Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2603-2612.doi: 10.3724/SP.J.1006.2023.21082

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Creation and analysis of secondary translocation harbouring gene Pm21

ZHANG Lan-Yue1(), LUO Jiang-Tao2(), FAN Chao-Lan1, LI Ya-Zhou1, JIANG Bo1, CHEN Xue1, CHEN Xue-Jiao1, YUAN Zhong-Wei1, NING Shun-Zong1, ZHANG Lian-Quan3, LIU Deng-Cai3(), HAO Ming1()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
    2Crop Research Institute, Sichuan Academy of Agricultural Science, Jinjiang 610066, Sichuan, China
    3State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
  • Received:2022-12-12 Accepted:2023-02-21 Online:2023-10-12 Published:2023-03-06
  • Contact: E-mail: haomingluo@foxmail.com; E-mail: dcliu7@sicau.edu.cn
  • About author:**Contributed equally to this study
  • Supported by:
    Sichuan Science and Technology Program(2022ZDZX0014);Sichuan Science and Technology Program(2022NSFSC1696);National Natural Science Foundation of China(31971884);National Natural Science Foundation of China(32172020)

Abstract:

Wheat-Haynaldia villosa 6VS.6AL translocation harbouring the gene Pm21 has made a great contribution to powdery mildew resistance breeding in China. Based on the data of 55K SNP chip, 25 (15.4%) out of 162 Sichuan wheat varieties contained the translocation. In this study, recombination point and haplotype analysis on the 25 varieties showed that it was centric translocation. Combined with the pedigree information, 92R178 was the original donor of the 6VS.6AL translocation in these varieties. 6AS-6VS-6AS.6AL secondary recombinant containing Pm21 was generated by using primary recombinants 6VS-6AS.6AL and 6AS-6VS.6AL as the cross parents, which both formed by the induction of ph1b. The secondary recombinant had a much smaller 6VS chromatin than the primary recombinants. Based on the Chinese Spring reference genome, the crossover points of the secondary recombinant were located within 53.1-53.8 Mb and 90.7-92.2 Mb of chromosome 6A, with a 6VS fragment size about 36.9-39.1 Mb. Molecular cytological identification also detected the extensive recombinants among wheat endogenous homoeologs induced by ph1b, which was not only disadvantage for genetic stabilization of wheat-alien recombinants but also for wheat breeding. A proposed solution to reduce endogenous recombinants was to preserve the ph1b mutant line in a heterozygous condition and reduce the selfing times during the development of ph1b-mediated wheat-alien recombination. In breeding, it is necessary to eliminate endogenous recombinants as soon as possible.

Key words: wheat, Haynaldia villosa, powdery mildew, 6VS.6AL translocation, Pm21 gene, small fragment translocation line

Table 1

Twenty-five Sichuan wheat varieties (lines) carrying 6VS.6AL translocation"

