Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (08): 1247-1252.doi: 10.3724/SP.J.1006.2016.01247

• RESEARCH NOTES • Previous Articles     Next Articles

Rapid Development of Glu-1 Locus Near-isogenic Introgression Lines Using HMW-GS Deletion Mutant

ZHANG Xing-Xing1,2,**,WANG Zhao-Jun2,3,**,YANG Yu-Shuang2,4,WANG Dao-Wen2,ZHENG Wen-Ming1,*,DONG Zhen-Ying2,*   

  1. 1State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; 2State Key Laboratory of PlantCell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 3University of Chinese Academy of Sciences, Beijing 100049,China; 4Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571731, China
  • Received:2016-02-22 Revised:2016-05-09 Online:2016-08-12 Published:2016-06-02
  • Contact: 郑文明, E-mail: wmzheng@henau.edu.cn; 董振营, E-mail: zhydong@genetics.ac.cn E-mail:xingzhang.1989@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31300280) and the National Key Basic Research Program of China (2013CB127702).


Wheat (Triticumaestivum L., AABBDD) highmolecular weight glutenin subunits (HMW-GS) were encoded by the genes located inGlu-A1, Glu-B1and Glu-D1 loci.Evaluation and optimization of the combination of HMW-GS are very importantto understand Glu-1functions. In this study, we constructed aHMW-GS deletion mutant, DLGlu1 withXiaoyan 81 background, and crossed it with Glenlea, a Canada elite wheat variety with superior end-use quality. Combining the technologies of wheat embryo culture and molecular marker-assisted selection (MAS), we obtained seven introgression lines containing GlenleaGlu-A1a, Glu-B1al, and Glu-D1d loci, which can be developed as a complete set of near-isogenic introgression lines possessingGlenleadifferentHMW-GS genes. Our study indicated that the Glu-1 deletion mutant DLGlu1is of great value in the fast development of Glu-1 near-isogenic introgression lines and the studyand utility of wheat Glu-1.

