Acta Agron Sin ›› 2010, Vol. 36 ›› Issue (11): 1891-1901.doi: 10.3724/SP.J.1006.2010.01891
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LENG Xue,JIA Yin-Hua,DU Xiong-Ming*
[1]Zhu Y-Q(朱勇清), Xu K-X(许可香), Chen X-Y(陈晓亚). The polarity transport of IAA in Ligon lintless mutant is weaken. J Plant Physiol Mol Biol (植物生理与分子生物学报), 2003, 29(1): 15–20 (in Chinese with English abstract) [2]Liu X-J(刘晓杰), Zhang J(张杰), Jia Y-H(贾银华), Du X-M(杜雄明). Effects of plant hormone on the regulation of ligon lintless mutant in cotton. J Anhui Agric Sci (安徽农业科学), 2008, 36(35): 15460–15469 (in Chinese with English abstract) [3]Cheng C-H(程超华), Wang X-D(王学德), Yao Y-L(姚艳玲). Inducement of fiber cell elongation from ovule of lintless mutant (Ligon cotton, Gossypium hirsutum L.) in vitro with IAA and GA3. Acta Agron Sin (作物学报), 2005, 31(2): 229–233 (in Chinese with English abstract) [4]Jiang S-L(蒋淑丽), Wang X-D(王学德). The accumulation of biochemical components in ovule of cotton fiber mutants during the ovule development. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报·农业与生命科学版), 2002, 28(1): 16–21 (in Chinese with English abstract) [5]Kohel R J, Quisenberry J E, Benedict C R. Incorporation of [14C] glucose into crystalline cellulose in aberrant fibers of a cotton mutant. Crop Sci, 1993, 33: 1036–1040 [6]Cheng C H, Wang X D, Ni X Y. Observation of fiber ultrastructure of Ligon lintless mutant in upland cotton during fiber elongation. Chin Sci Bull, 2005, 50(2): 126–130 [7]Chen J G, Du X M, Zhou X. Levels of cytokinins in the ovules of cotton mutants with altered fiber development. J Plant Growth Regul, 1997, 16: 181–185 [8]Dixon D C, Seagull R W, TriPlett B A. Changes in the acellroulation of a- and p-tubulinisotypes during cotton fiber development. Plant Physiol, 1994, 105: 1347–1353 [9]Ji S J, Lu Y C, Li J, Wei G, Liang X J, Zhu Y X. A beta-tubulin- like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem Biophys Res Commun, 2002, 296: 1245–1250 [10]Ferguson D L, Turley R B, Kloth R H. Identification of a d-TIP cDNA clone and determination of related A and D genome subfamilies in Gossypium species. Plant Mol Biol, 1997, 34: 111–118 [11]Harmer S E, Orford S J, Timmis J N. Characterization of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Mol Gene Genome, 2002, 268: 1–9 [12]Song P, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display. Biochem Biophys Acta, 1997, 1351: 305–312 [13]Wilkins T A. Vacuolar H+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules. Plant Physiol, 1993, 102: 679–680 [14]Wan C Y, Wilkins T A. Isolation of multiple cDNAs encoding the vacuolar H+-ATPase subunit B from developing cotton (Gossypium hirsutum L.) ovules. Plant Physiol, 1994, 106: 393–394 [15]Hasenfratz M P, Tsou C L, Wilkins T A. Expression of two related vacuolar H+-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiol, 1995, 108: 1395–1404 [16]Andrawis A, Solomon M, Delmer D P. Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J, 1993, 3: 763–772 [17]Shin H, Brown Jr R M. GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol, 1999, 119: 925–934 [18]Kawai M, Aotsuka S, Uchimiya H. Isolation of a cotton CAP gene: a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation. Plant Cell Physiol, 1998, 39: 1380–1383 [19]Wang S, Zhao G H, Jia Y H, Du X M. Molecular cloning, and characterization of an adenylyl cyclase-associated protein from Gossypium arboreum L. Agric Sci China, 2009, 8(7): 777–783 [20]Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18: 651–664 [21]Qin Y M , Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell, 2007, 19: 3692–3704 [22]Bolton J J, Soliman K M, Wilkins T A, Jenkins J N. Aberrant expression of critical genes during secondary cell wall biogenesis in a cotton mutant, Ligon lintless-1 (Li-1). Comparative Function Genom, DOI: 10.1155/2009/659301 [23]Yang Y H, Dudoit S, Luu P, Lin D M, Peng V, Ngai J, Speed T P. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucl Acids Res, 2002, 30: e15 [24]Tusher V, Tibshirani R, Chu G. Significance analysis of microarrays applied to transcriptional responses to ionizingradiation. Proc Natl Acad Sci USA, 2001, 98: 5116–5121 [25]Murry E, Soonpaa M H, Reinecke H. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004, 428: 664-668 [26]Page R A, Okada S, Harwood J L. Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Biochim Biophys Acta, 1994, 1210: 369–372 [27]Post-Beittenmiller D, Roughan P G, Ohlrogge J B. Regulation of plant fatty acid biosynthesis. Analysis of acyl-Coenzyme A and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts. Plant Physiol, 1992, 100: 923–930 [28]Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl Acids Res, 2000, 28, 27–30 [29]De Fabiani E, Mitro N, Godio C, Gilardi F, Caruso D, Crestani M. Bile acid signaling to the nucleus: finding new connections in the transcriptional regulation of metabolic pathways. Biochimie, 2004, 86: 771–778 [30]Wanjie S W, Welti R, Moreau R A, Chapman K D. Identification and quantification of glycerolipidsin cotton fibers: reconciliation with metabolicpathway predictions from DNA databases. Lipids, 2005, 40: 8 [31]Qin Y M, Pujol F A, Shi Y H, Feng J X, Liu Y M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductases from developing cotton fibers. Cell Res, 2005, 15: 465–473 [32]Gou J Y, Wang L J, Chen S P, Hu W L, Chen X Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res, 2007, 17: 422–434 |
[1] | XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859. |
[2] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[3] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[4] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[5] | QIU Hong-Mei, CHEN Liang, HOU Yun-Long, WANG Xin-Feng, CHEN Jian, MA Xiao-Ping, CUI Zheng-Guo, ZHANG Ling, HU Jin-Hai, WANG Yue-Qiang, QIU Li-Juan. Research progress on genetic regulatory mechanism of seed color in soybean (Glycine max) [J]. Acta Agronomica Sinica, 2021, 47(12): 2299-2313. |
[6] | CHEN Tong-Rui, LUO Yan-Jun, ZHAO Pan-Ting, JIA Hai-Yan, MA Zheng-Qiang. Overexpression of TaJRL53 enhances the Fusarium head blight resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(1): 19-29. |
[7] | LU Geng,TANG Xin,LU Jun-Xing,LI Dan,HU Qiu-Yun,HU Tian,ZHANG Tao. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens [J]. Acta Agronomica Sinica, 2020, 46(8): 1283-1290. |
[8] | Jian-Bin GUO,Li HUANG,Nian LIU,Huai-Yong LUO,Xiao-Jing ZHOU,Wei-Gang CHEN,Bei WU,Dong-Xin HUAI,Xiao-Ping REN,Hui-Fang JIANG. Novel peanut genotype with low behenic acid developed from recombinant inbred lines [J]. Acta Agronomica Sinica, 2020, 46(5): 661-667. |
[9] | SUN Qi, ZHAO Zhi-Chao, ZHANG Jin-Hui, ZHANG Feng, CHENG Zhi-Jun, ZOU De-Tang. Genetic analysis and fine mapping of a sheathed panicle mutant sui2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1734-1742. |
[10] | XIANG Li-Yuan,XU Kai,SU Jing,WU Chao,YUAN Xiong,ZHENG Xing-Fei,DIAO Ying,HU Zhong-Li,LI Lan-Zhi. Genetic dissection of combining ability and heterosis of rice agronomic traits based on pathway analysis [J]. Acta Agronomica Sinica, 2019, 45(9): 1319-1326. |
[11] | WANG Yan-Hua,XIE Ling,YANG Bo,CAO Yan-Ru,LI Jia-Na. Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis [J]. Acta Agronomica Sinica, 2019, 45(8): 1137-1145. |
[12] | CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049. |
[13] | Zhi-Hong HOU,Yan WU,Qun CHENG,Li-Dong DONG,Si-Jia LU,Hai-Yang NAN,Zhuo-Ran GAN,Bao-Hui LIU. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2019, 45(6): 839-847. |
[14] | Jian-Bin GUO,Bei WU,Wei-Gang CHEN,Li HUANG,Yu-Ning CHEN,Xiao-Jing ZHOU,Huai-Yong LUO,Nian LIU,Xiao-Ping REN,Hui-Fang JIANG. Stability of major fatty acids contents of peanut varieties grown in different ecological regions [J]. Acta Agronomica Sinica, 2019, 45(5): 676-682. |
[15] | HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555. |
|