethylene glycol (PEG) simulated drought stress on seed germination characters in maize. J Agric, 2014, 4(7): 1-4 (in Chinese with English abstract).
[17] 李培英, 孙宗玖, 阿不来提. PEG模拟干旱胁迫下29份偃麦草种质种子萌发期抗旱性评价. 中国草地学报, 2010, 32(1): 32-39.
Li P Y, Sun Z J, A B. Evaluation of drought resistance of 29 accessions of elytrigria Repens at seed germination stage under PEG-6000 stress. Chin J Grassland, 2010, 32(1): 32-39 (in Chinese with English abstract).
[18] 张智猛, 万书波, 戴良香, 宋文武, 陈静, 苗华荣. 花生品种芽期抗旱性指标筛选与综合性评价. 中国农业科技导报, 2010, 12(1): 85-91.
Zhang Z M, Wan S B, Dai L X, Song W W, Chen J, Miao H R. Index screening and comprehensive evaluation for drought resistance of peanut varieties at germination stage. J Agric Sci Technol, 2010, 12(1): 85-91 (in Chinese with English abstract).
[19] 张高华, 于树涛, 王鹤, 王旭达. 高油酸花生发芽期低温胁迫转录组及差异表达基因分析. 遗传, 2019, 41: 1050-1059.
Zhang G H, Yu S T, Wang H, Wang X D. Transcriptome profiling of high oleic peanut under low temperature during germination. Hereditas (Beijing), 2019, 41: 1050-1059 (in Chinese with English abstract).
[20] 孙东雷, 卞能飞, 王幸, 邢兴华, 沈一, 徐泽俊, 齐玉军, 王晓军. 高油酸花生萌发期耐冷性综合评价及种质筛选. 核农学报, 2021, 35: 1263-1272.
doi: 10.11869/j.issn.100-8551.2021.06.1263
Sun D L, Bian N F, Wang X, Xing X H, Shen Y, Xu Z J, Qi Y J, Wang X J. Comprehensive evaluation of cold tolerance and germplasm screening of high oleic acid peanut at germination stage. J Nucl Agric Sci, 2021, 35: 1263-1272 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2021.06.1263
[21] 王欢.玉米萌芽期耐冷性种质筛选及其全基因组关联分析. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Wang H. Germplasm Screening and Genome-wide Association Analysis for Chilling Tolerance during Germination and Budding Stage in Maize. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[22] 于树涛, 于国庆, 孙泓希, 任亮, 尤淑丽, 王虹, 周文雨, 王传堂. 高油酸花生品种(系)抗旱性综合评价. 分子植物育种, 2021, 19: 2747-2757.
Yu S T, Yu G Q, Sun H X, Ren L, You S L, Wang H, Zhou W Y, Wang C T. Comprehensive evaluation of drought resistance of high oleic acid peanut varieties (lines). Mol Plant Breed, 2021, 19: 2747-2757 (in Chinese with English abstract).
[23] 徐明慧, 于晓东, 马兴林, 关义新. 水分胁迫对玉米萌芽期贮藏物质利用效率的影响. 作物杂志, 2004, (6): 11-13.
Xu M H, Yu X D, Ma X L, Guan Y X. Effects of water stress on utilization efficiency of storage materials in maize germination stage. Crops, 2004, (6): 11-13 (in Chinese with English abstract).
[24] 王玮, 邹琦, 杨军, 周燮. 水分胁迫条件下抗旱性不同小麦品种芽鞘生长的动态分析. 植物生理学通讯, 1999, 35: 359-362.
Wang W, Zou Q, Yang J, Zhou X. Dynamic analysis of bud sheath growth of wheat varieties with different drought resistance under water stress. Plant Physiol Commun, 1999, 35: 359-362 (in Chinese).
[25] 周广生.水稻抗旱性早期鉴定指标筛选与节水机理的研究. 华中农业大学博士学位论文, 湖北武汉, 2006.
Zhou G S.Study on the Appraising Indices of Drought Resistance at the Early Growth Stages and Water Saving Mechanism of Rice.PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2006 (in Chinese with English abstract).
[26] Nautiyal P C, Ravindra V. Drying and storage method to prolong seed viability and seedling vigour of Rabi-summer-produced groundnut. J Agron Crop Sci, 1996, 177: 123-128.
doi: 10.1111/jac.1996.177.issue-2
[27] 刘永惠, 詹成芳, 沈一, 陈志德. 不同花生品种(系)萌发期抗旱性鉴定评价. 植物遗传资源学报, 2016, 17: 233-238.
doi: 10.13430/j.cnki.jpgr.2016.02.006
Liu Y H, Zhan C F, Shen Y, Chen Z D. Identification of drought tolerance in peanut varieties/lines at the germination stage. J Plant Genet Resour, 2016, 17: 233-238 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2016.02.006
[28] 李俊明. 玉米耐冷性的数值分类研究. 生物数学学报, 1990, 5(1): 58-61.
Li J M. A numerical taxonomic study on maize cold tolerance. J Biomath, 1990, 5(1): 58-61 (in Chinese with English abstract).
[29] 彭玉琳, 崔晓漫, 张沥曼玲, 次旦卓嘎, 昌西. 不同生育期大麦抗旱性鉴定及抗旱指标筛选. 西北农林科技大学学报(自然科学版), 2024, 52(8): 36-48.
Peng Y L, Cui X M, Zhang L M L, Ci D Z G, Chang X. Identification of drought resistance and selection of drought resistance indicators in barley at different growth periods. J Northwest A&F Univ (Nat Sci Edn), 2024, 52(8): 36-48 (in Chinese with English abstract).