Key words: Wheat, HMW-GS, Deletion mutant, Introgression lines

[1] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature,2000, 408: 796–815
[2] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005,436:793–800
[3] Brenchley R, Spannagl M, Pfeifer M, Barker GA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Hou NX, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dovrak J, McCombie WR, Hall A, Mayer KFX, Edwards K, Bevan MW, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing.Nature,2012, 491:705–710
[4] International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticumaestivum) genome. Science,2014, 345: 1251788
[5] Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KFX, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J, IWGSC, Yang H, Liu X, He Z, Mao L, Wang J.Aegilopstauschiidraft genome sequence reveals a gene repertoire for wheat adaptation.Nature, 2013, 496:91–95
[6]Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, L Dong, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo MC, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J.Draft genome of the wheat A-genome progenitor Triticumurartu. Nature, 2013, 496:87–90
[7] Li D, Dreher K, Knee E,Brkljacic J, Grotewold E, Berardini T Z, Lamesch P, Garcia-Hernandez M, Reiser L, Huala E.Arabidopsis Database and Stock Resources. Arabidopsis Protocols. Springer,2014.pp 65–96
[8] Hirochika H.Insertional mutagenesis with Tos17 for functional analysis of rice genes. Breed Sci, 2010, 60:486–492
[9] Wang TL, Uauy C, Robson F, Till B.TILLING in extremis. Plant Biotechnol J, 2012, 10: 761–772
[10] Fitzgerald TL, Powell JJ, Stiller J, Weese TL, Abe T, Zhao G,Jia J, McIntyreC L, Li Z, Manners J M, Kazan K. An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticumaestivum L.). PLoS One,2015, 10: e0117369
[11] Yang Y, Li S, Zhang K, Dong Z, Li Y, An X, Chen J, Chen Q, Jiao Z, Liu X, Qin H, Wang D. Efficient isolation of ion beam-induced mutants for homoeologous loci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. TheorAppl Genet, 2014, 127:359–372
[12] Shewry PR, Halford NG.Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot, 2002, 53:947–958
[13]Shewry P R, Halford N G, Tatham A S, Popineau Y, Lafiandra D, Belton P S. The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res, 2003, 45:219–302
[14] Lafiandra D, D’Ovidio R, Porceddu E, Margiotta B, Colaprico G.New data supporting high Mrglutenin subunit 5 as the determinant of quality differences among the pairs 5+10 vs 2+12. J Cereal Sci, 1993, 18:197–205
[15] Marchylo B A, Lukow O M, Kruger J E. Quantitative variation in high-molecular-weight glutenin subunit 7 in some Canadian wheats. J Cereal Sci, 1992, 5:29–37
[16] Sears E R. Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis K R eds. Chromosome Manipulation and Plant Genetics. Oliver & Boyd, Edinburgh, 1966. pp 29–45
[17] 孙果忠, 马民强, 柴建芳, 赵和, 谢晓亮, 王海波. 小麦幼胚培养与幼粒破眠的比较. 河北农业科学, 2000, 4(1): 58–61
Sun G Z, Ma M Q, Cai J F, Zhao H, Xie X L, Wang H B. Comparison on wheat embryo culture and dormancy-breaking. J Hebei AgrSci, 2000, 4(1): 58–61 (in Chinese with English abstract)
[18] Butow B J, Gale K R, Ikea J, Juhász A, Bedö Z, Tamás L, Gianibelli M C. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. TheorAppl Genet, 2004, 109: 1525–1535
[19] Dong Z, Yang Y, Li Y, Zhang K , Lou H, An X, Dong L, Gu Y Q, Anderson O D, Liu X, Qin H, Wang D. Haplotype variation of Glu-D1 locus and the origin of Glu-D1d allele conferring superior end-use qualities in common wheat. PLoS One, 2013, 8: e74859
[20] Saghai-Maroof M A, Soliman KM, Jorgensen RA, Allard R W.Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl AcadSci USA,1984, 81:8014–8018
[21] Wan Y, Liu KF, Wang D, ShewryP R.High molecular weight subunits in the Cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat.TheorAppl Genet, 2000, 101: 879–884
[22] Zhang Y, Tang J W, Yan J, Zhang Y L, Zhang Y, Xia X C, He Z H.The gluten protein and interactions between components determine mixograph properties in an F6 recombinant inbred line population in bread wheat. J Cereal Sci,2009, 50:219–226
[23] Jin H, He Z H, Li G Y, Mu P Y, Fan Z R, Xia X C, Zhang Y.Effects of high molecular weight glutenin subunits on wheat quality by Aroona and its near-isogenic lines. SciAgric Sin,2013, 46:1095–1103
[24] Vasil IK, Bean S, Zhao JM, McCluskey P, Lookhart G, Zhao H P, Altpeter F, Vasil V.Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1.J Plant Physiol. 2001, 158: 521–528
[25] Ma M, Yan Y, Huang L, Chen M, Zhao H. Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biol,2012, 12:141
[26] PaynePI, Nightingale MA, KrattigerAF, Holt L M.The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric, 1987, 40: 51–65
[27] Branlard G, Dardevet M, Saccomano R,Lagoutte F, Gourdon J.Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119:59–67
[28] Li Y, An X, Yang R, Guo X, Yue G, Fan R, Li B, Li Z, Zhang K, Dong Z, Zhang L, Wang J, Jia X, Ling H-Q, Zhang A, Zhang X, Wang D. Dissecting and enhancing the contributions of high-molecular-weight glutenin subunits to dough functionality and bread quality. Mol Plant, 2015, 8: 332–334
[29] 李保云, 刘桂芳, 王岳光, 孙辉, 刘广田. 小麦高分子量谷蛋白亚基的遗传规律研究.中国农业大学学报, 2000, 5(1): 58–62
Li B Y, Liu G F, Wang Y G, Sun H, Liu G T. Inheritance of high molecular weight glutenin subunits (HMW-GS) in wheat. J China AgricUniv, 2000, 5(1): 58–62 (in Chinese with English abstract)

[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[3] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[6] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[7] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[8] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[9] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[10] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[11] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[12] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[13] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[14] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Full text



No Suggested Reading articles found!