品种(系)名
Accession name
选育单位
Origin
杂交组合
Pedigree
审定年份
Released year
细胞学*
Cytological*
绵阳27
Mianyang 27
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
81-5/81-24 1997 /
绵阳28
Mianyang 28
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
T79350-1-4/Mianyang 11 1997 /
川麦36
Chuanmai 36
四川省农业科学院
Sichuan Academy of Agricultural Sciences
Milan/SW5193 2002 ×
内麦8号
Neimai 8
内江市农业科学院
Neijiang Academy of Agricultural Sciences
Mianyang 26/92R178 2003
西科麦1号
Xikemai 1
西南科技大学
SouthWest University of Science and Technology
Mianyang 88-304/Mo-212 2003 ×
良麦2号
Liangmai 2
四川农业大学
Sichuan Agricultural University
Mianyang 26/// (10-A/88-1643//Chuanyu 12) 2004 ×
绵麦37
Mianmai 37
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
96EW37/Mianyang 90-100 2004
内麦9号
Neimai 9
内江市农业科学院
Neijiang Academy of Agricultural Sciences
Mianyang 26/92R178 2004
杏麦2号
Xingmai 2
内江市农业科学院
Neijiang Academy of Agricultural Sciences
Mianyang 26/92R178 2004
内麦11号
Neimai 11
内江市农业科学院
Neijiang Academy of Agricultural Sciences
Mianyang 26/92R178 2007
绵麦185
Mianmai 185
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
Mianyang 96-5/Liaochun 10 2008
内麦3416
Neimai 3416
内江市农业科学院
Neijiang Academy of Agricultural Sciences
R57/Ping 5 2010 /
绵麦228
Mianmai 228
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
1275-1/Nei 2938//99-1522 2011 ×
绵麦51
Mianmai 51
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
1275-1/99-1522 2012
西科麦7号
Xikemai 7
西南科技大学
Southwest University of Science and Technology
Chuanyu 11/Mo444 2012
Y11-1741 四川农业大学
Sichuan Agricultural University
Zimai 1/Mianyang 2003-1 2012
绵麦1618
Mianmai 1618
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
1275-1//Nei 2938/99-1522 2013
西科麦8号
Xikemai 8
西南科技大学
Southwest University of Science and Technology
97-392/Yun 225747-5 2013
西科麦9号
Xikemai 9
西南科技大学
Southwest University of Science and Technology
Nei 4301/Mianyang 31 2014
宜麦9号
Yimai 9
宜宾市农业科学院
Yibin Academy of Agricultural Sciences
R59/Yi 97-24 2014 ×
川麦92
Chuanmai 92
四川省农业科学院
Sichuan Academy of Agricultural Sciences
Neimai 8/Jian 3//Chuanmai 42 2015 /
绵麦112
Mianmai 112
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
Mian 06-367/99-1522 2015 /
内麦366
Neimai 366
内江市农业科学院
Neijiang Academy of Agricultural Sciences
Balandal88/Nei 4344 2015 /
国豪麦3号
Guohaomai 3
四川国豪种业
Sichuan Guohao Seeds Industry Co., Ltd.
1227-185/99-1522//99-1572 2016
绵麦285
Mianmai 285
绵阳市农业科学院
Mianyang Academy of Agricultural Sciences
1275-1/99-1522 2016

Fig. 1

Genotypes of the chromosome 6A of 165 Sichuan wheats Each row represents a cultivar (line); each column represents a marker. The markers are arranged from left to right according their physical location on the Chinese spring reference genome of IWGSC v1.0. Markers are labeled in red with a genotype of A, in green with a genotype of C, in yellow with a genotype of G, in blue with a genotype of T, in grey with a genotype of heterozygote, and in pink with a genotype of missing. Hap1-3 represent haplotypes of centric region without recombination. Number in the bracket represents the cultivar (lines) number. Arrow points out the physical position on IWGSC v1.0."

Fig. 2

Flow diagram for creation and cytological identification of 6VS/6AS secondary translocation A: the crossing and selecting diagram to induce 6VS/6AS secondary translocation using their primary translocation; B: the confirmation the presence of Pm21 gene using its specific marker CINAU-NLR1 (from left to right: marker, Pm99915-1, CSph1b, HM782-15, HM780-7); C: genomic in situ hybridization (GISH) pattern of secondary translocation line Rec32; D: GSIH pattern of secondary translocation line Rec50; E: GISH pattern of 6VS.6AL translocation lines formed by homologous recombination between two 6VS/6AS primary translocation; F: the diagram of how primary translocation pair and exchange to generate secondary translocation. MI: metaphase I of meiosis; AI: anaphase I of meisosis. 6VS chromosome arm or fragment was filled in red, 6A chromosome or fragment in blue. Yellow line represents Pm21 gene. Yellow arrows represent C_6VS/6AS_AVA-Pm21-1 or 6VS.6AL. White arrows represent primary translocation without recombination."