[30] Mateva K I, Chai H H, Mayes S, Massawe F. Root foraging capacity in Bambara groundnut (Vigna subterranea (L.) verdc.) core parental lines depends on the root system architecture during the pre-flowering stage. Plants (Basel), 2020, 9: 645.
[31] 杨秀丽, 宁东贤, 周红琴, 赵玉坤, 杨丽萍, 李楠. 干旱胁迫下EMS诱变花生后代突变体萌发期抗旱性评价. 山西农业科学, 2021, 49: 817-821.
Yang X L, Ning D X, Zhou H Q, Zhao Y K, Yang L P, Li N. Evaluation of drought resistance in the germination period of mutants induced by chemical mutagenesis under drought stress. J Shanxi Agric Sci, 2021, 49: 817-821 (in Chinese with English abstract).
[32] 鲁成凯, 卢家毅, 宋晓峰, 董晓娜, 于田利, 付春, 任建军, 于复欣, 乔利仙. 高油酸花生品种(系)耐碱性评价. 山东农业科学, 2023, 55(9): 25-31.
Lu C K, Lu J Y, Song X F, Dong X N, Yu T L, Fu C, Ren J J, Yu F X, Qiao L X. Evaluation on alkali tolerance of peanut varieties (lines) with high oleic acid. Shandong Agric Sci, 2023, 55(9): 25-31 (in Chinese with English abstract).
[33] 岳丽, 山其米克, 王卉, 再吐尼古丽·库尔班, 毛红艳, 刘敏. 新疆高粱种质资源萌发期抗旱性综合评价. 草地学报, 2024, 32: 553-561.
doi: 10.11733/j.issn.1007-0435.2024.02.024
Yue L, Shan Q M K, Wang H, Zaituniguli·K E B, Mao H Y, Liu M. Comprehensive evaluation of drought resistance of sorghum germplasm resources during germination in Xinjiang. Acta Agrest Sin, 2024, 32: 553-561 (in Chinese with English abstract).
[34] Kim J E, Yu J, Ryu J H, Lee J H, Kim T W. Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model. Nat Hazards, 2021, 109: 707-724.
doi: 10.1007/s11069-021-04854-y
[35] 王明辉, 胡海珍, 殷辉, 熊飞. 三个花生品种主要农艺性状比较及相关和回归分析. 湖北农业科学, 2012, 51: 3950-3952.
Wang M H, Hu H Z, Yin H, Xiong F. Comparison and analysis on main agronomic characters of three peanut varieties. Hubei Agric Sci, 2012, 51: 3950-3952 (in Chinese with English abstract).
[36] 芦振华, 李绍伟, 殷君华, 邓丽, 苗建利, 李阳, 郭敏杰, 胡俊平, 任丽. 高油酸花生开农1768在区域试验中主要性状的变异分析. 中国种业, 2024, (1): 68-71.
Lu Z H, Li S W, Yin J H, Deng L, Miao J L, Li Y, Guo M J, Hu J P, Ren L. Variation analysis of main traits of high oleic acid peanut Kainong 1768 in regional trial. China Seed Ind, 2024, (1): 68-71 (in Chinese).
[1] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[2] 何鹏旭, 姚立蓉, 陈远玲, 闫妍, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊. 大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究[J]. 作物学报, 2025, 51(9): 2412-2432.
[3] 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008.
[4] 旺姆, 卓嘎, 扎桑, 西若曲宗, 达瓦顿珠, 郭刚刚, 张京, 卓嘎, 伦珠朗杰. 基于6个表型性状的青稞种质遗传多样性分析及综合评价[J]. 作物学报, 2025, 51(6): 1526-1537.
[5] 宋松泉, 唐翠芳, 程红焱, 王程亮, 袁良兵, 左胜. 谷类作物的胚乳发育及其对种子休眠与萌发的作用[J]. 作物学报, 2025, 51(5): 1133-1155.
[6] 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析[J]. 作物学报, 2025, 51(5): 1198-1214.
[7] 王林, 陈晓雨, 张文梦龙, 汪思琦, 程冰云, 程靖秋, 潘锐, 张文英. 大麦HvMYB2分子特性及响应干旱胁迫的功能分析[J]. 作物学报, 2025, 51(4): 873-887.
[8] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[9] 蒋优, 马雪融, 张博, 李陈建. 苏丹草种子萌发期耐盐性评价及耐盐种质筛选[J]. 作物学报, 2025, 51(3): 835-844.
[10] 霍如雪, 葛祥菡, 石嘉, 李雪蕊, 戴圣杰, 刘振宁, 李宗芸. 甘薯组氨酸激酶蛋白IbHK5响应干旱和盐胁迫的功能分析[J]. 作物学报, 2025, 51(3): 650-666.
[11] 李琰, 李雨晨, 于爱萍, 陈爱萍. 8份无芒雀麦种质资源的草产量与营养品质的综合评价[J]. 作物学报, 2025, 51(12): 3377-3386.
[12] 魏琦, 何冠华, 张登峰, 李永祥, 刘旭洋, 唐怀君, 刘成, 王天宇, 黎裕, 路运才, 李春辉. 基于抗旱玉米自交系SL001的抗旱优异基因资源挖掘[J]. 作物学报, 2025, 51(12): 3171-3183.
[13] 蒋昂辰, 李琰, 李雨晨, 张晶, 陈爱萍. 21份无芒雀麦种质农艺性状及种子产量的综合评价与优异种质筛选[J]. 作物学报, 2025, 51(11): 2958-2970.
[14] 葛家豪, 雷欣月, 王清明, 韩慧冰, 李少飞, 王琦璇, 冯佰利, 高金锋. 苦荞苗期耐低磷种质筛选及耐低磷综合评价[J]. 作物学报, 2025, 51(11): 2911-2922.
[15] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!