Fig. 3

Graphical genotypes of Rec50 and HM887-9-51 Chromosomes on the left are from Rec50, right from HM887-9-51. Missing marker locations are labeled in green, others in red. The solid boxes indicate the deletion regions on nontarget wheat endogenous chromosomes. The dotted box indicates the deletion 6AS fragments on target primary and secondary recombined chromosome."

Fig. 4

Chromosome constitution of Rec50 a: genomic in situ hybridization on the root-tip chromosomes from A (pink), B (blue), and D (green) genomes. b: the fluorescence in situ hybridization using Oligo-pSc119.2 (green) and Oligo-pTa535 (pink) as the probes. White arrows indicate the nontarget wheat endogenous recombination chromosomes. Red arrows indicate the target primary and secondary 6VS/6AS recombined chromosomes."

[1] Chen P, Qi L, Zhou B, Zhang Z, Liu D. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125-1128.
doi: 10.1007/BF00223930 pmid: 24170007
[2] Zhang R, Sun B, Chen J, Cao A, Xing L, Feng Y, Lan C, Chen P. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet, 2016, 129: 1975-1984.
doi: 10.1007/s00122-016-2753-8
[3] Zhang R, Fan Y, Kong L, Wang Z, Wu J, Xing L, Cao A, Feng Y. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet, 2018, 131: 2613-2620.
doi: 10.1007/s00122-018-3176-5
[4] Zhang R, Xiong C, Mu H, Yao R, Meng X, Kong L, Xing L, Wu J, Feng Y, Cao A. Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J, 2021, 9: 882-888.
doi: 10.1016/j.cj.2020.09.012
[5] 江峥, 王琪琳, 吴建辉, 薛文波, 曾庆东, 黄丽丽, 康振生, 韩德俊. 基于基因特异性标记分析Pm21在中国冬小麦品种(系)中的分布. 中国农业科学, 2014, 47: 2078-2087.
doi: 10.3864/j.issn.0578-1752.2014.11.002
Jiang Z, Wang Q L, Wu J H, Xue W B, Zeng Q D, Huang L L, Kang Z S, Han D J. Distribution of powdery mildew resistance gene Pm21 in Chinese winter wheat cultivars and breeding lines based on gene-specific marker. Sci Agric Sin, 2014, 47: 2078-2087. (in Chinese with English abstract)
[6] 高煜, 程斌, 丁延庆, 曹宁, 高旭, 张立异. 西南地区小麦种质资源白粉病抗性的全基因组关联分析. 麦类作物学报, 2021, 41: 164-173.
Gao Y, Cheng B, Ding Y Q, Cao N, Gao X, Zhang L Y. Genome- wide association study of powdery mildew resistance of wheat germplasm in Southwest China. J Triticeae Crops, 2021, 41: 164-173. (in Chinese with English abstract)
[7] Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727-7732.
doi: 10.1073/pnas.1016981108
[8] Huang X, Zhu M, Zhuang L, Zhang S, Wang J, Chen X, Wang D, Chen J, Bao Y, Guo J, Zhang J, Feng Y, Chu C, Du P, Qi Z, Wang H, Chen P. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet, 2018, 131: 1967-1986.
doi: 10.1007/s00122-018-3126-2 pmid: 29947816
[9] Wu N, Lei Y, Pei D, Wu H, Liu X, Fang J, Guo J, Wang C, Guo J, Zhang J, Liu A, Wen M, Qi Z, Yang X, Bie T, Chu C, Zhou B, Chen P. Predominant wheat-alien chromosome translocations in newly developed wheat of China. Mol Breed, 2021, 41: 30.
doi: 10.1007/s11032-021-01206-3
[10] Hu Z, Luo J, Wan L, Luo J, Li Y, Fu S, Liu D, Hao M, Tang Z. Chromosomes polymorphisms of Sichuan wheat cultivars displayed by ND-FISH landmarks. Cereal Res Commun, 2022, 50: 253-262.
doi: 10.1007/s42976-021-00173-x
[11] Zhao C, Lyu X, Li Y, Li F, Geng M, Mi Y, Ni Z, Wang X, Xie C, Sun Q. Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. BMC Genet, 2016, 17: 82.
doi: 10.1186/s12863-016-0391-4
[12] 李桂萍, 陈佩度, 张瑞奇, 王春梅, 曹爱忠, 张守忠. 小麦-簇毛麦6VS/6AL易位染色体在不同小麦背景中的遗传稳定性及其在配子中的传递. 麦类作物学报, 2007, 27: 183-187.
Li G P, Chen P D, Zhang R Q, Wang C M, Cao A Z, Zhang S Z. Transmission of the 6VS/6AL chromosome through gametes and its genetic stability in different genetic background. J Triticeae Crops, 2007, 27: 183-187. (in Chinese with English abstract)
[13] 马秋香. 普通小麦-簇毛麦6VS·6AL易位系与辉县红的RIL群体及其部分农艺性状的遗传分析. 南京农业大学硕士学位论文,江苏南京, 2007. pp 43-48.
Ma Q X. Genetic Analysis of a New Wheat Recombinant Inbred Lines Population Derived from wheat-Haynaldia villosa 6VS·6AL Translocation and Huixian Hong and Some Agronomic Traits. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2007. pp 43-48. (in Chinese with English abstract)
[14] 李桂萍, 陈佩度, 张守忠, 赵和. 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源学报, 2011, 12: 744-749.
doi: 10.13430/j.cnki.jpgr.2011.05.013
Li G P, Chen P D, Zhang S Z, Zhao H. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. J Plant Genet Resour, 2011, 12: 744-749. (in Chinese with English abstract)
[15] Zhao R, Jiang Z, Chen T, Wang L, Ji Y, Hu Z, He H, Bie T. Comparative analysis of genetic effects of wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL. Plant Breed, 2019, 138: 503-512.
doi: 10.1111/pbr.v138.5
[16] Sears E R. Transfer of alien genetic material to wheat. In: Evans L, Peacock W J, eds. Wheat Science: Today and Tomorrow. Cambridge: Cambridge University Press, 1981. pp 75-89.
[17] Lukaszewski A J, Cowger C. Re-engineering of Pm21 transfer from Haynaldia villosa to bread wheat by induced homoeologous recombination. Crop Sci, 2017, 57: 2590-2594.
doi: 10.2135/cropsci2017.03.0192
[18] Zhang S, Fan C, Luo J, Huang L, Xie D, Li Y, Chen Z, Jiang B, Ning S, Yuan Z, Huang L, Zhang L, Liu D, Hao M. KASP markers to detect sub-chromosomal arm translocations between 6VS of Haynaldia villosa and 6AS of wheat. Euphytica, 2021, 217: 10.
doi: 10.1007/s10681-020-02744-1
[19] Gyawali Y, Zhang W, Chao S, Xu S, Cai X. Delimitation of wheat ph1b deletion and development of ph1b-specific DNA markers. Theor Appl Genet, 2019, 132: 195-204.
doi: 10.1007/s00122-018-3207-2 pmid: 30343385
[20] Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones J D G, Karafiatova M, Vrana J, Bartos J, Dolezel J, Tian Y, Wu Y, Cao A. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant, 2018, 11: 874-878.
doi: 10.1016/j.molp.2018.02.013
[21] Ye X, Li J, Cheng Y, Yao F, Long L, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Kang H, Li W, Qi P, Lan X, Ma J, Liu Y, Jiang Y, Wei Y, Chen X, Liu C, Zheng Y, Chen G. Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm under stripe rust stress. BMC Genomics, 2019, 20: 640.
doi: 10.1186/s12864-019-6005-6 pmid: 31395029
[22] 范超兰. 小麦ph基因对部分同源染色体重组的影响. 四川农业大学博士学位论文, 四川成都, 2022. pp 29-33.
Fan C L. The Effects of Wheat ph Genes on Homoeologous Chromosome Recombination. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2022. pp 29-33. (in Chinese with English abstract)
[23] Zhao L, Ning S, Yu J, Hao M, Zhang L, Yuan Z, Zheng Y, Liu D. Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat. Breed Sci, 2016, 66: 522-529.
doi: 10.1270/jsbbs.16011
[24] International Wheat Genome Sequencing Consortium IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
doi: 10.1126/science.aar7191
[25] He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T. Pm21, encoding a typical CC-NBS-LRR protein, confers broad- spectrum resistance to wheat powdery mildew disease. Mol Plant, 2018, 11: 879-882.
doi: 10.1016/j.molp.2018.03.004
[26] Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 1958, 182: 713-715.
doi: 10.1038/182713a0
[27] Martín A C, Borrill P, Higgins J, Alabdullah A, Ramírez-González R H, Swarbreck D, Uauy C, Shaw P, Moore G. Genome- wide transcription during early wheat meiosis is independent of synapsis, ploidy level, and the Ph1locus. Front Plant Sci, 2018, 9: 1791.
doi: 10.3389/fpls.2018.01791
[28] Fan C, Hao M, Jia Z, Neri C, Chen X, Chen W, Liu D, Lukaszewski A J. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. Plant J, 2021, 105: 1665-1676.
doi: 10.1111/tpj.v105.6
[29] Li Y, Li Q, Lan J, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z, Li W, Li Z, Harwood W, Lan X, Deng M, Wei Y, Zheng Y, Jiang Q. Transfer of the ph1b gene of ‘Chinese Spring' into a common wheat cultivar with excellent traits. Cereal Res Commun, 2020, 48: 283-291.
doi: 10.1007/s42976-020-00048-7
[30] Türkösi E, Ivanizs L, Farkas A, Gaál E, Kruppa K, Kovács P, Szakács É, Szőke-Pázsi K, Said M, Cápal P, Griffiths S, Doležel J, Molnár I. Transfer of the ph1b deletion chromosome 5B from Chinese Spring wheat into a winter wheat line and induction of chromosome rearrangements in wheat-Aegilops biuncialis hybrids. Front Plant Sci, 2022 13: 875676.
[31] Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z, Wu B, Lan X, Yuan Z, Huang L, Wang J, Zheng K, Chen W, Yu M, Chen X, Chen M, Wei Y, Zhang H, Kishii M, Hawkesford M J, Mao L, Zheng Y, Liu D. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor Appl Genet, 2019, 132: 2285-2294.
doi: 10.1007/s00122-019-03354-9 pmid: 31049633
[32] 李庆成, 黄磊, 李亚洲, 范超兰, 谢蝶, 赵来宾, 张舒洁, 陈雪姣, 甯顺腙, 袁中伟, 张连全, 刘登才, 郝明. 6RS/6AL易位染色体的遗传稳定性及其在配子中的传递. 作物学报, 2020, 46: 513-519.
doi: 10.3724/SP.J.1006.2020.91051
Li Q C, Huang L, Li Y Z, Fan C L, Xie D, Zhao L B, Zhang S J, Chen X J, Ning S Z, Yuan Z W, Zhang L Q, Liu D C, Hao M. Genetic stability of 6RS/6AL translocation chromosome and its transmission through gametes. Acta Agron Sin, 2020, 46: 513-519. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91051
[1] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[2] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[3] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[4] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[5] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[6] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[7] LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287.
[8] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[9] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[10] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[11] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[12] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[13] FENG Lian-Jie, YU Zhen-Wen, ZHANG Yong-Li, SHI Yu. Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat [J]. Acta Agronomica Sinica, 2023, 49(6): 1653-1667.
[14] WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600.
[15] GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[2] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[7] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[8] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[9] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[10] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .